脂代谢相关基因CGI-58在肿瘤发生发展中的作用及调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     肿瘤的发生发展受到基因的不稳定性及肿瘤微环境的双重调控。许多证据已经表明肿瘤微环境在恶性肿瘤的发生发展中发挥重要作用,但其作用机制仍不清楚。纤连蛋白是肿瘤微环境中重要的细胞外基质糖蛋白,存在不同的可变剪接变异体,其中EDA+FN特异性的高表达于多种恶性肿瘤,且与多种肿瘤的恶性表型相关,但EDA对肿瘤生物学特性的影响及其具体分子机制尚不清楚。
     代谢是机体生命活动的基本特征,正常细胞向恶性细胞的转化过程中发生多种生物学特性的改变,其中代谢重编程是其最显著的特征之一。近年来研究发现,某些癌基因的激活或抑癌基因的失活可调控代谢稳态发挥其促癌或抑癌作用,且某些代谢酶本身即可作为癌基因或抑癌基因参与肿瘤的发生发展。肿瘤有氧糖酵解是最早被发现和研究的肿瘤代谢重编程,即肿瘤细胞即使在有氧环境下,也主要以糖酵解而非产能效率更高的线粒体氧化磷酸化的方式供能(Warburg效应)。葡萄糖和脂肪酸代谢是能量的主要来源,既往关于肿瘤代谢的研究主要集中在糖代谢,近年来的研究发现,脂代谢异常也参与调控了多种肿瘤的恶性表型,但脂代谢在恶性肿瘤中的具体作用及机制仍知之甚少。结肠癌已被证实为糖酵解异常增强的肿瘤,而肿瘤组织中脂质的异常沉积也是其重要表型,但结肠癌中这种糖脂代谢紊乱的原因及机制尚不明确。研究证实,肿瘤微环境参与调控了肿瘤代谢的重编程,而肿瘤微环境成分EDA是否参与了对结肠癌代谢的调控仍有待于进一步探讨。
     本研究通过慢病毒载体建立EDA过表达及干扰表达的细胞模型,研究了EDA对结肠癌及鼻咽癌生物学特性的影响及分子机制。同时,我们发现结肠癌中EDA的过表达可显著抑制脂代谢相关基因CGI-58的表达活性,结肠癌中CGI-58呈现出特异性的表达缺失。既往研究表明,CGI-58是脂质分解的一个强有力的活化因子,其缺乏导致脂滴大量沉积,且CGI-58缺乏的小鼠对葡萄糖利用显著增加。因此我们猜测,结肠癌中CGI-58缺乏是导致肿瘤组织中脂质异常沉积和糖酵解增强的重要原因。为进一步明确CGI-58在结肠癌生物学特性中的作用,我们通过建立肠道CGI-58特异性敲除的ApcMin/+小鼠,CGI-58敲低和CGI-58过表达细胞,联合人结肠癌组织标本,鉴定了CGI-58缺失在诱导代谢重编程促进结肠癌发生发展中的作用。
     Wnt通路的激活与结肠癌发生发展密切相关,CGI-58缺失导致Wnt通路的靶基因c-MET表达显著上调,提示Wnt通路被激活。我们的研究表明,CGI-58敲低细胞及CGI-58敲除小鼠肠道肿瘤中激活Wnt通路的经典分子β-catenin的表达及核转位并无增加。因此,我们进一步探讨了CGI-58缺失经非β-catenin依赖途径诱导YAP/TAZ复合物核转位,激活Wnt信号通路的分子机制。
     为进一步探讨CGI-58在其他恶性肿瘤中是否同样具有抑癌基因功能,我们根据肿瘤突变基因数据库COSMIC的统计发现,CGI-58在神经来源肿瘤中也呈现显著缺失。黑色素瘤是神经来源的具有高度侵袭性的恶性肿瘤,已有研究报道脂代谢相关基因MAGL可显著促进黑色素瘤细胞的侵袭转移能力,为进一步明确CGI-58在其他恶性肿瘤中是否同样具有抑癌基因作用,通过慢病毒载体建立的CGI-58敲低及过表达黑色素瘤细胞模型,结合黑色素瘤临床肿瘤组织标本,我们继而研究了CGI-58在黑色素瘤分化及侵袭转移中的作用及机制。
     目的:
     1、阐明结肠癌微环境成分EDA对结肠癌生物学特性的影响及作用机制;
     2、验证EDA相关脂代谢基因CGI-58在结肠癌发生发展中作用及分子机制;
     3、验证CGI-58在恶性黑色素瘤侵袭转移中的作用及分子机制;
     4、揭示CGI-58作为抑癌基因的功能,进一步阐释肿瘤微环境与肿瘤代谢之间相互调控促进肿瘤恶性表型的作用及具体机制。
     材料与方法:
     1、肿瘤组织芯片免疫组化染色用于临床病理特征相关性分析;
     2、慢病毒载体建立EDA及CGI-58敲低及过表达的细胞模型用于研究EDA和CGI-58功能;
     3、 CGI-58肠道特异性敲除APCmin/+小鼠用于研究肠道肿瘤发生发展。
     结果:
     1、EDA在结肠癌及鼻咽癌中发挥促癌作用。
     EDA通过维持CD133+/CD44+结肠癌亚群细胞的特性促进结肠癌恶性表型,Integrin/FAK/ERK信号途径介导的Wnt/β-catenin通路激活是EDA促进结肠癌“干性”特征的重要分子机制。结肠癌细胞分泌型EDA通过与淋巴管内皮细胞整合素受体Integrinα9相互作用促进出芽诱导因子Prox1的表达和细胞微丝蛋白的极性排列,显著促进淋巴管内皮细胞的迁移、出芽和成管。血管内皮细胞分泌型EDA通过诱导结肠癌细胞发生上皮-间质转化促进结肠癌的侵袭转移,FAK/Src/Snail信号途径介导了血管内皮细胞分泌型EDA与结肠癌细胞表面integrinα9β1受体相互作用促进细胞EMT和侵袭转移的效应。此外,鼻咽癌组织中EDA促进细胞放射抵抗,FAK/Akt/JNK信号途径介导了EDA对鼻咽癌放疗敏感性的影响。此外,我们的研究还表明,EDA可显著调控脂代谢相关基因CGI-58的表达。利用基因芯片对EDA过表达和对照细胞进行比较筛查发现,EDA过表达细胞中葡萄糖转运蛋白GLUT1及多种糖酵解关键酶显著上调,而脂代谢相关基因比较基因组学鉴定蛋白58(CGI-58)表达明显收到抑制。Western blots检测进一步验证发现,EDA过表达细胞中CGI-58蛋白表达水平显著下降。
     2、CGI-58缺失启动代谢重编程诱导细胞恶变及发生上皮-间质转化,进而促进结肠癌发生发展。
     在结肠癌组织中CGI-58的表达显著低于癌旁组织和正常结肠组织,在结肠癌发生谱中,相比正常结肠粘膜组织,CGI-58的表达从炎症到不典型增生无显著变化,而在腺瘤中开始出现部分缺失,且缺失率与腺瘤癌变密切相关。通过将CGI-58肠道特异性敲除小鼠模型与结肠癌发生发展研究的经典模型APCmin/+小鼠(肠道多发腺瘤小鼠模型)进行杂交发现,肠道特异性CGI-58敲除的APCmin/+小鼠肠道肿瘤数量及体积较对照小鼠显著增加,且肠道腺瘤发生明显的恶性转化。体外实验研究进一步证实,正常结肠粘膜上皮细胞CGI-58表达显著高于结肠癌细胞,利用慢病毒载体敲低正常结肠粘膜上皮细胞中CGI-58表达后,细胞发生明显的上皮-间质转化(EMT),侵袭能力显著增强,且可在裸鼠体内成瘤,而在结肠癌细胞中回复CGI-58的表达可显著逆转其成瘤及侵袭能力。进一步研究表明,CGI-58缺失的肠道上皮细胞中酯酶水解活性下降,胞内出现大量中性脂质沉积,脂肪酸线粒体氧化明显受到抑制,同时细胞对葡萄糖的摄取明显增加,糖酵解关键酶表达上调,且糖酵解中间产物明显堆积。我们的研究还发现,CGI-58敲低的细胞内AMPK/p53活性受到抑制,而PI3K/Akt/mTOR信号通路被显著激活,细胞自噬水平降低。结肠癌临床标本研究进一步证实,CGI-58在结肠癌中的缺失与结肠癌的分期分级、转移及复发率呈显著正相关,与结肠癌患者的预后呈负相关。
     3. GI-58缺失诱导YAP/TAZ核转位激活Wnt信号通路。
     Wnt通路的激活与结肠癌发生发展密切相关,CGI-58缺失的结肠癌细胞Wnt通路靶基因c-MET表达显著上调,提示Wnt通路被显著激活。CGI-58缺失细胞中β-catenin表达略有下降,且核转位并无明显增强,提示CGI-58通过非β-catenin途径激活了Wnt通路。进一步研究发现,CGI-58敲低细胞中TAZ表达增强,YAP/TAZ复合物磷酸化显著降低,核转位明显,且其共激活转录调节因子TEAD活性显著上调,提示YAP/TAZ促转录活性增强。同时CGI-58肠道敲除小鼠模型研究结果也证实,CGI-58敲除小鼠肠道肿瘤中TAZ表达增强,且YAP/TAZ核转位明显强于对照组。免疫荧光及免疫共沉淀证实CGI-58与YAP/TAZ并无直接结合,而脂滴相关蛋白ADRP与YAP/TAZ之间有共定位及结合,提示CGI-58通过蛋白-蛋白相互作用促进YAP/TAZ复合物去磷酸化而发生核转位,进而通过增强共激活转录因子TEAD转录活性,上调Wnt靶基因c-MET表达,促进细胞上皮-间质转化和侵袭转移。
     4. CGI-58缺失诱导黑色素瘤细胞去分化而促进其侵袭转移能力
     CGI-58在恶性黑色素瘤肿瘤组织中的表达与黑色素瘤生物学特性显著相关。高侵袭黑色素瘤细胞中CGI-58表达显著低于低侵袭黑色素瘤细胞。在低侵袭力黑色素瘤细胞中敲低CGI-58表达显著促进其侵袭转移能力,同时细胞色素出现显著丢失。代谢产物分析发现CGI-58敲低的黑色素瘤细胞中溶血磷脂酸(LPA)含量升高,且LPA受体表达显著上调,利用LPA受体阻断剂可有效逆转CGI-58敲低引起的细胞侵袭转移及去分化。进一步研究发现,CGI-58敲低的黑色素瘤细胞中与细胞分化密切相关的Wnt5A表达显著上调,证实CGI-58引起的磷脂代谢重编程可诱导细胞去分化而促进黑色素细胞侵袭转移能力。
     结论:
     1、结肠癌微环境中,结肠癌细胞分泌型EDA和内皮细胞分泌型EDA均显著促进结肠癌的恶性表型。EDA/整合素信号途径在结肠癌发生发展中扮演重要角色,是结肠癌靶向治疗的特异性潜在靶标;EDA在鼻咽癌中的高表达显著促进了鼻咽癌放疗抵抗,因此阻断EDA相关信号途径是提高鼻咽癌放疗敏感性的有效手段;EDA可能通过显著调控代谢基因CGI-58的表达参与肿瘤代谢调控;
     2、CGI-58缺失导致的细胞供能方式从线粒体氧化转化为有氧糖酵解,可能是结肠癌糖酵解增强重要原因;结肠癌发生发展过程中CGI-58特异性的表达活性缺失启动的结肠癌代谢重编程激活下游PI3K/Akt/mTOR促癌信号途径,诱导细胞恶性转化及促进细胞侵袭转移,是结肠癌发生发展的重要分子机理。
     4、CGI-58缺失导致Wnt信号通路显著激活,但CGI-58缺失通过非经典β-catenin途径,而通过诱导YAP/TAZ复合物入核激活Wnt信号,进一步揭示了CGI-58缺失促进结肠癌发生发展的重要分子机制;
     5、CGI-58在黑色素瘤细胞中的缺失通过调控磷脂代谢诱导细胞去分化而促进其侵袭转移能力,揭示了脂代谢重编程促进黑色素瘤侵袭转移的作用和机制,首次揭示了脂代谢重编程在黑色素瘤细胞分化中的重要作用。
     6、通过研究结肠癌微环境成分纤维粘连蛋白EDA片段对结肠癌及鼻咽癌生物学特性的影响,以及EDA相关脂代谢相关基因CGI-58在结肠癌发生发展和黑色素瘤侵袭转移中的作用,进一步揭示了肿瘤微环境与代谢重编程在肿瘤发生发展中的重要作用。首次提出CGI-58是一具有酶活性的抑癌基因,其相关代谢途径及代谢产物为多种恶性肿瘤的诊断和治疗提供了新的潜在生物标记物和治疗靶标。
Background:
     The etiology of cancer attributes to both genetic and environmental factors. Numerousevidence has been indicating the critical role of tumor microenvironment in regulatingcancer pathogenesis, but the underlying mechanism remains elusive. Cancer cells interactwith their extracellular matrix (ECM) during proliferation and migration. Fibronectin is animportant ECM glycoprotein in tumor microenvironment with several alternatively splicedvariants, including extra domain A (EDA). Previous studies have reported that theexpression levels of EDA are associated with the malignancy in several cancers, includingcolon cancer (CRC) as well as head and neck cancer, but the precise effect and molecularmechanism is still unknown.
     Metabolic reprogramming is a hallmark of malignant tumors. Many oncogenes andtumor suppressor genes have positioned at critical nodes of important metabolic networks,and their activities are hyper-responsive to metabolic perturbations. Additionally, inborn oracquired mutations of several metabolic enzymes are associated with development andprogression of several types of cancer, highlighting important roles of altered cellmetabolism in cancer etiology. A distinct metabolic phenotype possess during thedevelopment and progression of cancer, which is weakly associated with cancer subtype,but more strongly associated with tumor microenvironment-derived signature. Glycolyticbreakdown of glucose for ATP production in the presence of ample oxygen to fuelmitochondrial oxidative phosphorylation is a characteristic metabolic reprogramming inmultiple malignant tumors, and is known as “Warburg effect”. Although the Warburg effecthas been demonstrated to critically contribute to cancer pathogenesis, it is largely unknownhow cancer cells shift their energy metabolism to aerobic glycolysis.
     It has been revealed that tumor microenvironment is involved in regulating tumor metabolic reprogramming. Therefore, we presumed that EDA may play an important role infacilitating the development an progression of cancer via manipulating metabolicreprogramming. In this study, we established both full length form and shRNA formplasmid of EDA, transfected them into CRC cells, endothelial cells and nasopharyngealcarcinoma (NPC) cells, and the effect of EDA on the cancrt pathogenesis was investigated.In addition, we identified the lipid metabolism associated gene, CGI-58as a critical targetof EDA, and further used CGI-58intestine-specific knockout ApcMin/+mice,CGI-58-silenced and CGI-58-forced cells, and human CRC and melanoma tissues to revealthe novel role of CGI-58as a tumor suppressor in CRC and melanoma, and also as a switchof “Warburg effect”.
     Wnt signaling critically contributes to the development and progression of CRC, and isthe driven cause of the tumorigenesis of ApcMin/+mice. We further revealed the underlyingmechanism of the activation of Wnt signaling in the absence of CGI-58.
     To further investigate the casual role of CGI-58as a tumor suppressor, we checked thedatabase of Catalogue of Somatic Mutations in Cancer (COSMIC), and found that anotherstriking frequent loss is reported in tumors derived from nervous system. Melanoma is acommon type of nervous system-derived cancer displaying highly aggressive malignancy.Little is known about the mechanism underlying the highly aggressive behavior ofmelanoma. It was shown that another lipolytic enzyme, MAGL, promots invasion andmetastasis of multiple cancers, including melanoma. Due to the abundant expression ofCGI-58in normal skin and the striking phenotype of skin lesions in CGI-58deficientpatients, we then throw an appreciation in investigating the potential role of CGI-58inmelanoma pathogenesis.
     Objective:
     To investigate the molecular mechanism underlying the oncogenic role of EDA incancer pathogenesis; To reveal the novel tumor suppressor role of EDA associatedmetabolic gene CGI-58in the development and progression of CRC, and further identifythe casual role of CGI-58as a tumor suppressor in regulating the differentiation ofmelanoma.
     Materials and methods:
     1. Tissue chips consisting of human CRC and melanoma specimens and human normal colon tissues were used for statistical analysis of clinicopathological features;
     2. EDA or CGI-58manipulations in cells were established by lentiviral particles;
     3. Intestine-specific CGI-58knockout mice were generated by mating CGI-58-floxedmice with B6.SJL-Tg(Vil-cre)977Gum/J mice, followed by crossing CGI-58f/+/Vil-cremicewith CGI-58f/+mice to get homozygous CGI-58floxed mice with Vil-cre transgene,
     Results:
     1. EDA promotes the pathogenesis of CRC as well as NPC
     We found that tumor tissue and serum EDA levels are substantially higher in advancedversus early stage human CRC, and EDA levels are significantly correlated with the clinicalfeatures of CRC patients. We further demonstrated that EDA sustains the properties ofCD133+/CD44+CRC cells via activating integrin/FAK/ERK pathway to driveWnt/β-catenin signaling. Furthermore, we assert that CRC cell-derived EDA significantlyfacilitates migration, sprouting and tubulogenesis of co-cultured lymphatic endothelial cells,indicating an important role of EDA in lymphangiogenesis of CRC. Intriguingly, we alsofound that endothelial cell-secreted-EDA promotes the metastatic capacity CRC cells viainducing an epithelial-mesenchymal-transition (EMT). In addition, our findingsdemonstrated that EDA levels are significantly correlated with the clinical features of NPCpatients. EDA substantially aggravates the radioresistance of NPC cells, and FAK/Akt/JNKsignaling was found to be a critical signaling mediating EDA function in regulating NPCradiosensitivity. Very impressively, we revealed that EDA suppresses a well establishedintracellular lipolytic activator, Comparative Gene Identification-58(CGI-58).
     2. CGI-58deficiency promotes CRC development and metastasis by inducingaerobic glycolysis.
     Extensive loss of CGI-58is a hallmark of CRCs and is significantly correlated with theclinical features of CRCs. Silencing of CGI-58in normal fibroblasts induces malignanttransformation. Intestine-specific knockout of CGI-58in ApcMin/+mice robustly increasestumorigenesis and malignant transformation of adenomatous polyps. In colon cancer cells,CGI-58deficiency induces epithelial-mesenchymal transition by suppressing theAMPKα-p53pathway, which is attributable to increased aerobic glycolysis. In humanCRCs, CGI-58expression falls substantially and correlates negatively with malignantfeatures. Our study is the first to link CGI-58to CRC pathogenesis. It suggests that cancer cells may develop aerobic glycolysis by suppressing CGI-58-mediated intracellularlipolysis.
     3. CGI-58deficiency activates Wnt signaling in CRC via inducing the nucleartranslocation of YAP/TAZ independent of β-catenin.
     The phenotype of CGI-58knockout in ApcMin/+mice indicates an activation of Wntsignaling, we then sought to explore the underlying molecular mechanism. Wnt/β-catenin isa classic signaling involved in CRC development and progression. We found that theexpression and the translocation of β-catenin showed no changes in CGI-58deficient cells,while the expression and the translocation of YAP/TAZ were substantially increased inCGI-58deficient cells. Furthermore, the protein-protein interaction between CGI-58/ADRPand YAP/TAZ was demonstrated to mediate the activation of Wnt signaling in CGI-58deficient CRC cells.
     4. Melanoma silences CGI-58to promote invasion capacity via inducing celldedifferentiation
     The expression level of CGI-58is significantly correlated with the clinical features ofmelanoma. Aggressive melanoma cells showed substantially lower expression of CGI-58relative to non-aggressive melanoma cells. CGI-58deficiency induced reprogramming oflysophophatidic acid metabolism and the activation of Wnt5A signaling mediate thededifferentiation of melanoma cells, and therefore increased their metastatic capacity.
     Conclusions:
     1. Both CRC cell derived-EDA and endothelial cell derived-EDA significantlypromote the pathogenesis of CRC. EDA/integrin signaling are substantially attributable tothe malignancy of CRC, and may be potential specific targets in CRC therapy. EDA alsostrongly aggravates the radiosensitivity of NPC cells, and FAK/Akt/JNK signaling wasfound to critically mediates EDA effect on NPC radiosensitivity. EDA substantiallysuppresses the expression of a well-established cellular lipolytic activator, CGI-58
     2. CGI-58deficiency robustly induces tumorigenesis and malignant transformation bypromoting aerobic glycolysis, highlighting a key role of blockade of cellular fat catabolismin driving cancer development and progression, and revealing the switch role of CGI-58inWarburg effect. The strong negative correlation between CGI-58expression levels andmalignant features of human colorectal carcinomas suggest that CGI-58and the associated metabolites may serve as biomarkers for colorectal cancer metastasis and prognosis.
     3.CGI-58deficiency induced Wnt activation is YAP/TAZ translocation dependentinstead of β-catenin dependent. Our findings showed a novel correlation between lipolyticgene and Wnt signaling.
     4. CGI-58plays a casual tumor suppressor role in melanoma. CGI-58deficiencyinduces dedifferentiation of melanoma cells via triggering LPA metabolic reprogramming toactivate Wnt5A signaling, and critically contributes to the invasion and metastasis capacityof melanoma.
     5.Collectively our results establish a regulatory network between tumormicrocnviroment and tumor metabolism to further explain the oncogenic mechanismunderlying the development and progression of cancer.
引文
1Allen, M., Louise Jones, J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J.Pathol.(2010)223:162–176.
    2Kenny, P.A., Lee, G.Y., Bissell, M.J. Targeting the tumor microenvironment. Front. Biosci.(2007)12:3468–3474.
    3ffrench-Constant, C. Alternative splicing of fibronectin many different proteins but few different functions. Exp. Cell.Res.(1995)221:261–271.
    4Kaspar, M., Zardi, L., Neri, D. Fibronectin as target for tumor therapy. Int. J. Cancer (2006)118:1331–1339.
    Rybak, J.N., Roesli, C., Kaspar, M., et al. The extra-domain A of fibronectin is a vascular marker of solid tumors andmetastases. Cancer Res.(2007)67:10948–10957.
    1DeBerardinis, R. J., and Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell(2012)148:1132-1144.
    1Brown, J. M., Chung, S., Das, A., et al. CGI-58facilitates the mobilization of cytoplasmic triglyceride for lipoproteinsecretion in hepatoma cells. Journal of lipid research (2007)48:2295-2305.
    Brown, J. M., Betters, J. L., Lord, C., et al. CGI-58knockdown in mice causes hepatic steatosis but preventsdiet-induced obesity and glucose intolerance. Journal of lipid research (2010)51:3306-3315.
    1Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell (2002)110:673–687.
    1Bonnet, D., Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitivehematopoietic cell. Nat. Med.(1997)3:730–737.
    Clarke, M.F., Dick, J.E., Dirks, P.B. et al. Cancer stem cells—perspectives on current status and future directions:AACR Workshop on cancer stem cells. Cancer Res.(2006)66:9339–9344.
    1Choi, D., Lee, H.W., Hur, K.Y. et al. Cancer stem cell markers CD133and CD24correlate with invasiveness anddifferentiation in colorectal adenocarcinoma. World J. Gastroenterol.(2009)15:2258–2264.
    Li, Z., Bao, S., Wu, Q. et al. Hypoxiainducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell(2009b)15:501–513.
    Chambers, I., Colby, D., Robertson, M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factorin embryonic stem cells. Cell (2003)113:643–655.
    Shinde, A.V., Bystroff, C., Wang, C., et al. Identification of the peptide sequences within the EIIIA (EDA) segment offibronectin that mediate integrin alpha9beta1-dependent cellular activities. J. Biol. Chem.(2008)283:2858–2870.
    Logan, C.Y., Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol.(2004)20:781–810.
    Kim, D., Rath, O., Kolch, W. et al. A hidden oncogenic positive feedback loop caused by crosstalk between Wnt andERK pathways. Oncogene (2007)26:4571–4579.
    1Avilion, A.A., Nicolis, S.K., Pevny, L.H. et al. Multipotent cell lineages in early mouse development depend on SOX2function. Genes Dev.(2003)17:126–140.
    2Wang, J., Rao, S., Chu, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature (2006)444:364–368.
    3Nichols, J., Zevnik, B., Anastassiadis, K. et al. Formation of pluripotent stem cells in the mammalian embryo dependson the POU transcription factor Oct4. Cell (1998)95:379–391.
    4Shin, J.H., Bae, J.H., Lee, A. et al. CK7, CK20, CDX2and MUC2Immunohistochemical staining used to distinguishmetastatic colorectal carcinoma involving ovary from primary ovarian mucinous adenocarcinoma. Jpn. J. Clin. Oncol.(2010)40:208–213.
    1Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. et al. Integrin signalling adaptors: not only figurants in thecancer story. Nat. Rev. Cancer (2010)10:858–870.
    2Ginestier, C., Liu, S., Diebel, M.E. et al. CXCR1blockade selectively targets human breast cancer stem cells in vitroand in xenografts. J. Clin. Invest.(2010)120:485–497.
    3Lee, S.H., Lee, Y.J., Han, H.J. Role of hypoxia-induced fibronectin-integrin beta1expression in embryonic stem cellproliferation and migration: Involvement of PI3K/Akt and FAK. J. Cell. Physiol.(2011)226:484–493.
    Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. et al. Integrin signalling adaptors: not only figurants in thecancer story. Nat. Rev. Cancer (2010)10:858–870.
    1Dalerba, P., Dylla, S.J., Park, I.K.et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl.Acad. Sci. U. S. A.(2007)104:10158–10163.
    O'Brien, C.A., Pollett, A., Gallinger, S. et al. A human colon cancer cell capable of progenitor tumour growth inimmunodeficient mice. Nature (2007)445:106–110.
    3Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., et al. Identification and expansion of human colon-cancer-progenitorcells. Nature (2007)445:111–115.
    4Yeung, T.M., Gandhi, S.C., Wilding, J.L. et al. Cancer stem cells from colorectal cancer-derived cell lines. Proc. Natl.Acad. Sci. U. S. A.(2010)107:3722–3727.
    5Hall, P.E., Lathia, J.D., Miller, N.G. et al. Integrins are markers of human neural stem cells. Stem Cells (2006)24:2078–2084.
    Lathia, J.D., Gallagher, J., Heddleston, J.M. et al. Integrin alpha6regulates glioblastoma stem cells. Cell Stem Cell(2010)6:421–432.
    7Vaillant, F., Asselin-Labat, M.L., Shackleton, M., et al. The mammary progenitor marker CD61/beta3integrinidentifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res.(2008)68:7711–7717.
    8Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R. et al. Hierarchical organization of prostate cancer cells inxenograft tumors: the CD44+alpha2beta1+cell population is enriched in tumor-progenitor cells. Cancer Res.(2007)6:,6796–6805.
    9Hongo, K., Tanaka, J., Tsuno, N.H., et al. CD133() Cells, Derived From a Single Human Colon Cancer Cell Line, AreMore Resistant to5-Fluorouracil (FU) Than CD133(+) Cells, Dependent on the beta1-Integrin Signaling. J. Surg. Res.(2011)175:278–288.
    1Desgrosellier, J.S., Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev.Cancer (2010)10:9–22.
    2Cox, D., Brennan, M., Moran, N., Integrins as therapeutic targets: lessons and opportunities. Nat. Rev. Drug Discov.(2010)9:804–820.
    3Logan, C.Y., Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol.(2004)20:781–810.
    4Kinzler, K.W., Vogelstein, B. Lessons fromhereditary colorectal cancer. Cell (1996)87:159–170.
    5Sancho, E., Batlle, E., Clevers, H. Signaling pathways in intestinal development and cancer. Annu. Rev. Cell Dev. Biol.(2004)20:695–723.
    Gradl, D., Kuhl, M., Wedlich, D. The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol. Cell.Biol.(1999)19:5576–5587.
    1Borsi, L., Balza, E., Carnemolla, B., et al. Selective targeted delivery of TNFalpha to tumor blood vessels.Blood(2003)102:4384–4392.
    2Kaspar, M., Zardi, L., Neri, D. Fibronectin as target for tumor therapy. Int. J. Cancer(2006)118:1331–1339.
    3Santimaria, M., Moscatelli, G., Viale, G.L., et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, amarker of angiogenesis, in patients with cancer. Clin. Cancer Res.(2003)9,571–579.
    4Sauer, S., Erba, P.A., Petrini, M. et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologictumors enables ED-B-targeted radioimmunotherapy in Hodgkin lymphoma patients. Blood (2009)113:2265–2274.
    5Niki T, Iba S, Tokunou M, et al. Expression of vascular endothelial growth factors A, B, C and D and theirrelationships to lymph node status in lung adenocarcinoma. Clin Cancer Res (2000)6:2431-9.
    1Kim,H.P., et al. TGF-beta1-mediated activations of c-Src and Rac1modulate levels of cyclins and p27(Kip1) CDKinhibitor in hepatoma cells replated on fibronectin. Biochim. Biophys. Acta,(2005)1743:151–161.
    1Liao, Y. F., et al. The EIIIA segment of fibronectin is a ligand for integrins alpha9beta1and alpha4beta1providing anovel mechanism for regulating cell adhesion by alternative splicing. J. Biol. Chem (2002)277:14467–14474.
    1Machesky, L.M., et al. Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol(1996)6:304–310.
    2Guo F, et al. Genetic deletion of Rac1GTPase reveals its critical role in actin stress fiber formation and focal adhesioncomplex assembly. J Biol Chem (2006)281:18652-18659.
    Hall, A. Rho GTPases and the actin cytoskeleton. Science (1998)279:509-514.
    4Mitra SK, et al. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol (2005)6:56-68.
    1Raben D, Bianco C, Milas L, et al. Targeted therapies and radiation for the treatment of head and neck cancer: Are wemaking progress? Semin Radiat Oncol (2004)14:139-152.
    Jamal M, Rath BH, Williams ES, et al. Microenvironmental regulation of glioblastoma radioresponse. Clin Cancer Res(2010)16:6049-6059.
    1Narayan S, Lehmann J, Coleman MA, et al. Prospective evaluation to establish a dose response for clinical oralmucositis in patients undergoing head-and-neck conformal radiotherapy. Int J Radiat Oncol Biol Phys (2008)72:756-762.
    Williams JR, Zhang Y, Zhou H, et al. Sequentially-induced responses define tumour cell radiosensitivity. Int J RadiatBiol Phys (2011)87:628-643.
    1Yaromina A, Krause M, Thames H, et al. Pre-treatment number of clonogenic cells and their radiosensitivity are majordeterminants of local tumor control after fractionated irradiation. Radiother Oncol (2007)3:304-310.
    1Jin YJ, Park I, Hong IK, et al. Fibronectin and vitronectin induce AP-1-mediated matrix metalloproteinase-9expressionthrough integrin a(5)b(1)/a (v)b(3)-dependent Akt, ERK and JNK signaling pathways in human umbilical veinendothelial cells. Cell Signal (2011)23:125-134.
    Zerp SF, Stoter R, Kuipers G, et al. AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2family members,activates the SAPK/JNK pathway and enhances radiation-induced apoptosis. Radiat Oncol (2009)4:47.
    1Christophorou MA, Ringshausen I, Finch AJ, et al. The pathological response to DNA damage does not contribute top53-mediated tumour suppression. Nature (2006)443:214-217.
    1Xie, P., Guo, F., Ma, Y. et al. Intestinal cgi-58deficiency reduces postprandial lipid absorption. PloS one (2014)9:e91652.
    Guo, F., Ma, Y., Kadegowda, A. et al. Deficiency of liver Comparative Gene Identification-58causes steatohepatitisand fibrosis in mice. Journal of lipid research (2013)54:2109-2120.
    1Stein, S. C., Woods, A., Jones, N. A. et al. The regulation of AMP-activated protein kinase by phosphorylation. TheBiochemical journal (2000)345:437-443.
    1Hanahan, D., and Weinberg, R. A. Hallmarks of cancer: the next generation. Cell (2011)144:646-674.
    1Su, L. K., Kinzler, K. W., Vogelstein, B. et al. Multiple intestinal neoplasia caused by a mutation in the murinehomolog of the APC gene. Science (1992)256:668-670.
    1Accioly, M. T., Pacheco, P., Maya-Monteiro, C. M. Lipid bodies are reservoirs of cyclooxygenase-2and sites ofprostaglandin-E2synthesis in colon cancer cells. Cancer research (2008)68:1732-1740.
    2Straub, B. K., Herpel, E., Singer, S. et al. Lipid droplet-associated PAT-proteins show frequent and differentialexpression in neoplastic steatogenesis. Modern pathology: an official journal of the United States and CanadianAcademy of Pathology (2010)23:480-492.
    1Cano, A., Perez-Moreno, M. A., Rodrigo, I., et al. The transcription factor snail controls epithelial-mesenchymaltransitions by repressing E-cadherin expression. Nature cell biology (2000)2:76-83.
    2Hahn, S., Jackstadt, R., Siemens, H. et al. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99promotesepithelial-mesenchymal transition. The EMBO journal (2013)32:3079-3095.
    Siemens, H., Jackstadt, R., Hunten, S. et al. miR-34and SNAIL form a double-negative feedback loop to regulateepithelial-mesenchymal transitions. Cell Cycle (2011)10:4256-4271.
    1Fearon, E. R. Molecular genetics of colorectal cancer. Annual review of pathology (2011)6:479-507.
    1Brown, J. M., Betters, J. L., Lord, C., et al. CGI-58knockdown in mice causes hepatic steatosis but preventsdiet-induced obesity and glucose intolerance. Journal of lipid research (2010)51:3306-3315.
    Lass, A., Zimmermann, R., Haemmerle, G. et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores isactivated by CGI-58and defective in Chanarin-Dorfman Syndrome. Cell metabolism (2006)3:309-319.
    3Radner, F. P., Streith, I. E., Schoiswohl, G., et al. Growth retardation, impaired triacylglycerol catabolism, hepaticsteatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58(CGI-58). The Journal ofbiological chemistry(2010)285:7300-7311.
    4Levine, B., and Kroemer, G. Autophagy in the pathogenesis of disease. Cell (2008)132:27-42.
    5White, E., and DiPaola, R. S. The double-edged sword of autophagy modulation in cancer. Clinical cancer research: anofficial journal of the American Association for Cancer Research (2009)15:5308-5316.
    Klionsky, D. J., Abdalla, F. C., Abeliovich, H., et al. Guidelines for the use and interpretation of assays for monitoringautophagy. Autophagy (2012)8:445-544.
    1Warburg, O. On the origin of cancer cells. Science(1956)123:309-314.
    1Hardie, D. G. AMP-activated/SNF1protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol(2007)8:774-785.
    2Yun, H., Lee, M., Kim, S. S. et al. Glucose deprivation increases mRNA stability of vascular endothelial growth factorthrough activation of AMP-activated protein kinase in DU145prostate carcinoma. The Journal of biological chemistry(2005)280:9963-9972.
    1ones, R. G., Plas, D. R., Kubek, S., et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.Molecular cell (2005)18:283-293.
    2Faubert, B., Boily, G., Izreig, S. et al. AMPK Is a Negative Regulator of the Warburg Effect and Suppresses TumorGrowth In Vivo. Cell metabolism(2013)17:113-124.
    3Feng, Z., Zhang, H., Levine, A. J. et al. The coordinate regulation of the p53and mTOR pathways in cells. Proceedingsof the National Academy of Sciences of the United States of America(2005)102:8204-8209.
    Jones, R. G., Plas, D. R., Kubek, S., et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.Molecular cell (2005)18:283-293.
    1Haemmerle, G., Moustafa, T., Woelkart, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrialfunction via PPAR-alpha and PGC-1. Nature medicine (2011)17:1076-1085.
    1Behrens, J., Jerchow, B. A., Wurtele, M., et al. Functional interaction of an axin homolog, conductin, with beta-catenin,APC, and GSK3beta. Science (1998)280:596-599.
    1Wei X, Shimizu T, Lai ZC. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Dro-sophila.EMBO J (2007)26:1772–1781.
    2Schlegelmilch K, Mohseni M, Kirak O, et al. Yap1acts downstream of alpha-catenin to control epidermal proliferation.Cell (2011)144:782–795.
    3Bai H, Gayyed MF, Lam-Himlin DM, et al. Expression of Yes-associated protein modulates Survivin expression inprimary liver malignancies. Hum Pathol (2012)43:1376–1385.
    Gottardi CJ, Gumbiner BM. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptionalcomplexes. J Biol Chem (2004)167:339–349.
    5Gottardi CJ, Gumbiner BM. Adhesion signaling: how be-ta-catenin interacts with its partners. Curr Biol,(2001)11:792–794.
    6Hwang E, Ryu KS, Paakkonen K, et al. Structural insight into dimeric interaction of the SARAH domains from Mst1and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci USA,(2007)104:9236–9241.
    7Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1and MST2inhibits cell prolife-ration.Curr Bio,(2008)18:311–321.
    Wei X, Shimizu T, Lai ZC. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Dro-sophila.EMBO J,(2007)26:1772–1781.
    1Mitra SK, et al. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol (2005)6:56-68.
    1Gabriela Montero-Moran, Jorge M. Caviglia, Derek McMahon, et al. CGI-58/ABHD5is a coenzyme A-dependentlysophosphatidic acid acyltransferase. J Lipid Res (2010)51:709-719.
    Zhang H1, Bialkowska A, Rusovici R,et al. Lysophosphatidic acid facilitates proliferation of colon cancer cells viainduction of Krüppel-like factor5. J Biol Chem.(2007)282:15541-15549.
    1Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer (2010)10:267-77.
    Sebastián C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6is a tumor suppressor that controlscancer metabolism.Cell (2012)151:1185-99.
    1Furuta E, Okuda H, Kobayashi A, et al. Metabolic genes in cancer: their roles in tumor progression and clinicalimplications. Biochim Biophys Acta (2010)1805:141-52.
    2Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer (2011)11:85-95.
    3Kaelin WG, Jr., Thompson CB. Q&A: Cancer: clues from cell metabolism. Nature (2010)465:562-4.
    4Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cellproliferation. Science (2009)324:1029-33.
    5Yecies JL, Manning BD. Chewing the fat on tumor cell metabolism. Cell (2010)140:28-30.
    6Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth:molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta (2010)1801:381-91.
    7Das, S. K., Eder, S., Schauer, S. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science(2011)333:233-8.
    8Nomura, D. K., Long, J. Z., Niessen, S. et al. Monoacylglycerol lipase regulates a fatty acid network that promotescancer pathogenesis. Cell (2010)140:49-61.
    Lass, A., Zimmermann, R., Haemmerle, G., et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores isactivated by CGI-58and defective in Chanarin-Dorfman Syndrome. Cell Metab (2006)3:309-9.
    1Gabriela Montero-Moran, Jorge M. Caviglia, Derek McMahon, et al. CGI-58/ABHD5is a coenzyme A-dependentlysophosphatidic acid acyltransferase. J Lipid Res (2010)51:709-19.
    2Zhang H1, Bialkowska A, Rusovici R,et al. Lysophosphatidic acid facilitates proliferation of colon cancer cells viainduction of Krüppel-like factor5. J Biol Chem.(2007)282:15541-9.
    3Chuang, C. C., Yang, R. S., Tsai, K. S., et al. Hyperglycemia enhances adipogenic induction of lipid accumulation:involvement of extracellular signal-regulated protein kinase1/2, phosphoinositide3-kinase/Akt, and peroxisomeproliferator-activated receptor gamma signaling. Endocrinology (2007)148:4267-4275.
    1. Allen, M., Louise Jones, J. Jekyll and Hyde: the role of the microenvironment on theprogression of cancer. J. Pathol.(2010)223:162–176.
    2. Kenny, P.A., Lee, G.Y., Bissell, M.J. Targeting the tumor microenvironment. Front.Biosci.(2007)12:3468–3474.
    3. ffrench-Constant, C. Alternative splicing of fibronectin many different proteins but fewdifferent functions. Exp. Cell. Res.(1995)221:261–271.
    4. Kaspar, M., Zardi, L., Neri, D. Fibronectin as target for tumor therapy. Int. J. Cancer(2006)118:1331–1339.
    5. Rybak, J.N., Roesli, C., Kaspar, M., et al. The extra-domain A of fibronectin is avascular marker of solid tumors and metastases. Cancer Res.(2007)67:10948–10957.
    6. DeBerardinis, R. J., and Thompson, C. B. Cellular metabolism and disease: what dometabolic outliers teach us? Cell (2012)148:1132-1144.
    7. Brown, J. M., Chung, S., Das, A., et al. CGI-58facilitates the mobilization ofcytoplasmic triglyceride for lipoprotein secretion in hepatoma cells. Journal of lipidresearch (2007)48:2295-2305.
    8. Brown, J. M., Betters, J. L., Lord, C., et al. CGI-58knockdown in mice causes hepaticsteatosis but prevents diet-induced obesity and glucose intolerance. Journal of lipidresearch (2010)51:3306-3315.
    9. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell (2002)110:673–687.
    10. Bonnet, D., Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy thatoriginates from a primitive hematopoietic cell. Nat. Med.(1997)3:730–737.
    11. Clarke, M.F., Dick, J.E., Dirks, P.B. et al. Cancer stem cells—perspectives on currentstatus and future directions: AACR Workshop on cancer stem cells. Cancer Res.(2006)66:9339–9344.
    12. Choi, D., Lee, H.W., Hur, K.Y. et al. Cancer stem cell markers CD133and CD24correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J.Gastroenterol.(2009)15:2258–2264.
    13. Li, Z., Bao, S., Wu, Q. et al. Hypoxiainducible factors regulate tumorigenic capacity ofglioma stem cells. Cancer Cell (2009b)15:501–513.
    14. Chambers, I., Colby, D., Robertson, M. et al. Functional expression cloning of Nanog, apluripotency sustaining factor in embryonic stem cells. Cell (2003)113:643–655.
    15. Shinde, A.V., Bystroff, C., Wang, C., et al. Identification of the peptide sequenceswithin the EIIIA (EDA) segment of fibronectin that mediate integrinalpha9beta1-dependent cellular activities. J. Biol. Chem.(2008)283:2858–2870.
    16. Logan, C.Y., Nusse, R. The Wnt signaling pathway in development and disease. Annu.Rev. Cell Dev. Biol.(2004)20:781–810.
    17. Kim, D., Rath, O., Kolch, W. et al. A hidden oncogenic positive feedback loop causedby crosstalk between Wnt and ERK pathways. Oncogene (2007)26:4571–4579.
    18. Avilion, A.A., Nicolis, S.K., Pevny, L.H. et al. Multipotent cell lineages in early mousedevelopment depend on SOX2function. Genes Dev.(2003)17:126–140.
    19. Wang, J., Rao, S., Chu, J. et al. A protein interaction network for pluripotency ofembryonic stem cells. Nature (2006)444:364–368.
    20. Nichols, J., Zevnik, B., Anastassiadis, K. et al. Formation of pluripotent stem cells inthe mammalian embryo depends on the POU transcription factor Oct4. Cell (1998)95:379–391.
    21. Shin, J.H., Bae, J.H., Lee, A. et al. CK7, CK20, CDX2and MUC2Immunohistochemical staining used to distinguish metastatic colorectal carcinomainvolving ovary from primary ovarian mucinous adenocarcinoma. Jpn. J. Clin. Oncol.(2010)40:208–213.
    22. Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. et al. Integrin signallingadaptors: not only figurants in the cancer story. Nat. Rev. Cancer (2010)10:858–870.
    23. Ginestier, C., Liu, S., Diebel, M.E. et al. CXCR1blockade selectively targets humanbreast cancer stem cells in vitro and in xenografts. J. Clin. Invest.(2010)120:485–497.
    24. Lee, S.H., Lee, Y.J., Han, H.J. Role of hypoxia-induced fibronectin-integrin beta1expression in embryonic stem cell proliferation and migration: Involvement ofPI3K/Akt and FAK. J. Cell. Physiol.(2011)226:484–493.
    25. Dalerba, P., Dylla, S.J., Park, I.K.et al. Phenotypic characterization of humancolorectal cancer stem cells. Proc. Natl. Acad. Sci. U. S. A.(2007)104:10158–10163.
    26. O'Brien, C.A., Pollett, A., Gallinger, S. et al. A human colon cancer cell capable ofprogenitor tumour growth in immunodeficient mice. Nature (2007)445:106–110.
    27. Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., et al. Identification and expansion ofhuman colon-cancer-progenitor cells. Nature (2007)445:111–115.
    28. Yeung, T.M., Gandhi, S.C., Wilding, J.L. et al. Cancer stem cells from colorectalcancer-derived cell lines. Proc. Natl. Acad. Sci. U. S. A.(2010)107:3722–3727.
    29. Hall, P.E., Lathia, J.D., Miller, N.G. et al. Integrins are markers of human neural stemcells. Stem Cells (2006)24:2078–2084.
    30. Lathia, J.D., Gallagher, J., Heddleston, J.M. et al. Integrin alpha6regulatesglioblastoma stem cells. Cell Stem Cell (2010)6:421–432.
    31. Vaillant, F., Asselin-Labat, M.L., Shackleton, M., et al. The mammary progenitormarker CD61/beta3integrin identifies cancer stem cells in mouse models of mammarytumorigenesis. Cancer Res.(2008)68:7711–7717.
    32. Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R. et al. Hierarchicalorganization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+cellpopulation is enriched in tumor-progenitor cells. Cancer Res.(2007)6:,6796–6805.
    33. Hongo, K., Tanaka, J., Tsuno, N.H., et al. CD133() Cells, Derived From a SingleHuman Colon Cancer Cell Line, Are More Resistant to5-Fluorouracil (FU) ThanCD133(+) Cells, Dependent on the beta1-Integrin Signaling. J. Surg. Res.(2011)175:278–288.
    34. Desgrosellier, J.S., Cheresh, D.A. Integrins in cancer: biological implications andtherapeutic opportunities. Nat. Rev. Cancer (2010)10:9–22.
    35. Cox, D., Brennan, M., Moran, N., Integrins as therapeutic targets: lessons andopportunities. Nat. Rev. Drug Discov.(2010)9:804–820.
    36. Logan, C.Y., Nusse, R. The Wnt signaling pathway in development and disease. Annu.Rev. Cell Dev. Biol.(2004)20:781–810.
    37. Kinzler, K.W., Vogelstein, B. Lessons fromhereditary colorectal cancer. Cell (1996)87:159–170.
    38. Sancho, E., Batlle, E., Clevers, H. Signaling pathways in intestinal development andcancer. Annu. Rev. Cell Dev. Biol.(2004)20:695–723.
    39. Gradl, D., Kuhl, M., Wedlich, D. The Wnt/Wg signal transducer beta-catenin controlsfibronectin expression. Mol. Cell. Biol.(1999)19:5576–5587.
    40. Borsi, L., Balza, E., Carnemolla, B., et al. Selective targeted delivery of TNFalpha totumor blood vessels.Blood(2003)102:4384–4392.
    41. Kaspar, M., Zardi, L., Neri, D. Fibronectin as target for tumor therapy. Int. J. Cancer(2006)118:1331–1339.
    42. Santimaria, M., Moscatelli, G., Viale, G.L., et al. Immunoscintigraphic detection of theED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin.Cancer Res.(2003)9,571–579.
    43. Sauer, S., Erba, P.A., Petrini, M. et al. Expression of the oncofetal ED-B-containingfibronectin isoform in hematologic tumors enables ED-B-targeted radioimmunotherapyin Hodgkin lymphoma patients. Blood (2009)113:2265–2274.
    44. Niki T, Iba S, Tokunou M, et al. Expression of vascular endothelial growth factors A, B,C and D and their relationships to lymph node status in lung adenocarcinoma. ClinCancer Res (2000)6:2431-9.
    45. Kim,H.P., et al. TGF-beta1-mediated activations of c-Src and Rac1modulate levels ofcyclins and p27(Kip1) CDK inhibitor in hepatoma cells replated on fibronectin.Biochim. Biophys. Acta,(2005)1743:151–161.
    46. Liao, Y. F., et al. The EIIIA segment of fibronectin is a ligand for integrins alpha9beta1and alpha4beta1providing a novel mechanism for regulating cell adhesion byalternative splicing. J. Biol. Chem (2002)277:14467–14474.
    47. Machesky, L.M., et al. Rho: a connection between membrane receptor signalling andthe cytoskeleton. Trends Cell Biol (1996)6:304–310.
    48. Guo F, et al. Genetic deletion of Rac1GTPase reveals its critical role in actin stressfiber formation and focal adhesion complex assembly. J Biol Chem (2006)281:18652-18659.
    49. Hall, A. Rho GTPases and the actin cytoskeleton. Science (1998)279:509-514.
    50. Mitra SK, et al. Focal adhesion kinase: in command and control of cell motility. NatRev Mol Cell Biol (2005)6:56-68.
    51. Raben D, Bianco C, Milas L, et al. Targeted therapies and radiation for the treatment ofhead and neck cancer: Are we making progress? Semin Radiat Oncol(2004)14:139-152.
    52. Jamal M, Rath BH, Williams ES, et al. Microenvironmental regulation of glioblastomaradioresponse. Clin Cancer Res (2010)16:6049-6059.
    53. Narayan S, Lehmann J, Coleman MA, et al. Prospective evaluation to establish a doseresponse for clinical oral mucositis in patients undergoing head-and-neck conformalradiotherapy. Int J Radiat Oncol Biol Phys (2008)72:756-762.
    54. Williams JR, Zhang Y, Zhou H, et al. Sequentially-induced responses define tumourcell radiosensitivity. Int J Radiat Biol Phys (2011)87:628-643.
    55. Yaromina A, Krause M, Thames H, et al. Pre-treatment number of clonogenic cells andtheir radiosensitivity are major determinants of local tumor control after fractionatedirradiation. Radiother Oncol (2007)3:304-310.
    56. Jin YJ, Park I, Hong IK, et al. Fibronectin and vitronectin induce AP-1-mediated matrixmetalloproteinase-9expression through integrin a(5)b(1)/a (v)b(3)-dependent Akt, ERKand JNK signaling pathways in human umbilical vein endothelial cells. Cell Signal(2011)23:125-134.
    57. Zerp SF, Stoter R, Kuipers G, et al. AT-101, a small molecule inhibitor of anti-apoptoticBcl-2family members, activates the SAPK/JNK pathway and enhancesradiation-induced apoptosis. Radiat Oncol (2009)4:47.
    58. Christophorou MA, Ringshausen I, Finch AJ, et al. The pathological response to DNAdamage does not contribute to p53-mediated tumour suppression. Nature(2006)443:214-217.
    59. Xie, P., Guo, F., Ma, Y. et al. Intestinal cgi-58deficiency reduces postprandial lipidabsorption. PloS one (2014)9: e91652.
    60. Guo, F., Ma, Y., Kadegowda, A. et al. Deficiency of liver Comparative GeneIdentification-58causes steatohepatitis and fibrosis in mice. Journal of lipid research(2013)54:2109-2120.
    61. Stein, S. C., Woods, A., Jones, N. A. et al. The regulation of AMP-activated proteinkinase by phosphorylation. The Biochemical journal (2000)345:437-443.
    62. Hanahan, D., and Weinberg, R. A. Hallmarks of cancer: the next generation. Cell(2011)144:646-674.
    63. Su, L. K., Kinzler, K. W., Vogelstein, B. et al. Multiple intestinal neoplasia caused by amutation in the murine homolog of the APC gene. Science (1992)256:668-670.
    64. Accioly, M. T., Pacheco, P., Maya-Monteiro, C. M. Lipid bodies are reservoirs ofcyclooxygenase-2and sites of prostaglandin-E2synthesis in colon cancer cells. Cancerresearch (2008)68:1732-1740.
    65. Straub, B. K., Herpel, E., Singer, S. et al. Lipid droplet-associated PAT-proteins showfrequent and differential expression in neoplastic steatogenesis. Modern pathology: anofficial journal of the United States and Canadian Academy of Pathology (2010)23:480-492.
    66. Cano, A., Perez-Moreno, M. A., Rodrigo, I., et al. The transcription factor snailcontrols epithelial-mesenchymal transitions by repressing E-cadherin expression.Nature cell biology (2000)2:76-83.
    67. Hahn, S., Jackstadt, R., Siemens, H. et al. SNAIL and miR-34a feed-forward regulationof ZNF281/ZBP99promotes epithelial-mesenchymal transition. The EMBO journal(2013)32:3079-3095.
    68. Siemens, H., Jackstadt, R., Hunten, S. et al. miR-34and SNAIL form a double-negativefeedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle (2011)10:4256-4271.
    69. Fearon, E. R. Molecular genetics of colorectal cancer. Annual review of pathology(2011)6:479-507.
    70. Brown, J. M., Betters, J. L., Lord, C., et al. CGI-58knockdown in mice causes hepaticsteatosis but prevents diet-induced obesity and glucose intolerance. Journal of lipidresearch (2010)51:3306-3315.
    71. Lass, A., Zimmermann, R., Haemmerle, G. et al. Adipose triglyceride lipase-mediatedlipolysis of cellular fat stores is activated by CGI-58and defective inChanarin-Dorfman Syndrome. Cell metabolism (2006)3:309-319.
    72. Radner, F. P., Streith, I. E., Schoiswohl, G., et al. Growth retardation, impairedtriacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in micelacking comparative gene identification-58(CGI-58). The Journal of biologicalchemistry(2010)285:7300-7311.
    73. Levine, B., and Kroemer, G. Autophagy in the pathogenesis of disease. Cell (2008)132:27-42.
    74. White, E., and DiPaola, R. S. The double-edged sword of autophagy modulation incancer. Clinical cancer research: an official journal of the American Association forCancer Research (2009)15:5308-5316.
    75. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., et al. Guidelines for the use andinterpretation of assays for monitoring autophagy. Autophagy (2012)8:445-544.
    76. Warburg, O. On the origin of cancer cells. Science(1956)123:309-314.
    77. Hardie, D. G. AMP-activated/SNF1protein kinases: conserved guardians of cellularenergy. Nat Rev Mol Cell Biol (2007)8:774-785.
    78. Yun, H., Lee, M., Kim, S. S. et al. Glucose deprivation increases mRNA stability ofvascular endothelial growth factor through activation of AMP-activated protein kinasein DU145prostate carcinoma. The Journal of biological chemistry (2005)280:9963-9972.
    79. Jones, R. G., Plas, D. R., Kubek, S., et al. AMP-activated protein kinase induces ap53-dependent metabolic checkpoint. Molecular cell (2005)18:283-293.
    80. Faubert, B., Boily, G., Izreig, S. et al. AMPK Is a Negative Regulator of the WarburgEffect and Suppresses Tumor Growth In Vivo. Cell metabolism(2013)17:113-124.
    81. Feng, Z., Zhang, H., Levine, A. J. et al. The coordinate regulation of the p53andmTOR pathways in cells. Proceedings of the National Academy of Sciences of theUnited States of America(2005)102:8204-8209.
    82. Jones, R. G., Plas, D. R., Kubek, S., et al. AMP-activated protein kinase induces ap53-dependent metabolic checkpoint. Molecular cell (2005)18:283-293.
    83. Haemmerle, G., Moustafa, T., Woelkart, G. et al. ATGL-mediated fat catabolismregulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nature medicine(2011)17:1076-1085.
    84. Behrens, J., Jerchow, B. A., Wurtele, M., et al. Functional interaction of an axinhomolog, conductin, with beta-catenin, APC, and GSK3beta. Science (1998)280:596-599.
    85. Wei X, Shimizu T, Lai ZC. Mob as tumor suppressor is activated by Hippo kinase forgrowth inhibition in Dro-sophila. EMBO J (2007)26:1772–1781.
    86. Schlegelmilch K, Mohseni M, Kirak O, et al. Yap1acts downstream of alpha-catenin tocontrol epidermal proliferation. Cell (2011)144:782–795.
    87. Bai H, Gayyed MF, Lam-Himlin DM, et al. Expression of Yes-associated proteinmodulates Survivin expression in primary liver malignancies. Hum Pathol (2012)43:1376–1385.
    88. Gottardi CJ, Gumbiner BM. Distinct molecular forms of beta-catenin are targeted toadhesive or transcriptional complexes. J Biol Chem (2004)167:339–349.
    89. Gottardi CJ, Gumbiner BM. Adhesion signaling: how be-ta-catenin interacts with itspartners. Curr Biol,(2001)11:792–794.
    90. Hwang E, Ryu KS, Paakkonen K, et al. Structural insight into dimeric interaction of theSARAH domains from Mst1and RASSF family proteins in the apoptosis pathway.Proc Natl Acad Sci USA,(2007)104:9236–9241.
    91. Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1andMST2inhibits cell prolife-ration. Curr Bio,(2008)18:311–321.
    92. Wei X, Shimizu T, Lai ZC. Mob as tumor suppressor is activated by Hippo kinase forgrowth inhibition in Dro-sophila. EMBO J,(2007)26:1772–1781.
    93. Gabriela Montero-Moran, Jorge M. Caviglia, Derek McMahon, et al. CGI-58/ABHD5is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J Lipid Res(2010)51:709-719.
    94. Zhang H1, Bialkowska A, Rusovici R,et al. Lysophosphatidic acid facilitatesproliferation of colon cancer cells via induction of Krüppel-like factor5. J BiolChem.(2007)282:15541-15549.
    1. Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancertherapy. Nat Rev Cancer (2010)10:267-77.
    2. Sebastián C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6is atumor suppressor that controls cancer metabolism.Cell (2012)151:1185-99.
    3. Furuta E, Okuda H, Kobayashi A, et al. Metabolic genes in cancer: their roles in tumorprogression and clinical implications. Biochim Biophys Acta (2010)1805:141-52.
    4. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer(2011)11:85-95.
    5. Kaelin WG, Jr., Thompson CB. Q&A: Cancer: clues from cell metabolism. Nature(2010)465:562-4.
    6. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: themetabolic requirements of cell proliferation. Science (2009)324:1029-33.
    7. Yecies JL, Manning BD. Chewing the fat on tumor cell metabolism. Cell(2010)140:28-30.
    8. Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolicrequirements of cancer cell growth: molecular mechanisms and therapeuticperspectives. Biochim Biophys Acta (2010)1801:381-91.
    9. Das, S. K., Eder, S., Schauer, S. et al. Adipose triglyceride lipase contributes tocancer-associated cachexia. Science (2011)333:233-8.
    10. Nomura, D. K., Long, J. Z., Niessen, S. et al. Monoacylglycerol lipase regulates a fattyacid network that promotes cancer pathogenesis. Cell (2010)140:49-61.
    11. Lass, A., Zimmermann, R., Haemmerle, G., et al. Adipose triglyceride lipase-mediatedlipolysis of cellular fat stores is activated by CGI-58and defective in Chanarin-Dorfman Syndrome. Cell Metab (2006)3:309-9.
    12. Gabriela Montero-Moran, Jorge M. Caviglia, Derek McMahon, et al. CGI-58/ABHD5is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J Lipid Res(2010)51:709-19.
    13. Zhang H1, Bialkowska A, Rusovici R,et al. Lysophosphatidic acid facilitatesproliferation of colon cancer cells via induction of Krüppel-like factor5. J Biol Chem.(2007)282:15541-9.
    14. Chuang, C. C., Yang, R. S., Tsai, K. S., et al. Hyperglycemia enhances adipogenicinduction of lipid accumulation: involvement of extracellular signal-regulated proteinkinase1/2, phosphoinositide3-kinase/Akt, and peroxisome proliferator-activatedreceptor gamma signaling. Endocrinology (2007)148:4267-4275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700