眼表重建手术后早期供体干细胞的存活状态及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     体外培养的异体角膜缘上皮细胞移植术是治疗角膜缘干细胞缺乏的有效方案,在临床中我们观察到术后有些患者会发生再次角膜新生血管化和角膜上皮反复缺损,考虑其原因可能为手术后供体细胞不能很好的存活并发挥功能。因此,本研究的目的是通过动物模型模拟该手术及术后的临床过程,探讨手术后供体细胞的存活状态和其可能的影响因素,并进一步探讨手术后可维持眼表稳定的可行措施。
     方法
     1、动物模型的建立和评价
     采用4周龄雌性新西兰大白兔45只,建立碱烧伤致兔眼角膜缘干细胞缺乏的动物模型。将实验兔随机分为2组:中度组和重度组,每组22只,每只兔均选右眼建模、手术。用内径12mm,外径18mm的环形滤纸片浸透1mol/L NaOH,覆盖于实验兔角膜缘处,重度组接触1min,中度组接触30s。然后用0.9%氯化钠注射液冲洗角膜表面和结膜囊5分钟。烧伤后每天观察兔角膜变化,并于碱烧伤后稳定期对角膜新生血管程度和炎症程度进行评分。用HE染色方法观察比较正常兔角膜和碱烧伤后稳定期兔角膜的组织病理学差异;用免疫组织化学方法检测正常组和碱烧伤后稳定期时兔角膜中p63、CD68的表达情况;用Real time-PCR方法检测正常组和碱烧伤后稳定期时兔角膜中干细胞相关因子ANp63α、ABCG2、CK3,及炎症因子IL-1β、IL-6、IL-4、IL-10、IL-13、TNF-α、MCP-1、iNOS、TGF-β、 VEGF的表达量。
     2、以羊膜为载体人角膜缘上皮细胞体外培养
     角膜来自山东省眼科研究所眼库,取用角膜移植后剩余的角巩膜环,将角膜上皮细胞消化成单细胞后接种于去上皮羊膜上,每天观察细胞生长情况,待细胞铺满羊膜形成复层时进行移植手术
     3、以羊膜为载体培养的人角膜缘上皮细胞移植术
     取碱烧伤后处于稳定期的兔角膜进行手术。术中剪开全周球结膜,剥除角膜表而覆盖的血管膜,将培养有人角膜缘上皮细胞的羊膜覆盖于角膜表面,将羊膜于角膜缘处缝合5~8针固定于球结膜和巩膜之间。手术中注意保护细胞避免受到损伤,术毕行睑裂缝合避免角膜过度暴露。
     4、手术后的临床疗效评价和供体细胞的存活状态检测
     分别于术后即刻,术后1天、3天、7天、14天、21天和28天时用裂隙灯显微镜观察术后兔角膜变化,对角膜新生血管化程度和炎症程度进行评分,并利用裂隙灯照相系统进行图像记录。在上述各时间点取兔角膜进行HE染色,并用免疫组化方法检测供体和受体中p63、Ki-67的表达情况。用RT-PCR方法检测术前及术后各时间点供体和受体细胞中干细胞相关因子ANp63α、Ki-67、ABCG2、C/EBPA、CK3的表达量。
     5、手术后眼表微环境中炎症因子表达情况检测
     分别于手术后即刻、术后1天、3天、7天、14天、28天时取兔角膜,用免疫组化方法检测CD68的表达情况,用Real time-PCR方法检测炎症因子IL-1β、IL-6、IL-4、IL-10、IL-13、TNF-α、MCP-1、iNOS、TGF-β、VEGF、CD4、CD8的表达量。
     结果
     1、碱烧伤后兔角膜的病变特征
     碱烧伤后烧伤部位的角膜即呈瓷白色混浊,碱烧伤后1周内为急性期,球结膜缺血,角膜水肿,角膜上皮持续缺损,碱烧伤后第2-3周进入损伤和修复共存期。中度碱烧伤组在烧伤后4-8周时角膜新生血管化,炎症反应趋于稳定;重度碱烧伤组在伤后8-12周时才能进入稳定期。中度碱烧伤组有3眼评分未达标而排除研究,重度碱烧伤组3眼角膜穿孔排除研究。根据评分标准,中度组和重度组的总分平均值分别为5.7±1.2分和8.8±1.1分,两组差别有统计学意义(P=0.000)。HE染色可见碱烧伤后稳定期时角膜表面覆盖扁平的鳞状上皮细胞,基质内见大量管径粗大的新生血管,可达深基质层。免疫组织化学检测可见大量CD68阳性的炎症细胞浸润,角膜中p63表达阴性。Real time-PCR结果显示碱烧伤组ANp63α、ABCG2、CK3的表达显著低于正常对照组,其中重度碱烧伤组降低较中度碱烧伤组降低更为显著(P<0.05)。碱烧伤后稳定期角膜中炎症因子IL-1β、 IL-6、IL-4、IL-10、IL-13、TNF-α、 iNOS、MCP-1、TGF-β、VEGF的表达显著高于正常对照组。
     2、以羊膜为载体培养的兔角膜缘上皮细胞移植术后的临床疗效
     中度碱烧伤组在术后1-28天时均可见到角膜上皮完整,未见新生血管再次生长。重度碱烧伤组在术后1天时可见到角膜上皮片状缺损,术后3天时角膜上皮修复完整,术后14天和21天时再次出现角膜上皮片状缺损,自术后14天时可见新生学管再次长入角膜,甚至比术前更为严重。HE染色可见术后7天内羊膜与角膜贴附不紧密,术后14天时羊膜吸收,但此时角膜上皮细胞与角膜基质仍有分离现象。中度碱烧伤组术后21天和28天时角膜上皮完整,角膜基质内未见新生血管管腔;重度碱烧伤组可见角膜上皮缺损,或角膜上皮不规则增生,呈鳞状上皮化,角膜基质内大量炎症细胞浸涧,并可见到新生血管管腔。
     3、手术后供体细胞的存活状态
     免疫组织化学检测在中度碱烧伤组术后28天内均可见供体p63和Ki-67表达。重度碱烧伤组术后7天内可见p63表达,偶见Ki-67阳性细胞,RT-PCR结果显示两组供体细胞中ANp63α的农达在手术后即刻降低约40%,术后3天时显著降低,而ABCG2在术后28天内均有表达但呈逐渐下降趋势。中度碱烧伤组Ki-67的表达量在术后7天内较术前升高,但术后14天时即显著降低至消失;C/EBPA和CK3的表达量在术后即刻较术前降低,但术后1天时有所上调,术后3天、7天时呈显著下降,至术后14天后几乎检测不到其表达。重度碱烧伤组Ki-67、C/EBP△、CK3的表达在术后3天时即显著降低,术后7天时表达量极低甚至消失。
     4、手术后眼表炎症微环境中炎症因子的表达
     HE染色和免疫组织化学结果:术后1天和3天时在羊膜下和角膜基质中可见分叶清晰的中性粒细胞浸润和CD68阳性的巨噬细胞浸润,术后7天时较少见到分叶清晰的中性粒细胞,但CD68阳性细胞仍较多。中度碱烧伤组术后14天后CD68阳性细胞逐渐减少,而重度碱烧伤组CD68阳性细胞浸润可持续至术后28天。
     Real-time PCR结果:炎症因子IL-1β、IL-6、MCP-1、IL-13、IL-10的表达在术后即刻即显著上调,术后3天时显著下调,术后7天和14天再次上调,随后逐渐下降。大部分炎症因子在术后出现两个高峰,即术后即刻和术后7天时。CD4和CD8的表达在术后1天、3天均处在极低水平,术后7天时骤然上调,此后下降。
     5、手术后受体中干细胞相关因子的表达
     中度碱烧伤组ANp63α、ABCG2、CK3、Ki-67的表达在术后较术前呈上调趋势,在术后21天时较为显著。重度碱烧伤组ANp63α、ABCG2、CK3、Ki-67在术后的表达量没有超过术前,在术后早期如1天、3天、7天时甚至较术前降低。
     结论
     1、角膜缘环形碱烧伤是建立角膜缘干细胞缺乏模型的有效方法,在碱烧伤后稳定期角膜内仍有大量巨噬细胞浸润和多种炎症因子高表达,中度碱烧伤角膜缘内可能残存一些可恢复功能的干细胞。
     2、移植的供体细胞在术后7天内可维持其增殖、分化和自我更新能力,随后细胞的各项功能均下降至丧失。
     3、术后早期的炎症反应和免疫排斥反应是影响移植的供体细胞功能的关键因素,巨噬细胞可能在其中发挥了主要作用。
     4、有足够的供体细胞长期存活并发挥正常功能是术后维持稳定眼表的一个必要条件,而受体自身残存足够的可恢复功能的角膜缘干细胞是术后维持稳定眼表的另一个重要条件。
Purpose:To investigate the survival state of the donor cells after ex vivo cultured limbal epithelial transplantation and analyze the possible influencing factors.
     Methods:Rabbit limbal stem cell deficiency mode was induced by alkali burn, and ex vivo cultured limbal epithelial transplantation was performed at stable stage after alkali burn. Clinical manifestations were observed by slit lamp microscope at immediate postopereative, and1day,3day,7day,14day,21day,28day postoperative. HE stain was performed at preoperation and each time point, and the expression of p63, Ki-67, CD68in donor and host tissue were detected by immunohistochemistry. RT-PCR was used to detect the expression of ANp63α、 Ki-67、 ABCG2、 C/EBPA、 CK3and inflammatory factors IL-lβ、IL-6、 IL-4、 IL-10、 IL-13、 TNF-α、 MCP-1、TGF-β、 VEGF、CD4、CD8at each time point.
     Results:In moderate group, the corneal epithelium is integral and without neovascularization within1month. But in severe group, corneal epithelial defected repeatedly and neovascularization was occurred at14days postoperation. HE stain and immunohistochemistry shows that p63and Ki-67were expressed within28days in moderate group, but gradually decreased. P63could be detected within7days in severe group, and Ki-67was rarely detected. A large number of CD68+macrophage infiltrated in preoperative corneal strom in both group. Neutrophils infiltrated in amniotic was detected at1day and3days postoperation and significantly reduced at7days postoperation. Macrophage consistently elevated in severe group, but gradually reduced14days later in moderate group. RT-PCR results show that the expression of ANp63a in donor cells was reduced about40%immediately postopereative, and significantly reduced at3days postopereative. The expression of ABCG2could be detected but gradually reduced within28days. In moderate group, the expression of Ki-67, C/EBPA, CK3were significantly reduced or even disappear at14days postoperative. But in severe group, the expression of Ki-67, C/EBP△, CK3were significantly reduced at3days postoperative, and at7days postoperative we can only detect very a low expression level or even disappear of these factors. Most inflammatory factors appear two peaks postoperative. The first peak appear immediately postopereative, was early inflammation mediated by macrophages. The expression of CD4was significantly increased at7days postopereative, and the second peak appears at this time. So the possible reason of this peak was immune rejection induced by CD4+cells. The expression of host△Np63a, ABCG2, CK3was increased compared with the preoperative in moderate group, but in severe group, it does not change or even decreased.
     Conclusions:The donor cells could be exist within1month after ex vivo cultured limbal epithelial transplantation, but its proliferation, differentiation, and self-renewal capacity could significantly reduce or loss within14days under the hit of mechanical injury during the surgery, early inflammatory response postoperative and immune rejection. Macrophages may play an important role in reduce the early inflammatory and immune rejection. Functional recovery of the host stem cells maybe an important factor to maintain a long-term stable ocular surface.
引文
1. Pellegrini G, Traverso CE, Franzi AT et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997;349:990-993.
    2. Baylis 0, Figueiredo F, Henein C et al.13 years of cultured limbal epithelial cell therapy:A review of the outcomes. J Cell Biochem 2011;112:993-1002.
    3. Rama P, Matuska S, Paganoni G et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 2010:363:147-155.
    4. Pellegrini G, Rama P, De Luca M. Vision from the right stem. Trends Mol Med 2011:17:1-7.
    5. Daya SM, Watson A, Sharpe JR, Giledi 0, Rowe A, Martin R, James SE. Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology.2005 Mar; 112(3):470-7.
    6. Sharpe JR, Daya SM, DimitriadiM, Martin R, James SE. Survival of cul tured al logeneic limbal epithelial cells following corneal repair. Tissue Eng.2007 Jan;13(1):123-32.
    7. Li ZR, Li YP, Lin ML, Su WR, Zhang WX, Zhang Y, Yao L, Liang D. Act ivated Macrophages Induce Neovascularization Through Upregulation of MMP-9 and VEGF in Rat Corneas. Cornea.2012 Jun 6. [Epub ahead of print]
    8. Moore JE, McMullen TC, Campbell IL, Rohan R, Kaji Y, Afshari NA, Usui T, Archer DB, Adamis AP. The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy. Invest Ophthalmol Vis Sci.2002 Sep;43 (9):2905-15.
    9. Branca to SK, Albina JE. Wound macrophages as key regulators of repair:origin, phenotype, and function. Am J Pathol.2011 Jan;178(1):19-25.
    10. Oh JY, Roddy GW, Choi H, Lee RH, Ylostalo JH, Rosa RII Jr, Prockop DJ. Ant-inflammatory protein TSG-6 reduces inflammatory damage to the cornea Following chemical and mechanical injury. Proc Natl Acad Sci U S A.2010 Sep 28;107(39):16875-80.
    11. Li QJ, Ashraf FM, Rana TS, Tuli S, Mai EL, Adler RA, Reviglio VE, O'Brien TP. Long-term survival of allogeneic donor cell-derived corneal epithelium in limbal deficient rabbits. Curr Eye Res.2001 Nov;23(5):336-45.
    12. Keijser S, de Keizer RJ, Prins FA, Tanke HJ, van Rooijen N, Vrensen GF, Jager MJ. A new model for limbal transplantation using E-GFP for follow-up of transplant survival. Exp Eye Res.2006 Nov;83(5):1188-95.
    13. Li Y, Zhang WM, Wang TH. Optimal location and time for neural stem cell transplantation into transected rat spinal cord. Cell Mol Neurobiol. 2011;31(3):407-14.
    14. Bottai D, Madaschi L, Di Giulio AM, Gorio A. Viability-dependent promoting action of adult neural precursors in spinal cord injury. Mol Med.2008;14(9-10):634-44.
    15. Gu S, Xing C, Han J, Tso MO, Hong J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis. 2009:15:99-107.
    16. Ye J, Yao K, Kim JC. Eye (Lond).2006;20(4):482-90. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model:engraftment and involvement in wound heal ing.
    17. Burman S, Sangwan V. Cultivated 1imbal stem cell transplantation for ocular surface reconstruction. Cl in Ophthalmol.2008:2 (3):489-502.
    18.谢立信,史伟云,角膜病学。2007年4月第1版,人民卫生出版社。
    19. Kinoshita S, Adachi W, Sotozono C et al. Characteristics of the human ocular surface epithelium. Prog Retin Eye Res 2001;20:639-673.
    20. Daniels JT, Dart JK, Tuft SJ, Khaw PT. Corneal stem cells in review. Wound Repair Regen 2001:9:483-494.
    21. Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 2004:22:355-366.
    22. Pajoohesh-Ganji A, Stepp MA. In search of markers for the stem cells of the cornea] epithelium. Biol Cell 2005:97:265-276.
    23. de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ. ABCG2 transporter identifies a population of clonogenic human imbal epithelial cells. Stem Cells 2005:23:63-73.
    24. Wolosin JM. Cell markers and the side population phenotype in ocular surface epithelial stem cell characterization and isolation. OcuJ Surf 2006;4:10-23.
    25. Ebrahimi M, Taghi-Abadi E, Baharvand H. Limbal stem cells in review. J Ophthalmic-Vis Res 2009:4:40-58.
    26. Mills, A. A., Zheng, B., Wang, X.-J., Vogel,H., Roop, D. R.& Bradley. A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398,708-713.
    27. Yang, A.& McKeon, F. P63 and P73:P53 mimics, menaces and more. Nat Rev Mol Cell Biol.1,199-207.
    28. Parsa, R., Yang, A., McKeon, F.& Green, H. Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J Invest Dermatol.113, 1099-1105.
    29. Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA.2005; 102:9523-9528.
    30. Espana EM, Di Pascuale MA, He H, Kawakita T, Raju VK, Liu CY, Tseng SC. Characterization of corneal pannus removed from patients with total limbal stem cell deficiency. Invest Ophthalmol Vis Sci.2004;45 (9):2961-6.
    31. Moore JE, McMullen CB, Mahon G, Adamis AP. The corneal epithelial stem cell. DNA Cell Biol.2002:21:443-451.
    32. Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol.1986:103:49-62.
    33. Koh TJ, DiPietro LA. Inflammation and wound healing:the role of the macrophage. Expert Rev Mol Med.2011 Jul 11;13:e23.
    34. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets:eancer-as a paradigm. Nat Immunol.2010;11(10):889-896.
    35. Martinez F0, Helming L, Gordon S. Alternative activation of macrophages:an immunologic functional perspective. Annu Rev Immunol.2009:27:451-483.
    36. Ariel A, Serhan CN. New Lives Given by Cell Death:Macrophage Differentiation Following Their Encounter with Apoptotic Leukocytes during the Resolution of Inflammation. Front Immunol.2012;3:4.
    37. Sotozono C, He J, Matsumoto Y, KitaM, Imanishi J, KinoshitaS. Cytokine expression in the alkali-burned cornea. Curr Eye Res.1997;16(7):670-6.
    38. Yamada J, Dana MR, Sotozono C, Kinoshita S. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkal i injury. Exp Eye Res.2003;76(2):161-7.
    39. Sakimoto T, Sugaya S, Ishimori A, Sawa M. Anti-inflammatory effect of IL-6 receptor blockade in corneal alkali burn. Exp Eye Res.2012:97(1):98-104.
    40. Ahmad S, Kol1i S, Lako M, Figueiredo F, Daniels JT. Stem cell therapies for ocular surface disease. Drug Discov Today.2010 Apr;15(7-8):306-13.
    41. Ahmad S, Osei-Bcmpong C, Dana R, Jurkunas L. The culture and transplantation of human limbal stem cells. J Cell Physiol.2010 Oct;225(1):15-9.
    42. Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology.1989 May;96(5):709-22; discussion 722-3.
    43. Lu P, Li L, Liu G, Zhang X, Mukaida N. Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist. Invest Ophthalmol Vis Sci.2009 Oct;50(10):4761-8.
    44. Sotozono C, He J, Matsumoto Y, Kita M, Imanishi J, Kinoshita S. Cytokine expression in the alkali-burned cornea. Curr Eye Res.1997 Jul;16(7):670-6.
    45. Yamada J, Dana MR, Sotozono C, Kinoshita S. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res.2003 Feb;76(2):161-7.
    46. Moore JE, McMullen TC, Campbell IL, Rohan R, Kaji Y, Afshari NA, Usui T, Archer DB, Adam is AP. The inflammatory milieu associated with conjunct ival ized cornea and its alteration with IL-1 RA gene therapy. Invest Ophthalmol Vis Sci.2002 Sep;43(9):2905-15.
    47. Chang CY, Green CR, McGhee CN, Sherwin T. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci.2008 Dec;49(12):5279-86.
    48. Appleby SL, Jessup CF, Mortimer LA, KirkK, Brereton HM, Coster DJ, Tan CK, Williams KA. Expression of an anti-CD4 single-chain antibody fragment from the donor cornea can prolong corneal allograft survival in inbred rats. Br J Ophthalmol.2013 Jan;97(1):101-5.
    49. Qi X, Xie L, Cheng J, Zhai H, Zhou Q. Characteristics of Immune Rejection after Allogeneic Cultivated Limbal Epithelial Transplantation. Ophthalmology.2013 Feb 1. [Epub ahead of print]
    50. Mills RA, Coster D.J, Williams KA. Effect of immunosuppression on outcome measures in a model of rat limbal transplantation. Investig Ophthalmol Vis Sci 2002;43:647-55.
    51. Lencovd A, Pokornd K, Zajicova A, Krulova M, Filipec M, Holan V. Graft survival and cytokine production profile after limbal transplantation in the experimental mouse model. Transpl Immunol.2011 Apr 15;24(3):189-94.
    52. Krulova M, Zajicova A, Fric J, Holan V. Alloantigon-induced, T-cell-dependent production of nitric oxide by macrophages infiltrating skin allografts in mice. Transpl Int 2002; 15:108-16.
    53. Strestikova P, Plskova J, Filipec M, Farghali H. FK 506 and aminoguanidine suppress iNOS induction in orthotopic corneal allografts and prolong graft survival in mice. Nitric Oxide 2003:9:111-7.
    54. Wallgren AC, Karlsson-Parra A, Korsgren O. The main infiltrating cell in xenograft rejection is a CD4+ macrophage and not a T lymphocyte. Transplantation 1995;60:594-601.
    55. Keijser S, de Keizer RJ, Prins FA, Tanke HJ, van Rooijen N, Vrensen GF, Jager MJ. A new model for limbal transplantation using E-GFP for follow-up of transplant survival. Exp Eye Res.2006 Nov;83(5):1188-95.
    56. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol.2005 Jul 1;175(1):342-9.
    57.O'Callaghan AR, Daniels JT. Concise review:limbal epithelial stem cell therapy: controversies and challenges. Stem Cells.2011 Dec;29(12):1923-32.
    1. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet.1997:349(9057):990-993.
    2. Rama P, Bonini S, LambiaseA, et al. Autologous fibrincultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation.2001;72 (9):1478-1485.
    3. Tsai RJ, Li L, Chen J. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells(1). Am J Ophthalmol.2000;130(4):543.
    4. Baylis 0, Figueiredo F, Henein C, Lako M, Ahmad S.13 years of cultured limbal epithelial cell therapy:a review of the outcomes. J Cell Biochem. 2011;112(4):993-1002.
    5. Majo F, Rochat A, Nicolas M, Jaoude GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008:456(7219):250-254.
    6. Sun TT, Tseng SC, Lavker RM. Location of corneal epi thel ial stem cells. Nature. 2010:463(7284):E10-11; discussion Ell.
    7. Chang CY, Green CR, McGhee CN, Sherwin T. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol VisSci.2008:49(12):5279-5286.
    8. Dua IIS, Miri A, Alomar T, Yeung AM, Said DG. The role of limbal stem cells in corneal epithelial maintenance:testing the dogma. Ophthalmology. 2009:116(5):856-863.
    9. ShorU AJ, Seeker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT. Characterization of the limbal epithelial stem cell niche:novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells. 2007; 25 (6):1402-1409.
    10. Lauweryns B, van den Oord JJ, De Vos R, Missotten L. A new epithelial cell type in the human cornea. Invest Ophthalmol Vis Sci.1993;34(6):1983-1990.
    11. Wiley L, SundarRaj N, Sun TT, Thoft RA. Regional heterogeneity in human corneal and limbal epithelia:an immunohistochemical evaluation. Invest Ophthalmol Vis Sci.1991;32(3):594-602.
    12. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts:a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol.2005:89(5):529-532.
    13. Notara M, Alatza A, Gilfillan J, et al. In sickness and in health:Corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res. 2010:90(2):188-195.
    14. Schlotzer-Schrehardt U, Kruse FE. Identification and characterization of limbal stem cells. Exp Eye Res.2005;81 (3):247-264.
    15. Takacs L, Toth E, Berta A, Vereb G. Stem cells of the adult cornea:from cytometrie markers to therapeutic applications. Cytometry A.2009;75(1):54-66.
    16. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and longterm corneal regeneration. N Engl J Med. 2010;363(2):147-155.
    17. Pellegrini G, Rama P, De Luca M. Vision from the right stem. Trends Mol Med. Nov 11.
    18. Daya SM, Watson A, Sharpe,JR, et al. Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology. 2005;112(3):470-477.
    19. Djalilian AR, Mahesh SP, Koch CA, et al. Survival of donor epithelial cells after limbal stem cell transplantation. Invest Ophthalmol Vis Sci. 2005; 46 (3):803-807.
    20. Henderson TR, Findlay,I., Matthews, P. L. and Noble, B. A. Identifying the origin of single corneal cells by DNA fingerprinting. Part 1-Implications for corneal limbal allografting. Cornea.2001;20(4):400-403.
    21. Henderson TR, Findlay, I., Matthews, P. L. and Noble, B. A. Identifying the origin of single corneal cells by DNA fingerprinting. Part II-Application to limbal allografti ng. Cornea.2001;20(4):404-407.
    22. Williams KA, Brereton, H. M., Aggarwal, R., Sykes, P. J., Turner, D. R., Russ, G. R. and Coster, D. J. Use of DNA polymorphisms and the polymerase chain reaction to examine the survival of a human limbal stem cell allograft. Am J Ophthalmol. 1995;120(3):342-350.
    23. Egarth M, Hellkvist J, Claesson M, Hanson C, Stenevi U. Longterm survival of transplanted human corneal epithelial cells and corneal stem cells. Acta Ophthalmol Scand.2005:83(5):456-461.
    24. Du Y, Chen J, Funderburgh JL, Zhu X, Li L. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane. Mol Vis.2003:9:635-643.
    25. Green H. The birth of therapy with cultured cells. Bioessays. Sep 2008:30(9):897-903.
    26. Nishida K, Yamato M, llayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Hngl J Med.2004:351(12):1187-1196.
    27. Ang I.P, Nakamura T, Inatomi T, et al. Autologous serum-derived cultivated oral epithelial transplants for severe ocular surface disease. Arch Ophthalmol. 2006;124(11):1543-1551.
    28. Chen HC, Chen HL, Lai JY, et al. Persistence of transplanted oral mucosal epithelial cells in human cornea. Invest Ophthalmol Vis Sci. 2009:50(10):4660-4668.
    29. Inatomi T, Nakamura T, Koizumi N, Sotozono C, Yokoi N, Kinoshita S. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol.2006;141(2):267-275.
    30. Inatomi T, Nakamura T, Kojyo M, Koizumi N, Sotozono C, Kinoshita S. Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. Am J Ophthalmol. 2006;142(5):757-764.
    31. Ma DH, Kuo MT, Tsai YJ, et al. Transplantation of cultivated oral mucosal epithelial cells for severe corneal burn. Eye (Lond).2009;23(6):1442-1450.
    32. Nakamura T, Inatomi T, Cooper LJ, Rigby H, Fullwood NJ, Kinoshita S. Phenotypic investigation of human eyes with transplanted autologous cultivated oral mucosal epithelial sheets for severe ocular surface diseases. Ophthalmology. 2007; 114 (6):1080-1088.
    33. Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol. 2004;88(10):1280-1284.
    34. Lim P, Fuchsluger TA, Jurkunas UV. Limbal stem cell deficiency and corneal neovascularization. Semin Ophthalmol.2009;24(3):139-148.
    35. Ang LP, Tanioka H, Kawasaki S, et al. Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest Ophthalmol Vis Sci.2010:51(2):758-764.
    36. Gomes JA, Geraldes Monteiro B, Melo GB, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci.2010:51(3):1408-1414.
    37. Ma Y, Xu Y, Xiao Z, et al. Reconstruction of chemically burned rat corneal surface by bone marrowderived human mesenchymal stem cells. Stem Cells. 2006:24(2):315-321.
    38. Ono K, Yokoo S, Mimura T, et al. Autologous transplantation of conjunctival epithelial cells cultured on amniotic membrane in a rabbit model. Mol Vis. 2007;13:1138-1143.
    39. Reza HM, Ng BY, Gimeno FL, Phan TT, Ang LP. Umbilical Cord Lining Stem Cells as a Novel and Promising Source for Ocular Surface Regeneration. Stem Cell Rev. Mar 10.
    40. Ye J, Yao K, Kim JC. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model:engraftment and involvement in wound healing. Eye (Lond). 2006:20(4):482-490.
    41. Homma R, Yoshikawa H, Takeno M, et al. Induction of epithelial progenitors in vitro from mouse embryonic stem cells and application for reconstruction of damaged cornea in mice. Invest Ophthalmol Vis Sci.2004;45(12):4320-4326.
    42. Jiang TS, Cai L,Ji WY, et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis.2010:16:1304-1316.
    43. Guo T, Wang W, Zhang J, Chen X, Li BZ, Li LS. [Experimental study on repairing damage of corneal surface by mesenchymal stem cells transplantation]. Zhonghua Yan Ke Za Zhi.2006;42(3):246-250.
    44. Meyer-Blazejewska EA, Call MK, Yamanaka O, et al. From hair to cornea:toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells.2011;29(1):57-66.
    45. Tanioka H, Kawasaki S, Yamasaki K, et al. Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. Invest Ophthalmol Vis Sci.2006;47(9):3820-3827.
    46. Reinshagen H, Auw-Haedrich C, Sorg RV, et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol. Dec 21 2009.
    47. Kim JH, Chun YS, Lee SH, et al. Ocular surface reconstruction with autologous nasal mucosa in cicatricial ocular surface disease. Am J Ophthalmol. 2010;149(1):45-53.
    48. Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. May 2007:25(5):1145-1155.
    49. Blazejewska FA, Schlotzer-Schrehardt U, Zenkel M, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epi thelial-like cells. Stem Cells.2009:27(3):642-652.
    50. Amirjamshidi H, Milani BY, Sagha HM, et al. Limbal fibroblast conditioned media: a non-invasive treatment for limbal stem cell deficiency. Mol Vis. 2011:17:658-666.
    51. Gu S, Xing C, Han J, Tso MO, Hong J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis.2009:15:99-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700