H7N9禽流感病毒与H5N1、pH1N1等流感病毒临床特征的对比分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2013年春季,一种新的禽源性甲型流感(H7N9)病毒在中国出现。基因分析显示病人中分离出来的H7N9禽流感病毒显示出对哺乳动物的部分适应性,增加了与人类呼吸道上皮细胞唾液酸a-2,6型受体的亲和力,对小鼠的毒力增加,对金刚烷胺耐药,而对奥司他韦敏感。我们尚没有这种病毒所致感染的临床特点的资料。以及与其他流感病毒比如H5N1、pHlNl在发病危险因素、临床表现以及住院后疾病进展方面的比较。
     方法:我们设计病例报告表格,收集了截至2013年10月25日,中国大陆报道的137例经实验室检查确诊的禽源性甲型流感病毒(H7N9)感染病人的数据,以及119例H5N1和3486例pH1N1病人的临床数据。评估校正了年龄和性别特异性的危险因素流行率以后的因流感住院的危险因素,比较了不同亚型之间的临床、实验室以及临床预后的差别。对其中的40例H7N9病人进行了细胞因子和病毒载量的检测,与疾病的严重性进行了相关性分析;并分析了李氏人工肝治疗疾病快速进展,并检测到细胞因子风暴的重症H7N9禽流感病毒病人的疗效。
     结果:在我们所研究的137例患者中,77.4%入住了重症监护病房(ICU)33.6%死亡。患者年龄的中位数为61岁,42.3%的患者年龄≥65岁,其中31.4%为女性。共有61.9%的患者至少存在一种基础疾病。发热和咳嗽是最为常见的起病症状。入院时,133例患者(98.5%)有肺炎的表现。双肺毛玻璃样阴影和实变是典型的x线表现。88.3%的患者中观察到了淋巴细胞减少,73%的患者中观察到了血小板减少。133例患者(97.1%)在发病后7天(中位时间)时开始了抗病毒药物治疗。发病及开始抗病毒治疗至实时逆转录聚合酶链反应检测病毒结果为阴性的中位时间间隔分别为11天(四分位间距为9~16天)和6天(四分位间距为4~7天)。多变量分析结果显示,存在基础疾病是H7N9病人发生急性呼吸窘迫综合征(ARDS)唯一的独立危险因素(比值比为3.44,95%可信区间为1.25-9.78,P=0.02)。
     对其中40名H7N9病人进行了细胞因子动态检测,发现与健康对照组比较,H7N9病人细胞因子水平高,通过Spearsman等级相关性分析发现,患者外周血病毒载量与IP-10(p=-0.692)、HGF(p=-0.509)、MIG(p=-0.500)的水平密切相关,患者APACHEII评分与IP-10(p=0.690), IL-18(p=0.658), HGF(p=0.642)水平密切相关。研究结果表明患者感染H7N9病毒细胞因子趋化因子水平显著升高,起病第二周最为显著,且与患者的疾病严重程度密切相关。
     对16名疾病快速进展,检测到细胞因子风暴的病人进行了李氏人工肝治疗,发现李氏人工肝可以快速下降血浆中细胞因子水平,对于IP-10水平的下降尤为显著。
     将其中的111例病人与其他流感病毒的比较发现,H7N9组年龄的中位时间要大于其他组(61岁,P<0.01),男性居多(68.6%,P<0.02),校正年龄和性别以后,慢性心脏疾病与H7N9的住院风险增加有关(RR9.68;95%CI5.24-17.90). H7N9病人与H5N1比较,更易于出现咳痰和咳血,H7N9与H5N1相似,均有白细胞减少、血小板减少、转氨酶、CK、CRP、LDH的升高,与pH1N1相比有显著性差异P<0.005,与H5N1、pH1N1比较,H7N9组有更长的住院时间。H5N1死亡风险最高,(55%,95%CI47-64%),发生更早,疾病出现到死亡的中位时间为11天,H7N9为18天(P=0.002), pHlN1与15天(P=0.154)。
     结论:在研究期间,这种新的H7N9病毒引起了严重的疾病(包括肺炎和ARDS),患者的ICU入住率和死亡率均高。研究发现HGF, SCF,IL-18,IP-10,MIF以及SCGF-beta可以做为H7N9禽流感病毒感染严重性的生物标志物,起病第二周是检测这些生物标志物的最佳时间,针对这些生物标志物的治疗可能成为潜在的治疗靶点。李氏人工肝可以降低细胞因子,从而可能针对发病机制治疗重症H7N9病人。慢性心脏疾病是H7N9住院的危险因素。H7N9住院病人的临床特点与H5N1住院病人相似,但是与H5N1或pH1N1比较,H7N9的临床过程更长。
Background:During the spring of2013, a novel avian-origin influenza A (H7N9) virus emergedand spread among humans in China. Data were lacking on the clinical characteristicsof the infections caused by this virus and the assessment of similarities between illness due to infection with H7N9virus and that caused by other avian or human influenza A viruses, we compared risk factors, clinical presentation, and progression of hospitalized patients with H7N9, H5N1and H1N1/2009(pH1N1) virus infections.
     Methods:We collected and analyzed individual-level data from patients hospitalized with infection by H7N9virus (n=137), H5N1virus (n=119), and pHlN1virus (n=3486). We assessed risk factors for hospitalization after adjustment for age and gender specific prevalence of risk factors in the general population. Clinical, laboratory and outcome measures were compared between subtypes.
     Results:Of the137patients we studied,77.4%were admitted to an intensive care unit (ICU), and33.6%died. The median age was61years, and42.3%were65years of age or older;31.4%were female. A total of61.9%of the patients had at least one underlying medical condition. Fever and cough were the most common presenting symptoms. On admission,133patients (98.5%) had findings consistent with pneumonia. Bilateral ground-glass opacities and consolidation were the typical radiologic findings. Lymphocytopenia was observed in88.3%of patients, and thrombocytopenia in73.0%. Treatment with antiviral drugs was initiated in133patients (97.1%) at a median of7days after the onset of illness. The median times from the onset of illness and from the initiation of antiviral therapy to a negative viral test result on real-time reverse-transcriptase-polymerase-chain-reaction assay were1ldays(interquartile range,9to16) and6days (interquartile range,4to7), respectively. Multivariate analysis revealed that the presence of a coexisting medical condition was the onlyindependent risk factor for the acute respiratory distress syndrome (ARDS)(odds ratio,3.42;95%confidence interval,1.21to9.70; P=0.02).
     We have gained access to samples from a large cohort of H7N9-infected patients and we performed virological and serial immunological studies using40H7N9patient specimens. The plasma hypercytokinemia dynamics were observed concurrently with high pharyngeal viral load in these H7N9patients compared to healthy controls. Furthermore, we show that the plasma levels of HGF, SCF, IL-18, IP-10, MIF and SCGF-beta are highly positively associated with the APACHE II disease severity score in H7N9-infected patients, especially during the second week of disease onset, and they are also positively associated with mortality.
     Li's ALS therapy was used in16patients with severe H7N9virus infection when the condition deteriorated rapidly and a cytokine storm was detected. We find Li's ALS therapy could decrease the elevated levels of ctyokines of patients, especially IP-10, which was correlated with mortality.
     The median age of patients hospitalized with H7N9virus infection was older than the other patient groups (61years; P<0.001) and a higher proportion was male (P <0.02). After adjustment for age and gender, chronic heart disease (CHD) was associated with an increased risk of hospitalization with H7N9(relative risk9.68;95%CI5.24-17.90). H7N9patients were more likely to report a productive cough and hemoptysis at hospital admission than patients with H5N1infection. H7N9patients had similar patterns of leukopenia, thrombocytopenia, and elevated alanine aminotransferase creatinine kinase, C-reactive protein, and lactate dehydrogenase as H5N1patients, which were all significantly different from pH1N1patients (P<0.005). H7N9patients had a longer duration of hospitalization than either H5N1or pH1N1patients. The hospitalized case fatality risk was highest for H5N1(55%;95%CI47-64%) and death occurred earlier, with a median time from onset to death of11days for H5N1, versus18days for H7N9(P=0.002) and15days for pH1N1(P=0.154).
     Conclusions:During the evaluation period, the novel H7N9virus caused severe illness, including pneumonia and ARDS, with high rates of ICU admission and death. Our findings identify a group of hypercytokinemia dynamics signature proteins HGF, SCF, IL-18, IP-10, MIF, and SCGF-beta as biomarkers for severe and lethal flu infections, and we suggest the best time to detect these biomarkers is during the second week of disease onset. These results indicate that remedies targeting these proteins might constitute a future viable strategy to treat H7N9infections. Severe H7N9virus infection patients could benefit from Li's ALS therapy that could decrease the elevated level of cytokines. CHD is a risk factor for H7N9hospitalization. The clinical profile of patients hospitalized with H7N9was similar to patients hospitalized with H5N1, but with a more protracted clinical course than either H5N1or pH1N1patients.
引文
[1]Gao R, Cao B, Hu Y, et al. Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. N Engl J Med 2013; DOI:10.1056/NEJMoa1304459.
    [2]Chen Y, Liang W, Yang S, et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry:clinical analysis and characterisation of viral genome. Lancet 2013; Published Online April 25,2013 http://dx.doi.org/10.1016/S0140-6736 (13):60903-4.
    [3]Uyeki TM, Cox NJ. Global Concerns Regarding Novel Influenza A (H7N9) Virus Infections. N Engl J Med 2013; DOI:10.1056/NEJMp1304661.
    [4]Number of confirmed human cases of avian influenza A(H7N9) reported to WHO at http://www.who.int/influenza/human_anmial_mterface/influenza_h7n9/05_Report WebH7N9Number.pdf. (Accessed May 9,2013)
    [5]Li Q, Zhou L, Zhou M, et al. Preliminary Report:Epidemiology of the Avian Influenza A (H7N9) Outbreak in China. N Engl J Med 2013; DOI: 10.1056/NEJMoa1304617.
    [6]Thompson WW, Shay DK, Weintraub E, et al. Influenza-associated hospitalizations in the United States. JAMA 2004; 292:1333-1340.
    [7]Yang S, Bin Cao B, Liang L, et al. for the National Influenza A Pandemic (H1N1) 2009 Clinical Investigation Group of China. PLoS ONE 2012; 7:e29652
    [8]Yu H, Gao Z, Feng Z, Shu Y, Xiang N, et al. Clinical Characteristics of 26 Human Cases of Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in China. PLoS ONE 2008; 3:e2985. doi:10.1371/journal.pone.0002985
    [9]Hanshaoworakul W, Simmerman JM, Narueponjirakul U, et al. Severe Human Influenza Infections in Thailand:Oseltamivir Treatment and Risk Factors for Fatal Outcome. PLoS ONE 2009; 4:e6051. doi:10.1371/journal.pone.0006051.
    [10]Bai L, Gu L, Cao B, et al. Clinical Features of Pneumonia Caused by Influenza A (H1N1) Virus in Beijing, China. Chest 2011; 139:1156-1164.
    [11]Liem NT, Tung CV, Hien ND, et al. Clinical features of human influenza A (H5N1) infection in Vietnam:2004-2006. Clin Infect Dis 2009; 48:1639-1646.
    [12]Allison McGeer, Karen A. Green, Agron Plevneshi, et al. Antiviral Therapy and Outcomes of Influenza Requiring Hospitalization in Ontario, Canada. Clinical Infectious Diseases 2007;45:1568-75.
    [13]Wong SSY, Yuen K. Avian Influenza Virus Infections in Humans. Chest 2006; 129:156-168.
    [14]Belser JA, Bridges CB, Katz JM, Tumpey TM. Past, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis 2009;15: 859-865.
    [15]The Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5. Avian influenza A (H5N1) infection in humans. N Engl J Med 2005; 353:1374-1385.
    [16]D'Silva D, Hewagama S, Doherty R, Korman TM, Buttery J. Melting muscles: novel H1N1 influenza A associated rhabdomyolysis. Pediatr Infect Dis J 2009; 28: 1138-1139.
    [17]Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W, et al. Human disease from influenza A (H5N1), Thailand,2004. Emerg Infect Dis 2005; 11:201-209.
    [18]Tran TH, Nguyen TL, Nguyen TD, et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 2004; 350:1179-1188.
    [19]World Health Organization (WHO). Clinical management of human infection with pandemic (H1N1) 2009:revised guidance. World Health Organization Web site.
    http://www.who.int/csr/resources/publications/swineflu/clinical_management_hln l.pdf Accessed May 2013.
    [20]Emergence of Avian Influenza A(H7N9) Virus Causing Severe Human Illness-China, February-April 2013. MMWR Morb Mortal Wkly Rep 2013; 62:366-371.
    [21]Gao R, Cao B, Hu Y, Feng Z, Wang D, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013; 368:1888-1897.
    [22]Kageyama T, Fujisaki S, Takashita E, Xu H, Yamada S, et al. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill 2013; 18.
    [23]Liu Q, Lu L, Sun Z, Chen GW, Wen Y, et al. Genomic signature and protein sequence analysis of a novel influenza A (H7N9) virus that causes an outbreak in humans in China. Microbes Infect 2013.
    [24]Xiong X, Martin SR, Haire LF, Wharton SA, Daniels RS, et al. Receptor binding by an H7N9 influenza virus from humans. Nature 2013.
    [25]Zhu H, Wang D, Kelvin DJ, Li L, Zheng Z, et al. Infectivity, Transmission, and Pathology of Human H7N9 Influenza in Ferrets and Pigs. Science 2013.
    [26]Kreijtz JH, Kroeze EV, Stittelaar KJ, de Waal L, van Amerongen G, et al. (2013) Low pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge:A model to study intervention strategies. Vaccine.
    [27]Yu H Human infection with avian influenza A H7N9 virus: i. an assessment of clinical severity.
    [28]Cowling B Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: i. a population-based study of laboratory-confirmed cases.
    [29]Yu H, Gao Z, Feng Z, Shu Y, Xiang N, et al. Clinical characteristics of 26 human cases of highly pathogenic avian influenza A (H5N1) virus infection in China. PLoSOne2008;3:e2985.
    [30]Liem NT, Tung CV, Hien ND, Hien TT, Chau NQ, et al. Clinical features of human influenza A (H5N1) infection in Vietnam:2004-2006. Clin Infect Dis 2009; 48:1639-1646.
    [31]Li Q, Zhou L, Zhou M, Chen Z, Li F, et al. Preliminary Report:Epidemiology of the Avian Influenza A (H7N9) Outbreak in China. N Engl J Med 2013;.
    [32]Ip D Detection of mild to moderate influenza A/H7N9 infection by China's national sentinel surveillance system for influenza-like illness:case series.
    [33]Yu H, Feng Z, Uyeki TM, Liao Q, Zhou L, et al. Risk factors for severe illness with 2009 pandemic influenza A (H1N1) virus infection in China. Clin Infect Dis 2011; 52:457-465.
    [34]Yang ZJ, Liu J, Ge JP, Chen L, Zhao ZG, et al. Prevalence of cardiovascular disease risk factor in the Chinese population:the 2007-2008 China National Diabetes and Metabolic Disorders Study. Eur Heart J 2012; 33:213-220.
    [35]Zhong N, Wang C, Yao W, Chen P, Kang J, et al. Prevalence of chronic obstructive pulmonary disease in China:a large, population-based survey. Am J Respir Grit Care Med 2007;176:753-760.
    [36]Zhao J, Bai J, Shen K, Xiang L, Huang S, et al. Self-reported prevalence of childhood allergic diseases in three cities of China:a multicenter study. BMC Public Health 2010;10:551.
    [37]Zhang L, Wang F, Wang L, Wang W, Liu B, et al. Prevalence of chronic kidney disease in China:a cross-sectional survey. Lancet 2012; 379:815-822.
    [38]Cowling B, Freeman G, Wong J, Wu P, Liao Q, et al. Preliminary inferences on the age-specific seriousness of human disease caused by avian influenza A(H7N9) infections in China, March to April 2013. Euro Surveill 2013; 18.
    [39]Shinde V, Hanshaoworakul W, Simmerman JM, Narueponjirakul U, Sanasuttipun W, et al. A comparison of clinical and epidemiological characteristics of fatal human infections with H5N1 and human influenza viruses in Thailand,2004-2006. PLoS One2011;6:e14809.
    [40]Bai T, Zhou J, Shu Y, et al. Serologic Study for Influenza A (H7N9) among High-Risk Groups in China. N Engl J Med 2013.
    [41]Yang P, Ma C, Shi W, Cui S, Lu G, et al. A serological survey of antibodies to H5, H7 and H9 avian influenza viruses amongst the duck-related workers in Beijing, China. PLoS One 2012; 7:e50770.
    [42]Jia N, de Vlas SJ, Liu YX, Zhang JS, Zhan L, et al. Serological reports of human infections of H7 and H9 avian influenza viruses in northern China. J Clin Virol 2009; 44:225-229.
    [43]Zhou J, Wang D, Gao R, Zhao B, Song J, et al. Biological features of novel avian influenza A (H7N9) virus. Nature 2013.
    [44]Kedzierska K, Valkenburg SA, Doherty PC, Davenport MP, Venturi V. Use it or lose it:establishment and persistence of T cell memory. Front Immunol 2013; 3: 357.
    [45]Webster RG. Immunity to influenza in the elderly. Vaccine 2000; 18:1686-1689.
    [46]Yu H, Cowling BJ, Feng L, Lau EH, Liao Q, et al. Human infection with avian influenza A H7N9 virus:an assessment of clinical severity. Lancet 2013.
    [47]Yuen KY, Chan PK, Peiris M, Tsang DN, Que TL, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 1998; 351:467-471.
    [48]Furuya H, Kawachi S, Shigematsu M, Suzuki K, Watanabe T. Clinical factors associated with severity in hospitalized children infected with avian influenza (H5N1). Environ Health Prev Med 2011; 16:64-68.
    [49]Kandun IN, Tresnaningsih E, Purba WH, Lee V, Samaan G, et al. Factors associated with case fatality of human H5N1 virus infections in Indonesia:a case series. Lancet 2008; 372:744-749.
    [50]Kandeel A, Manoncourt S, Abd el Kareem E, Mohamed Ahmed AN, El-Refaie S, et al. (2010) Zoonotic transmission of avian influenza virus (H5N1), Egypt,2006-2009. Emerg Infect Dis 16:1101-1107.
    [51]To KK, Hung IF, Li IW, Lee KL, Koo CK, et al. Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N12009 influenza virus infection. Clin Infect Dis 2010; 50:850-859.
    [52]Hung IF, Cheng VC, Wu AK, Tang BS, Chan KH, et al. Viral loads in clinical specimens and SARS manifestations. Emerg Infect Dis 2004; 10:1550-1557.
    [53]Fox A, Le NM, Horby P, van Doom HR, Nguyen VT, et al. Severe pandemic H1N12009 infection is associated with transient NK and T deficiency and aberrant CD8 responses. PLoS One 2012; 7:e31535.
    [54]de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 2006; 12:1203-1207.
    [55]Belser JA, Lu X, Maines TR, Smith C, Li Y, et al. Pathogenesis of avian influenza (H7) virus infection in mice and ferrets:enhanced virulence of Eurasian H7N7 viruses isolated from humans. J Virol 2007; 81:11139-11147.
    [56]Hu Y, Lu S, Song Z, Wang W, Hao P, et al. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. Lancet 2013.
    [57]Belser JA, Tumpey TM. H5N1 pathogenesis studies in mammalian models. Virus Res 2013.
    [58]Svitek N, Rudd PA, Obojes K, Pillet S, von Messling V. Severe seasonal influenza in ferrets correlates with reduced interferon and increased IL-6 induction. Virology 2008; 376:53-59.
    [59]Report on chronic disease risk factor surveillance in China. Beijing 2007.
    [60]Li Q, Zhou L, Zhou M, et al. Preliminary Report:Epidemiology of the Avian Influenza A (H7N9) Outbreak in China. N Engl J Med 2013.
    [61]Li J, Yu X, Pu X, et al. Environmental connections of novel avian-origin H7N9 influenza virus infection and virus adaptation to the human. Sci China Life Sci 2013; 56:485-92.
    [62]Van Ranst M, Lemey P. Genesis of avian-origin H7N9 influenza A viruses. Lancet 2013; 381:1883-5.
    [63]Liu D, Shi W, Shi Y, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection:phylogenetic, structural, and coalescent analyses. Lancet 2013; 381:1926-32.
    [64]Bao CJ, Cui LB, Zhou MH, Hong L, Gao GF, Wang H. Live-animal markets and influenza A (H7N9) virus infection. N Engl J Med 2013;368:2337-9.
    [65]Gao HN, Lu HZ, Cao B, et al. Clinical findings in 111 cases of influenza A (H7N9) virus infection. The New England journal of medicine 2013;368:2277-85.
    [66]Zhou J, Wang D, Gao R, et al. Biological features of novel avian influenza A (H7N9) virus. Nature 2013.
    [67]Bellomo R, Warrillow SJ, Reade MC. Why we should be wary of single-center trials. Critical care medicine 2009;37:3114-9.
    [68]Ichikawa A, Kuba K, Morita M, et al. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med 2013; 187:65-77.
    [69]Wang W, Yang P, Zhong Y, et al. Monoclonal antibody against CXCL-10/IP-10 ameliorates influenza A (H1N1) virus induced acute lung injury. Cell Res 2013; 23:577-80.
    [70]Thitithanyanont A, Engering A, Uiprasertkul M, et al. Antiviral immune responses in H5N1-infected human lung tissue and possible mechanisms underlying the hyperproduction of interferon-inducible protein IP-10. Biochemical and biophysical research communications 2010; 398:752-8.
    [71]Liu M, Guo S, Hibbert JM, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011; 22:121-30.
    [72]Fietta P, Delsante G. The effector T helper cell triade. Riv Biol 2009; 102:61-74.
    [73]LeGall JR, Loirat P, Alperovitch A. APACHE II-a severity of disease classification system. Crit Care Med 1986; 14:754-5.
    [74]Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II:a severity of disease classification system. Crit Care Med 1985; 13:818-29.
    [75]Chen Y, Liang W, Yang S, et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry:clinical analysis and characterisation of viral genome. Lancet 2013.
    [76]De Jong MD, Simmons CP, Thanh TT, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 2006; 12:1203-7.
    [77]Jiang Y, Xu J, Zhou C, et al. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 2005; 171:850-7.
    [78]Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain:potential role of the chemokine mig in pathogenesis. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 2005; 41:1089-96.
    [79]Tang NL, Chan PK, Wong CK, et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem 2005; 51:2333-40.
    [80]Bermejo-Martin JF, Ortiz de Lejarazu R, Pumarola T, et al. Thl and Thl7 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care 2009; 13:R201.
    [81]Li C, Yang P, Sun Y, et al. IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res 2012; 22:528-38.
    [82]Vongsakul M, Kasisith J, Noisumdaeng P, Puthavathana P. The difference in IL-lbeta, MIP-1 alpha, IL-8 and IL-18 production between the infection of PMA activated U937 cells with recombinant vaccinia viruses inserted 2004 H5N1 influenza HA genes and NS genes. Asian Pac J Allergy Immunol 2011; 29:349-56.
    [83]Hou XQ, Gao YW, Yang ST, Wang CY, Ma ZY, Xia XZ. Role of macrophage migration inhibitory factor in influenza H5N1 virus pneumonia. Acta Virol 2009;53:225-31.
    [84]Report 7-data in WHO/HQ as of 24 May 2013. rhttp://www.who.mt/influenza/human_animal_interface/influenza_h7n9/Data_Re ports/en/index.html).
    [85]Xi X, Fang Q, Gu Q, et al. Avian influenza A (H7N9) infections:intensivists as virus hunter in the new century. J Crit Care.2013
    [86]De Jong MD, Simmons CP, Thanh TT. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 2006, 12:1203-7.
    [87]Lee N, Wong CK, Chan PK, Lun SW, Lui G, Wong B, et al. Hypercytokinemia and hyperactivation of phospho-p38 mitogen-activated protein kinase in severe human influenza A virus infection. Clin Infect Dis 2007;45(6):723-731.
    [88]Cheung CY, Poon LL, Lau AS, et al. Induction of proinflammatory cytokines in human macrophage by influenza A (H5N1) viruses:a mechanism for unusual severity of human disease? Lancet 2002; 360:1831-37
    [89]Woo PC, Tung ET, Chan KH, et al. Cytokine profiles induced by the novel swine-origin influenza A/H1N1 virus:implications for treatment strategies. J infect Dis 2010; 201:346-53.
    [90]Y Chen, W Liang, S Yang, et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry:clinical analysis and characterisation of viral genome. Lancet 25 April 2013 (Epub ahead of print).
    [91]Simmons C, Farrar J. Insighs into inflammation and influenza. N Engl J Med 2008; 359:1621-1623.
    [92]Salto-Tellez M, Tan E, Lim B. ARDS in SARS:cytokine mediators and treatment implications. Cytokine 2005; 29(2):92-94.
    [93]Uyeki TM. Human infection with highly pathogenic avian influenza A (H5N1) virus:review of clinical issues. Clin Infect Dis 2009; 49:279-90
    [94]The writing committee of the World Health Organization (WHO) consultation on human influenza A/H5. Avian influenza A (H5N1) infection in humans. N Eng J Med 2005; 353:1374-85.
    [95]Tetta C, Bellomo R, Ronco C. Artificial organ treatment for multiple organ failure, acute renal failure, and sepsis:recent new trends. Artif Organs,2003; 27:202-213.
    [96]Fortenberry JD, Paden ML. Extracorporeal therapies in the treatment of sepsis: experience and promise. Semin Pediatr Infect Dis 2006,17:72-79.
    [97]Saito Akira. Current progress in blood purification methods used in critical care medicine. Contrib Nephro12010; 166:100-111
    [98]Stegmayr BG, Banga R, Berggren L, et al. Plasma exchange as rescue therapy in multiple organ failure including acute renal failure. Crit Care Med 2003; 31: 1730-1736.
    [99]Ronco C, Brendolan A, Lonnemann G, et al. A pilot study of coupled plasma filtration with adsorption in septic shock. Crit Care Med 2002;30:1250-1255.
    [100]Kramer L, Kodras K. Detoxification as a treatment goal in hepatic failure. Liver Int 2011; 31:1-4.
    [101]Kribben A, Gerken G, Haag S, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology2012; 142:782-789.
    [102]Banares R, Nevens F, Larsen FS, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure:the RELIEF trail. Hepatology 2013; 57:1153-1162..
    [103]Du WB, Li LJ, Huang JR, Yang Q, Liu XL, Li J, et al. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc 2005; 37(10):4359-4364.
    [104]Estenssoro E, Reina R, Canales HS, et al. The distinct clinical profile of chronically critically ill patients:a cohort study. Crit care 2006; 10(3):R89.
    [105]Atan R, Crosbie D, Bellomo R. Techniques of extracorporeal cytokine removal:a systematic review of the literature. Blood Purif 2012; 33:88-100.
    [106]Honore PM, Jacobs R, Joannes-Boyau O, et al. Newly designed CRRT membranes for sepsis and SIRS-a pragmatic approach for bedside intensivists summarizing the more recent advances:a systematic structured review. ASAIO J 2013; 59:99-106.
    [107]Sadahiro T, Hirasawa H, Oda S. Useful of plasma exchange plus continuous hemofiltration to reduce adverse effects associated with plasma exchange in patients with acute liver failure. Crit Care Med 2001; 29:1386-92.
    [108]Peiris JS, Yu WC, Leung CW, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet.2004; 363:617-9.
    [109]Thitithanyanont A, Engering A, Uiprasertkul M, et al. Antiviral immune responses in H5N1-infected human lung tissue and possible mechanisms underlying the hyperproduction of interferon-inducible protein IP-10. Biochem and Bioph Res Co 2010; 398:752-758.
    [110]Wang W, Yang P, Zhong Y, et al. Monoclonal antibody against CXCL-10/IP-10 ameliorates influenza A (H1N1) virus induced acute lung injury. Cell Res.2013; 23:577-80.
    [111]Bream-Rouwenhorst HR, Beltz EA, Ross MB. Recent developments in the management of acute respiratory distress syndrome in adults. Am J Health Syst Pharm.2008; 65:29-36.
    [112]Neamu RF, Martin GS. Fluid management in acute respiratory distreass syndrome. Curr Opin Crit Care 2013; 19:24-30.
    [1]Gao R, Cao B, Hu Y, et al. Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. N Engl J Med 2013; DOI:10.1056/NEJMoa1304459.
    [2]Chen Y, Liang WF, Yang SG, et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry:clinical analysis and characterisation of viral genome. Lancet, Early Online Publication,2013, doi:10.1016/S0140-6736(13)60903-4.
    [3]Li Q, Zhou L, Zhou M, et al. Preliminary Report:Epidemiology of the Avian Influenza A (H7N9) Outbreak in China. N Engl J Med 2013; DOI:10.1056/NEJMoa 1304617.
    [4]The Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5. Avian influenza A (H5N1) infection in humans. N Engl J Med 2005; 353:1374-1385.
    [5]Hanshaoworakul W, Simmerman JM, Narueponjirakul U, et al. Severe human influenza infections in Thailand:oseltamivir treatment andrisk factors for fatal outcome.PLoS One.2009;4(6):e6051.
    [6]Zangrillo A, Biondi-Zoccai G, Landoni, et al. Extracorporeal membrane oxygenation (ECMO) in patients with H IN 1 influenza infection:a systematic review and meta-analysis including 8 studies and 266 patients receiving ECMO. Crit Care.2013 Feb 13; 17(1):R30. [Epub ahead of print]
    [7]Diaz E, Martin-Loeches I, Canadell L, et al. Corticosteroid therapy in patients with primary viral pneumonia due to pandemic (H1N1) 2009 influenzaJ Infect.201264(3); 311-8.
    [8]Brun-Buisson C, Richard JC, Mercat A, et al. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndromeAm J Respir Crit Care Med.2011 183(9):1200-6.
    [9]Li C, Yang P, Zhang Y, Sun Y, et al. Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1) virus in mice. PLoS One.2012; 7(8):e4411
    [10]Myles P, Nguyen-Van-Tam JS, Semple MG, et al. Differences between asthmatics and nonasthmatics hospitalised with influenza A infection. Eur Respir J.2013; 41(4):824-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700