手术针穿刺软组织的建模及路径规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用手术针经皮穿刺进入软组织是现代临床医学一个很重要的组成部分,且在近年吸引了很多研究人员的注意力。许多的临床应用,比如活组检测,注射,神经外科和癌症的治疗等过程都会用到类似的微创治疗手段。在这些过程中,需要能够精确将手术针针尖控制到某个目标位置区域。然而,由于在穿刺过程中手术针和周围组织的相互作用和组织内部的复杂环境使得组织和手术针都发生变形,手术针会偏离预定的运动路径并最终导致无法精确的到达目标区域。鉴于此,本论文重点研究了如何对手术针穿刺进入软组织并顺利到达目标位置区域这个过程中的路径进行最优规划。整个论文主要包含如下几个方面的内容:
     第一,为了预测手术针在穿刺过程中的弯曲情况,我们首先对手术针和组织之间的相互作用进行了调研。在实际的临床过程中,能够在手术前准确的预测手术针的弯曲变形对于手术的规划具有重要的意义。在此文中,我们利用Rayleigh-Ritz方法,提出了一个能够成功的预测手术针穿刺过程中弯曲情况的预测模型。通过结合模型和手术针当前的几何形状,该模型能够预测在组织材料属性不均匀时的弯曲情况。
     第二,我们考虑了在弹性手术针穿刺进入理想的静态环境下的路径规划问题。由于手术针是弹性的,针尖切角在受到不平衡的力时,会让手术针自然的发生弯曲。该弯曲后的路径可以近似成一个曲率恒定的圆弧。我们第一次提出将手术针的运动轨迹约束在两条平行线之间,并通过寻找平行线间距的最优值来得到我们所需要的最优路径。该最优路径满足在旋转次数最少的情况下能使路径的总长度最短。我们对二维和三维的路径规划问题都分别进行了定义和研究。
     第三,我们考虑了软组织属性对整个手术针穿刺过程的影响。由于软组织在手术针穿刺过程中会发生变形,而且软组织自身具有非均匀的特性,所以整个穿刺过程中,目标点和手术针路径的曲率都会随着穿刺深度的不同而发生变化。如果不考虑这些因素,穿刺结果往往都不理想甚至失败。在这里,我们提出了一个动态的路径规划算法,该算法可以根据目标位置和穿刺路径半径的变化进行路径的重规划,这样就可以减小最后的穿刺误差。我们用弹簧质点法建立了软组织变形的一个模型来模拟手术针穿刺过程中组织的变形情况。同时,我们搭建了一个能控制手术针穿刺进入人造组织(医用硅胶)的实验平台来验证我们的路径规划算法。
     总的来说,该论文对控制一个弹性手术针穿刺进入软组织的过程进行预测建模和最优路径规划进行了深入的研究。该论文考虑了整个穿刺过程软组织的变形及组织的非均匀性带来的影响,对弹性手术针在穿刺进入软组织更加深入的研究具有重要的意义。
Needle insertion into soft tissue is an essential component of many clinical procedures and has attracted considerable attention in recent years. Many applications such as biopsies, injections, neurosurgery, and cancer treatment require the use of minimal invasive percutaneous procedures, in which precise needle tip placement to a clinical target is necessary. When inserting a needle into soft tissue, the complex tissue environment, tissue deformation, and needle deflection will result in the needle deviating from its intended path and not reaching its target position. This thesis aims to study an optimized path planner to enable steerable needles reach their target position in soft tissue environment. The research is carried out in the following perspectives.
     First, the investigation of needle-tissue interaction aims to predict needle deflection during insertion is presented. A prediction model that can estimate needle deflection is necessary for surgery planning before the real procedure. By using the Rayleigh-Ritz method, this thesis develops a prediction model that can successfully predict the deflection of a needle undergoing single or multiple bends during insertion. Through incorporation with the tissue model and needle geometry, the prediction model can also account for the needle deflection when the radius of the curve is not constant.
     Second, this study addresses the path-planning problem in inserting a bevel-tip needle in static environment (rigid tissue). Given the bevel-tip and flexibility of the needle, the trajectory of the needle tip can be approximated as a curve of constant radius. This study is the first to regulate the curved path within two parallel lines and determine the optimal distance between the two parallel lines such that the generated moving path of the needle has the shortest length with the least number of needle rotations. Both2D and3D path-planning problems have been defined and solved according to the presence of an obstacle in the trajectory path.
     Third, the influences of the tissue properties to the insertion of a needle into soft tissue are discussed. Given the tissue deformation and nonhomogenous tissue properties, the target position and the radius of the curve path vary with the insertion of the needle, which may result in the failure of the insertion task. Therefore, this thesis develops a dynamic path planner that can replan the path to adapt to changes in the target position and curve radius. A mass-spring model for modeling soft tissue deformation is adopted to simulate the dynamic environment. An experimental setup for steering a thin and flexible needle into phantom tissue (silica gel) with vision feedback is established to demonstrate the performance of the proposed path planner associated with tissue modeling.
     In summary, this thesis makes an important contribution in developing a mechanics-based prediction model and an optimal path planner for steering a flexible needle into soft tissue while considering nonhomogenous tissue properties and needle-tissue interactions.
引文
[1]Ackerman, M. J., "The visible human project", Proc. IEEE:Special Issue Surgery Simulation, vol.86, no.3, pp.504-511,1998
    [2]Alterovitz, R., Goldberg, K. and Okamura, A.M. "Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles," in IEEE Int. Conf. on Robotics and Automation,2005, pp.1640-1645.
    [3]Alterovitz, R., Simeon, T., and Goldberg, K., "The stochastic motion roadmap: A sampling framework for planning with Markov motion uncertainty," in Proc. of Robotics:Science and Systems,2007, W. Burgard et al. (Eds.), MIT Press, 2008, pp.233-241.
    [4]Alterovitz, R., Lim, A., Goldberg, K., Chirikjian, G. S., and Okamura, A. M., " Steering flexible needles under Markov motion uncertainty," in Proc. IEEE Int. Conf. Intell. Robot. Syst.,Edmonton,AB,Canada,Aug.2005, pp. 1570-1575.
    [5]Alterovitz, R., et al. "Needle insertion and radioactive seed implantation in human tissues," IEEE Int. Conf. on Robotics and Automation. pp.1793-1799, 2003.
    [6]Alterovitz, R., Branicky, M., Goldberg, K., "Constant-curvature motion planning under uncertainty with applications in image-guided medical needle steering". In:Proceedings of Workshop on the Algorithmic Foundations of Robotics,2006
    [7]Abolhassani, N., Patel, R., Moallem, M., "Needle insertion into soft tissue:A survey," Med Eng Phys, vol.29, no.4, pp.413-31,2007.
    [8]Abolhassani, N., and Patel, R. V., "Deflection of a flexible needle during insertion into soft tissue," Proceedings of the International Conference on IEEE Engineering in Medicine and Biology (EMBC), pp.3858-3861.2006
    [9]Bauchau, O. and Craig, J., Structural Analysis. Springer,2009.
    [10]Buijs, J., Abayazid, M., Korte, C. L., and Misra, S., "Targetmotion predictions for pre-operative planning during needle-based interventions," in Proc. IEEE Int. Conf. Eng. Med. Biol. Soc.,Boston,MA,Sep.2011, pp.5380-5385.
    [11]Brown, J., Sorkin, S., Latombe, J. C., Montgomery, K. and Stephanides, M., "Algorithmic tools for real-time microsurgery simulation", Medical Image Analysis, vol.6, no.3, pp.289-300,2002
    [12]Chui, C., Teoh, S., Ong, C., Anderson, J., and Sakuma, I., "Integrative modeling of liver organ for simulation of flexible needle insertion," in Proc.9th Int. Conf. Control Autom. Robot. Vis.,Singapore,Dec.2006,pp.1-6.
    [13]Cover, S. A., Ezquerra, N. F., O'Brian, J. F., Rowe, R., Gadacz, T., and Palm, E., "Interactively deformable models for surgery simulation", IEEE Comput. Graph, pp.68-75,1993
    [14]Cotin, S.. "Surgical simulation and training:the state of the art and need for tissue models". In:Proceedings of the IEEE workshop on intelligent robotics and systems.2003.
    [15]Deurloo, E. E., Gilhuijs, K. G, Kool, L. J. S., and Muller, S. H., "Displacement of breast tissue and needle deviations during stereotactic procedures," Investigative Radiol.,vol.36,no.6,pp.347-353,2001
    [16]Duindam, V., Alterovitz, R., Sastry, S. and Goldberg, K. "Screw-based motion planning for bevel-tip flexible needles in 3D environments with obstacles," in IEEE Int. Conf. on Robotics and Automation,, pp.2483-2488.2008
    [17]Duindam, V., Xu, J., Alterovitz, R., Sastry, S., Goldberg, K., "Three-dimensional Motion planning algorithms for steerable needles using inverse kinematics," The International Journal of Robotics Research, vol.29, no.7, pp.789-800,2009.
    [18]DiMaio, S. P., and Salcudean, S. E., "Needle insertion modeling and simulation," IEEE Trans. Robotics and Automation, vol.19, no.5, pp. 864-875,2003.
    [19]DiMaio, S.P., Salcudean, S.E., "Interactive simulation of needle insertion models". IEEE Trans Biomed Eng,vol.52, no.7 pp.1167-1179,2005.
    [20]DiMaio, S. P. and Salcudean, S. E., "Needle steering and motion planning in soft tissue," IEEE Trans. Biomedical Engineering, vol.52, no.6, pp.965-974, 2005.
    [21]DiMaio, S. P., and Salcudean, S. E., "Needle steering and model-based trajectory planning". In:Proc. Medical Image Computing and Computer Assisted Intervention, pp.33-40,2003.
    [22]Ding, M., Fenster, A.. "Projection-based needle segmentation in 3D ultrasound images". In:Proceedings of the medical image computing and computer-assisted intervention (MICCAI).2003. p.319-27
    [23]Delingette, H., Pennec, X., Soler, L., Marescaux, J., and Ayache, N., "Computational models for image-guided robot-assisted and simulated medical interventions", Proceedings of the IEEE, vol.94, no.9,2006
    [24]Ebrahimi, R, et al. "Hand-held steerable needle device". In:Proceedings of the medical image computing and computer-assisted intervention (MICCAI). 2003. p.223-30.
    [25]Engh, J. A., Podnar, G, Khoo, S. Y, and Riviere, C. N., "Flexible needle steering system for percutaneous access to deep zones of the brain," in Proc. IEEE Annu. Northeast Bioeng. Conf.,Easton,PA,Apr.2006, pp.103-104.
    [26]Fichtinger, G, et al. "Systemfor robotically assisted prostate biopsy and therapy with interactive CT guidance". Acad Radiol 2002;9(1):60-74
    [27]Glozman, D., and Shoham, M., "Flexible needle steering and optimal trajectory planning for percutaneous therapies", in Proc. Medical Image Computing and Computer Assisted Intervention, pp.137-144.2004.
    [28]Glozman, D., and Shoham, M., "Image-guided robotic flexible needle steering," IEEE Trans. on Robotics, vol.23, no.3, pp.459-467,2007.
    [29]Grant, A., and Neuberger, J., "Guidelines on the use of liver biopsy in clinical practice," J. Gastroenterlogoly Hepatol.,vol.45,no.Suppl.IV, pp. IV1-IV11, 1999.
    [30]Gerovichev, O., et al. "The effect of visual and haptic feedback on manual and teleoperated needle insertion". In:Proceedings of themedical image computing and computer-assisted intervention (MICCAI).2002. p.147-54
    [31]Gupta, S., et al. "Image-guided percutaneous biopsy of mediastinal lesions: different approaches and anatomic considerations". Radio Graphics 2004;24:175-89
    [32]Haddadi, A. and Hashtrudi-Zaad, K., "Development of a dynamic model for bevel-tip flexible needle insertion into soft tissues," in Proc. IEEE Int. Conf. Eng. Med. Biol. Soc.,Boston,MA,Sep.2011,pp.7478-7482
    [33]Hagmann, E., et al. "A haptic guidance tool for CT-directed percutaneous interventions". In:Proceedings of the IEEE international conference on engineering in medicine and biology.2004. p.2746-9.
    [34]Hibbeler, R. C., Mechanics of Materials. Prentice Hall,2008
    [35]Hong, J., et al. "An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy". Phys Med Biol 2004;49:441-55.
    [36]Huang, H., Sun, D., Mills, J. K., and Cheng, S. H., "Robotics cell injection system with vision and force control:Towards automatic batch biomanipulation," IEEE Trans. on Robotics, vol.25, no.3, pp.727-737,2009.
    [37]Huang, H., Sun, D., Mills, J. K., Li, W. J., Cheng, S. H., " Visual-based impedance control of out-of-plane cell injection systems," IEEE Trans. on Automation Science and Engineering, vol.6, no.3, pp.565-571,2009.
    [38]Huang, H., Mills, J. K., Lu, C., and Sun, D., "A universal piezo-driven ultrasonic cell microinjection system," Biomed Microdevices, vol.13, no.4, pp.743-752,2011.
    [39]Hussain, H. K., et al. "Imaging-guided core biopsy for the diagnosis of malignant tumors in pediatric patients". Am Roentgen Ray Soc 2001;176:43-7
    [40]Hunter, P., Robbins, P., Noble, D. "The IUPS human physiome project", Eur. J. Physiol, vol.445, no. l,pp.1-9,2002
    [41]Haug, E., Choi, H. Y., Robin, S. and Beaugonin, M., "Human models for crash and impact simulation", in Computational models for the Human Body, N. Ayache, Ed. New York:Elsevier, pp.231-452,2004
    [42]Hochman, M. N., Friedman, M. J., "An in vitro study of needle force penetration comparing a standard linear insertion to the new bidirectional rotation insertion technique." J Quintessence Intl 2001;32(10):789-96.
    [43]Hu, G. X., and Hong, Q., "Meshless methods for physics-based modeling and simulation of deformable models", Science in China Series F:Information Sciences, vol.52, no.3, pp.401-417,2009
    [44]Issenberg, S. B., et al. "Features and uses of high-fidelity medical simulations that lead to effective learning". Med Teacher 2005;27(1):10-28
    [45]Kataoka, H., Washio, T., Audette, M., and Mizuhara, K., "A model for relations between needle deflection, force, and thickness on needle penetration," in Proc. Int. Conf. Med. Imag. Comput. Comput.-Assist. Intervention,vol.2208,Utrecht, TheNetherlands, Oct.2001, pp.966-974.
    [46]Kallem, V., Cowan, N., "Image-guided control of flexible bevel-tip needles". In:Proceedings of the IEEE International Conference on Robotics and Automation, April 2007, pp.3015-3020
    [47]Kerdok, A. E., et al. "Truth cube:establishing physical standards for soft tissue simulation". Med Image Anal, no.7, pp.283-291,2003.
    [48]Ko, S. Y., Frasson, L., and Baena, F. R., "Closed-loop planar motion control of a steerable probe with a "programmable bevel" inspired by nature,"IEEE Trans. Robot.,vol.27,no.5,pp.970-983,Oct.2011
    [49]Krieger A, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng 2005;52(2):306-13.
    [50]Kyung, K. K., et al. "Force feedback for a spine biopsy simulator with volume graphic model". In:Proceedings of the IEEE international conference on intelligent robotics and systems (IROS).2001. p.1732-7.
    [51]Li, Q., and Lee, K. M., "An Adaptive Meshless Method for Modeling Large Mechanical Deformation and Contacts" IEEE Int. Conf. on Robotics and Automation, pp.1207-1212,2007
    [52]Lim, Y. J., Hu, J., Chang, C. Y., and Tardella, N., "Soft tissue deformation and cutting simulation for the multimodal surgery training", Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems, pp.635-640, 2006
    [53]Magill, J., et al. "Multi-axis mechanical simulator for epidural needle insertion". In:Proceedings of the medical image computing and computer-assisted intervention (MICCAI).2004. p.267-76.
    [54]Maurin, B., et al., "In vivo study of forces during needle insertions". In: Proceedings of the scientific workshop on medical robotics, navigation and visualization, pp.415-22,2004
    [55]Maurin, B, et al. "A parallel robotic system with force sensors for percutaneous procedures under CT-guidance". In:Proceedings of the medical image computing and computer-assisted intervention (MICCAI).2004. p. 176-83.
    [56]Mallapragada, V., Sarkar, N., and Podder, T. K. "Toward a Robot-Assisted Breast Intervention System", IEEE/ASME Trans on Mechatronics, vol 16, no. 6, pp.1011-1020,2011.
    [57]Matsumiya, K., et al. "Analysis of forces during robotic needle insertion to human vertebra". In:Proceedings of the medical image computing and computer-assisted intervention (MICCAI).2003. p.271-8
    [58]Meier, U., Lopez, L., Monserrat, C., Juan, M. C. and Alcaniz, M., "Real-time deformable models for surgery simulation:a survey", Computer Methods and Programs in Biomedicine, vol.77, no.3, pp.183-197,2005
    [59]Minhas, D., Engh, J., Fenske, M., Riviere, C., "Modeling of needle steering via duty-cycled spinning". In:Proceedings of the International Conference of the IEEE EMBS Cit'e Internationale, pp.2756-2759,2007
    [60]Misra, S., Reed,K. B. Schafer, B. W., Ramesh, K. T. and Okamura, A. M. "Mechanics of flexible needles robotically steered through soft tissue," Int. J. Robotics Research, vol.29, no.13, pp.1640-1660,2010.
    [61]Misra, S., Ramesh, K.T., and Okamura, A. M., "Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation:A Literature Review". Presence:Teleoperators and Virtual Environments, vol.17, no.5, pp.463-491, 2008.
    [62]Misra, S., Ramesh, K. T., and Okamura, A. M., "Modelling of non-linear elastic tissues for surgical simulation". Computer Methods in Biomechanics and Biomedical Engineering, vol.13, no.6, pp.811-818,2010.
    [63]Moore, P. and Molloy, D., "A survey of computer-based deformable models," IEEE Int. Conf. on Machine Vision and Image Processing, pp,55-66,2007.
    [64]Neal, M. L., and Kerckhoffs, R., "Current progress in patient-specific modeling", Briefings in Bioinformatics,vol.11, no.1, pp.111-126,2010
    [65]Nienhuys, H. W., Van der Stappen A. F., "A computational technique for interactive needle insertions in 3D nonlinear material". In:Proceedings of the IEEE international conference on robotics and automation (ICRA).2004. p. 2061-7.
    [66]NIH. Predictive Multiscale Models of the Physiome in Health and Disease (PAR-08-023). http://grants.nih.gov/grants/guide/pa-files/PAR-08-023.html 2009 (10 October2009, date last accessed)
    [67]Nienhuys, H. W., Stappen. A. F., "A computational technique for interactive needle insertions in 3D nonlinear material". In:Proceedings of the IEEE international conference on robotics and automation, pp.2061-2067.2004.
    [68]Okamura, A.M., Simone, C. and O'Leary, M. D. "Force modeling for needle insertion into soft tissue," IEEE Trans. on Biomedical Engineering, vol.51, no. 10, pp.1707-1716,2004.
    [69]Okazawa, S., Ebrahimi, R., Chuang, J., Salcudean, S. E., and Rohling, R., "Hand-held steerable needle device," IEEE/ASME Transactions on Mechatronics,10(3):285-296.2005
    [70]Patil, S. and Alterovitz, R., "Interactive motion planning for steerable needles in 3D environments with obstacles," in Int. Conf. Biomedical Robotics and Biomechatronics (BioRob), pp.893-899,2010.
    [71]Peters, T. M., "Image-guided surgery:fromX-ray to virtual reality". Comput Meth Biomech Biomed Eng 2000;4(1):27-57.
    [72]Podder, T. K,, et al. "Evaluation of robotic needle insertion in conjunction with in vivo manual insertion in the operating room". In:Proceedings of the IEEE international workshop on robot and human interactive communication. pp.66-72.2005.
    [73]Podder, T. K., et al. "Evaluation of robotic needle insertion in conjunction with in vivo manual insertion in the operating room". In:Proceedings of the IEEE international workshop on robot and human interactive communication.2005. p.66-72
    [74]Reed, K. B., Majewicz, A., Kallem, V., Alterovitz, R., Goldberg, K., Cowan, N., Okamura, A. M., "Robot-assisted needle steering", IEEE Robotics & Automation Magazine,18(4):34-46,2011
    [75]Rizun, P. R., et al. "Robot-assisted neurosurgery". Semin Laporasc Surg2004;11(2):99-106
    [76]Roberson, P. L., Narayana, V. McShan, D. L. Winfield, R. J., McLaughlin, P. W. "Source placement error for permanent implant of the prostate," Med Phys, vol.24, no.2, pp.251-257,1997.
    [77]Roesthuis, R. J., Van Veen, Y. R., Jahya, A. and Misra, S. "Mechanics of needle-tissue interaction," in Proceedings IEEE Int. Conf. of Intelligent Robots and Systems (IROS),, pp.2557-2563, Sep.2011.
    [78]Roesthuis, R. J., Abayazid, M. and Misra, S. "Mechanics-based model for predicting in-plane needle deflection with multiple bends," in Proceedings of the IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob), pp.69-74 2012
    [79]Schneider, C., et al. "A robotic system for transrectal needle insertion into the prostate with integrated ultrasound." In:Proceedings of the IEEE international conference on robotics and automation (ICRA).2004. p.2085-91.
    [80]Shan, J., Sun, D. and Liu, D., "Design for robust component synthesis vibration suppression of flexible structures with on-off actuators," IEEE Trans. Robotics and Automation, vol.20, no.3, pp.512-525,2004.
    [81]Shan, J., Liu, H. T., and Sun, D., "Modified input shaping for a rotating single-link flexible manipulator," Journal of Sound and Vibration, vol.285, no. 1-2, pp.187-207,2005.
    [82]Simone, C., Okamura, A. M., "Modeling of needle insertion forces for robot-assisted percutaneous therapy". In:Proceedings of the IEEE international conference on robotics and automation, pp.2085-2091,2002.
    [83]Simone, C., "Modelling of needle insertion forces for percutaneous therapies". Master's thesis. Baltimore,MD, USA:Johns Hopkins University; 2002.
    [84]Smolen J., and Patriciu, A., "Deformation Planning for Robotic soft tissue manipulation", Proceedings of the Second Int. Conf. on Advances in Computer-Human Interactions, pp.199-204,2009
    [85]Sun, D., Zhou, Z. Y., Liu, Y. H., and Shen, W. Z., "Development and application of ultrasonic surgical instruments," IEEE Trans. on Biomedical Engineering, vol.44, no.6, pp.462-467,1997.
    [86]Sun, D. and Mills, J. K., "Control of a rotating cantilever beam using a torque actuator and a distributed piezoelectric polymer actuator," Applied Acoustics, vol.63, no.7, pp.885-899,2002.
    [87]Su, H., Zervas, M., Cole, G. A., Furlong, C., and Fischer, G. S., "Realtime MRI-guided needle placement robot with integrated fiber optic force sensing," in Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011, pp. 1583-1588.
    [88]Susil, R. C., et al. "System for MR image-guided prostate interventions: canine study". Radiology 2003;228:886-94.
    [89]Tan, Y, Sun, D., Wang, J., and Huang, W., "Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers," IEEE Trans. on Biomedical Engineering, vol.57, no.7, pp.1816-1825,2010.
    [90]Tavakoli, M., et al. "Robotic suturing forces in the presence of haptic feedback and sensory substitution." In:Proceedings of the IEEE conference on control applications.2005. p.1-6.
    [91]Tadayyon, H., Lasso, A., Gill, S., Kaushal, A., Guion, P., and Fichtinger, G, "Target motion compensation in MRI-guided prostate biopsy with static images," in Proc. IEEE Int. Conf. Eng. Med. Biol. Soc.,BuenosAires, Argentina, Sep.2010, pp.5416-5419.
    [92]Taschereau, R., et al. "Seed misplacement and stabilizing needles in transperineal permanent prostate implants". Radiother Oncol 2000;55:59-63
    [93]Virtual Physiological Human-Latest News. http://www.vphnoe.eu/home 2009 (10 October 2009, date last accessed).
    [94]Van den berg, J., Patil, S., Alterovitz, R., Abbeel, P., and Goldberg, K., " LQG-based planning, sensing, and control of steerable needles," in Algorithmic Foundations of Robotics IX (Proc. WAFR 2010), ser.Springer Tracts in Advanced Robotics (STAR), D. Hsu et al., Eds.,vol.68. Springer, Dec.2010, pp.373-389.
    [95]Wagner, C., et al. "The role of force feedback in surgery:analysis of blunt dissection." In:Proceedings of the 10th symposium on haptic interfaces for virtual environment and teleoperator systems.2002. p.73
    [96]Washio, T., Chinzei, K., "Needle force sensor, robust and sensitive detection of the instant of needle puncture". In:Proceedings of the medical image computing and computer-assisted intervention (MICCAI).2004. p.113-20
    [97]Wei, Z., Wan, G, Gardi, L., Mills, G, Downey, D., Fenster, A. "Robot-assisted 3D-TRUS guided prostate brachytherapy:system integration and validation," Med Phys, vol.31, no.3, pp.539-548,2004.
    [98]Webster, R. J., Kim, J. S., Cowan,N. J. Chirikjian, G. S. and Okamura, A. M. "Nonholonomic modelling of needle steering," Int. J. of Robotics Research, vol.25, no.5-6, pp.509-525,2006.
    [99]Webster, R. J., Memisevic, J. and Okamura, A.M. "Design considerations for robotic needle steering," in IEEE Int. Conf. on Robotics and Automation, pp. 3588-3594,2005.
    [100]Webster, R. J., Okamura, A. M., Cowan, N. J., Chirikjian, G S., Goldberg, K., and Alterovitz, R., "Distal Bevel-tip Needle Control Device and Algorithm," US patent pending 2006 11/436,995.
    [101]Wang, J., Sun, D., Zheng, J. "Optimal Path Planning for Inserting a Steerable Needle into Tissue," in IEEE Int. Conf. on Information and Automation, pp.39-44,2011.
    [102]Wang, X., Wachowiak, M. P., Downey, D. B., Peters, T. M., and Fenster, A., "3D real-time interactive needle insertion simulation:soft tissue deformable modeling and sensitivity analysis," in Proc. The International Congress on Computer Assisted Radiology and Surgery 2004. pp.1268-1326.
    [103]Wang, J., Li, X., Zheng, J., Sun, D. "Dynamic Path Planning for Inserting a Steerable Needle into Soft Tissue, " in IEEE Int. Conf on Control, Automation, Robotics & Vision, pp.1329-1334,2012
    [104]Wang, X., Wachowiak, M. P., Downey, D. B., Peters, T. M., and Fenster, A., "3D real-time interactive needle insertion simulation:soft tissue deformable modeling and sensitivity analysis," in Proc. The International Congress on Computer Assisted Radiology and Surgery 2004. pp.1268-1326.
    [105]Wu, Y., Sun, D., Huang, W., and Xi, N., "Dynamics analysis and motion planning for automated cell transportation with optical tweezers."IEEE/ASME Transactions on Mechatronics,. (2012). (in press).
    [106]Wittek, A., Dutta-Roy, T., Taylor, Z., Horton, A., Washio, T., Chinzei, K., Miller, K. "Subject-specific non-linear biomechanical model of needle insertion into brain", Computer Methods in Biomechanics & Biomedical Engineering, Apr2008, Vol.11 Issue 2, p135-146
    [107]Wood, N. A., Shahrour, K., Ost, M. C., and Riviere, C. N., "Needle steering system using duty-cycled rotation for percutaneous kidney access," in Proc. IEEE Int. Conf. Eng.Med. Biol. Soc.,BuenosAires,Argentina,Sep.2010, pp. 5432-5435.
    [108]Xie, Y., Sun, D., Liu, C., Tse, H. Y., and Cheng, S. H., "A force control approach to a robot-assisted cell microinjection system," Int. J. Robotics Research, vol.29, no.9, pp.1222-1232,2010.
    [109]Yang, B., Tan, U. X., McMillan, A. B., Gullapalli, R., Desai, J. P., "Design and Control of a 1-DOF MRI-Compatible Pneumatically Actuated Robot With Long Transmission Lines", IEEE/ASME Trans on Mechatronics, vol 16, no. 6, pp.1040-1048,2011.
    [110]Zhong, H., Peters, T. "A real time hyperelastic tissue model", Computer Methods in Biomechanics & Biomedical Engineering, Jun2007, Vol.10 Issue 3,p185-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700