桩土相互作用机理及抗滑加固技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国中、西部地区地质环境脆弱,一些大规模基础设施建设对地质环境的影响很大,滑坡、泥石流、崩塌等斜坡重力灾害仍将保持增长趋势。边滑坡在重力作用下的破坏过程是岩土体发挥自稳能力与重力作用相抗衡的自组织过程,在外部因素扰动下,岩土体变形的过程即应力调整的自组织过程,其最终结果将使边滑坡系统达到另一个平衡状态,而这个平衡状态可能有两种表现形式:一是在工程意义上边滑坡达到最终稳定;二是工程意义上边滑坡失稳破坏。而采取有效的抗滑加固措施的目的即在于如何使这一自组织过程向有利于前一种平衡状态演化。根据自组织理论,当受到外界微小扰动时,系统表现为自组织行为;当受到外界强扰动时,自组织行为会屈服于外界的强扰动,即外界扰动成为系统行为的主导因素。对于边滑坡而言,在受到外界强扰动的情况下,如在地震工况下,边滑坡体即可能产生突然失稳。针对以上两种典型的边滑坡破坏过程,在进行抗滑加固设计时,应采用不同的设计理念。对于正常工况下的抗滑加固设计,应充分利用岩土体的自稳能力,抗滑加固措施着重于如何使岩土体自组织过程的演化朝有利于坡体稳定的方向发展。对于地震工况下的抗滑加固设计,则应加强整个边滑坡的抗震性能,减少和外界扰动的“耦合”放大作用,如改变坡体的动力特性,使其自振频率远离地震的卓越频率。
     抗滑桩作为治理斜坡重力灾害的一种较为常见和有效的措施,目前在设计上仍缺乏理论指导,尤其是在合理桩间距的确定方面,主要依靠工程经验进行设计。而常见的一些抗滑加固措施在地震条件下的抗滑加固机理的研究几乎是空白。本文在土工离心模型实验及振动台模型实验的基础上,结合数值模拟计算,研究了桩土相互作用机理及地震条件下的抗滑加固技术。主要工作及研究结论如下:
     (1)采用土工离心模型实验,结合数值模拟计算,再现了桩间土拱效应现象,在实验条件下得到临界桩净间距为桩径的5~6.25倍。离心模型实验及数值模拟结果表明土拱的形状大致相同,拱矢高度基本上随桩间距的增大而增大,矢跨比约为0.4~0.6。抗滑桩的受力及主应力场分布表明拱脚区域为控制截面,拱脚推力主要通过桩后受挤压土体传递给抗滑桩,桩侧面和土体的相互摩擦力所提供的拱脚反力仅约为前者的10%。通过敏感性分析,对于临界桩净间距而言,各影响因素的敏感性大小排序为:滑体剩余下滑力、土体内摩擦角、土体粘聚力、桩宽度。根据桩间土拱效应机理的研究结论,通过多元回归分析,建立了临界桩净间距计算模型,可据此判断桩间土拱的形成条件并进行桩间距优化设计。
     (2)基于拟静力法理论,采用离心模型实验和数值模拟计算研究了地震力作用下斜坡堆积体破坏模式和抗滑桩及锚杆框架护坡的加固效果。研究表明抗滑桩能够抵挡坡体沿基岩面的滑动,但仍有可能发生中上部坡体浅层坍滑从桩顶剪出。而锚杆框架护坡能够改善坡体内部的应力应变分布,有效地防止地震力作用下在坡体中可能形成的剪切带,控制坡体在地震力作用下的水平位移,防治坡体从桩顶剪出,同时能够较大幅度地减少抗滑桩受力。分析了高烈度地区斜坡堆积体破坏机理,提出设桩后发生越顶坍塌破坏模式的判定条件,可据此进行防治方案设计。在高烈度地区对于斜坡堆积体的工程设计应强调“固脚强腰”的防治原则,在增加了锚杆框架护坡工程后,可以适当地减少抗滑桩的工程数量,以实现技术和经济的优化设计。
     (3)通过不加锚杆和锚杆加固的边坡振动台模型对比实验,发现地震作用下,锚杆加固模型的加速度放大系数明显小于不加锚杆模型,说明锚杆加固边坡具有较好的抗震效果,尤其在中震和大震情况下更为显著。频谱分析结果表明,施加地震荷载前,锚杆加固边坡的自振频率比未加锚杆边坡的自振频率提高约20%,且历经中震、大震后,其自振频率无明显降低。而未加锚杆边坡的自振频率在历经中震、大震后降低达20%。说明锚杆加固能起到改善边坡地震动力特性的作用。对同一模型所进行的拟静力和动力分析的对比说明,根据设计规范所取的地震综合影响系数进行的拟静力计算结果在土体剪切应变及抗滑桩结构受力方面均小于动力计算值,在中震及大震工况下,采用拟静力计算偏于不安全。进一步计算表明,合理的地震综合影响系数取值约在0.45~0.5范围内。
The geologic environment is friable in middle and west area of China. Some large-scale base establishment projects have influenced the geologic environment largely. The slope gravity hazards such as landslides, debris flow and collapse are retaining increased current. The destruction process of slope acted by gravitation is the self-organization process that rock and soil mass exert stabilization ability themselves to withstand the gravity action. In the process, the distortion behave as development from out-of-order to ordered. The anti-slide and reinforcement measure can change the the self-organization process and prevent the distortion of rock and soile mass developing from out-of-order to ordered. Based on self-organization theory, the strong outside disturbance can induce that the self-organization characteristic of system may disappear and behave as large-scale destruction abruptly, such as earthquake status, the slope may been destroyed abruptly. Aiming at upwards two typical destruct process of slope, different design idea should been adopted. For normal status, the main idea is to utilize the ability of rock and soil mass own stabilization adequately. For earthquake status, the main idea is to strengthen the aseismatic capability of the whole slope and reduce the coupling amplificatory effect of the outside disturbance, such as altering the dynamic characteristic of slope.
     As one kind of familiar and effective measures to deal with the slope gravity hazards, anti-slide piles are absence of theoretics guidance. Especially, in respect of confirming the reasonable pile space, engineering experience is main depended on. The mechanism of some familiar anti-slide and reinforce measures is studied rarely in seism condition. Based on geotechnical centrifuge model tests and shaking table model tests, combined with numerical simulation calculation, the pile-soil interaction mechanism and anti-slide reinforce technique in seism were studied. The main work and conclusion is as follow:
     (1) Geotechnical centrifuge model tests combined with numerical simulation calculation were adopted to reappear the soil-arching phenomena between piles. The critical net pile space is 5-6.25 multiple the pile width under experiment condition. The results of tests and calculation indicate that the form of soil-arching is same nearly, vector height increases with the pile space basically. Height-span ratio is 0.4~0.6 approximately. Force of pile and distributing of principal stress indicate that the foot of soil-arching is the dominate section. Thrust of foot is transferred to pile via soil at the back of pile mainly. The counter-force provided by the friction of pile flank and soil is 10% of the former. By sensitivity analysis, the sequence of factors that influence the critical pile space is: residual slip force of sliding mass, internal friction angle of soil mass, cohesion of soil mass, width of pile. Based on the research conclusion, the calculational model of critical net pile space is founded by multiple regression analysis, which can be used to estimate condition of forming the soil arching between piles and optimize the design of pile space.
     (2)Based on the pseudo-static method theory, the failure mechanism of slope accumulation reinforcement under earthquake was studied with centrifuge model tests and numerical simulation. In order to reinforce slope accumulation, anti-slide piles and anti-slide piles combined with anchor bolt frames were analyzed by means of contrast. Experimental results show that overtopping collapse possibly occur when anti-slide piles are used solely to reinforce the foot of slope accumulation. Anti-slide piles combined with anchor bolt frames can meliorate the distributing of stress and strain, and minish the deformation of slope and the force of anti-slide piles greatly. The determinant condition about failure mode of overtopping collapse is put forward, which can be used as guidance of prevention project design. It is suggested that the principle of "foot reinforcement and mountainside strengthening" should be emphasized for slope accumulation engineering design in high earthquake intensity regions. To carry out technique and economy optimum design, amount of piles project can be reduced when the anchor bolt frames are adopted.
     (3)Through Contrastive tests of no anchor bolt slope with anchor bolt reinforced slope by rockshaking table model tests, the phenomena is discovered that the acceleration amplificatory ratio of anchor bolt reinforced slope is less than no anchor bolt slope distinctly, which shows that anchor bolt reinforced slope has preferable effect, especially at the state of middle and high earthquake. The result of spectrum analysis shows that the natural frequency of anchor bolt reinforced slope is improved 20% than no anchor bolt slope before the earthquake forece is loaded, which does not reduce obviously after middle and high earthquake when the natural frequency of no anchor bolt slope redues 20%. This illuminates that anchor bolt can ameliorate the earthquake qualitative behavior of slope. Comparing pseudo-static with dynamical analysis about the same model, the shear stress of soil and force of pile of pseudo-static calculation are less than those of dynamical calculation when the earthquake comprehensive affecting coefficient is adopted from design criterion. Pseudo-static calculation is not safe at the situation of middle and high earthquake. Farther calculation indicates that the reasonable range of earthquake comprehensive affecting coefficient is in 0.45~0. 5.
引文
[1]赵明阶,何光春,王多垠.边坡工程处治技术[M].北京:人民交通出版社,2003.
    [2]吴华金,刘汝明,等.山区公路典型滑坡灾害实例剖析[M].昆明:云南科技出版社,2005.
    [3]孙德永.南昆铁路八渡滑坡工程整治[M].北京:中国铁道出版社,2000.
    [4]李树德,任秀生,岳升阳等.地震滑坡研究[J].水土保持研究.2001,8(2):24-25.
    [5]胡新丽,王亮清,唐辉明等.三峡库区岸滑坡抗滑桩设计的几个关键问题[J].地质科技情报.2005,24(增刊):121-125.
    [6]王恭先.抗滑支挡建筑物的发展动向[A].滑坡文集编委会.滑坡文集(第十三集)[C].北京:中国铁道出版社.1998:60-64.
    [7]G.Swoboda D.Zhao,F.Laabmayr.Damage mechanics and its application for the design of an underground theater[J].Tunnelling and Undeground Space Technology 2004,19:567-575.
    [8]P.J.N.Pells.Developments in the design of tunnels and caverns in the Triassic rocks of the Sydney region[J].International Journal of Rock Mechanics and Mining Sciences 2002,39:569-587.
    [9]Einar Brocha Ziping Huang,Ming Lu.Cavern roof stability-mechanism of arching and stabilization by rockbolting[J].Tunnelling and Undeground Space Technology 2002,17:249-261.
    [10]洪海春,徐卫亚.地震作用下岩体锚固性能研究综述与展望[J].金属矿山.2006.3:5-10.
    [11]许强 黄润秋.开挖过程的非线性理论分析[J].工程地质学报.1999,7(1):9-14.
    [12]黄润秋 许强.重庆市建筑边坡开挖稳定性评价及支护措施探讨[J].成都理工学院学报.1996,23(1):32-38.
    [13]黄润秋 许强.斜坡演化的自组织特征初探[J].中国地质灾害与防治学报.1997,18(1):7-11.
    [14]许强 黄润秋.工程地质广义系统科学分析原理及应用[M].北京:地质出版社,1997.
    [15]姚裕春,姚令侃,袁碧玉.开挖边坡自组织特性及灾害防治对策研究[J].成都理工大学学报(自然科学版).2007,34(1):76-81.
    [16]姚裕春.边坡开挖工程活动对环境影响研究[D].西南交通大学博士学位论文.2005
    [17]李仕雄.沙堆演化特性及自组织临界现象研究[D].西南交通大学博士学位论文.2004
    [18]徐东,周顺华,黄广军,等.上海粘土的成拱能力探讨[J].上海铁道大学学报.1999,20(6):49-54.
    [19]杨雪强,何世秀,庄心善.土木工程中的成拱效应[J].湖北工学院学报.1994.9(1):1-7.
    [20]Gray H.Bosscher J.Soil arching in sandy slopes[J].Journal of Geotechnical Engineering.1986,112(6):626-645.
    [21]李海深.土工建筑中的土拱效应[J].湘潭矿业学院学报.1990,5(2):164-168.
    [22]吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨[J].成都科技大学学报.1995,2:15-19.
    [23]J.L.Chameau S.Hassiotis,M.Gunaratne.Design method for stabilization of slopes with piles[J].Journal of Geotechnical and Geoenvironmental Engineering.1997,123(4):314-323.
    [24]S.M.Springman M.F.Bransby.3-D finite element modeling of pile groups adjacent to surcharge loads[J].Computer and Geotechnics.1996,19(4):301-324.
    [25]林宗元.简明岩土工程勘察设计手册(下册)[M].北京:中国建筑工业出版社,2003:339-343.
    [26]车必达,董敏玉、张建仪,等.抗滑桩试验研究[J].山地研究.1985,3(3):129-140.
    [27]铁道部第二勘测设计院勘测处路基科抗滑桩专题组.抗滑桩模型试验第二阶段报告--滑体为粘性土时桩前滑体抗力分布的研究[J].路基工程.1986.3:24-34.
    [28]铁道部第二勘测设计院科研所抗滑桩研究组.排架抗滑桩与双排单桩对比模型试验报告[J].路基工程.1986,1:70-81.
    [29]徐良德,尹道成,刘惠明.滑体为松散介质时桩前滑体抗力分布[A].滑坡文集编委会.滑坡文集(第六集)[C].北京:中国铁道出版社.1988:84-91.
    [30]徐良德,尹道成,刘惠明.滑体为粘性土时桩前滑体抗力分布[A].滑坡文集编委会.滑坡文集(第七集)[C].北京:中国铁道出版社.1990:92-99.
    [31]刘惠明.两种不同长度单排抗滑桩对比模型试验研究[J].路基工程.1990.5:31-37.
    [32]李亮.粘性土中抗滑桩的试验和分析[J].路基工程.1991,6:4-9.
    [33]熊治文.深埋式抗滑桩的受力分布规律[J].中国铁道科学.2000,21(1):48-56.
    [34]熊治文,马辉,朱海东.全埋式双排抗滑桩的受力分布[J].路基工程.2002.3:5-10.
    [35]曾云华,郑明新.预应力锚索抗滑桩的受力模型试验[J].华东交通大学学报.2003,20(2):15-18.
    [36]任伟中,陈浩.滑坡变形破坏机理和整治工程中的模型试验研究[J].岩石力学与工程学报.2005,24(12):2136-2141.
    [37]雷文杰.沉埋桩加固滑坡体的有限元设计方法与大型物理模型试验研究[D].中国科学院武汉岩土力学研究所博士学位论文.2006
    [38]于玉贞,邓丽军.抗滑桩加固边坡地震响应离心模型试验[J].岩土工程学报.2007,29(9):1320-1323.
    [39]廖小平.茅台斜坡模型试验及其有限元分析[A].滑坡文集编委会.滑坡文集(第十三集)[C].北京:中国铁道出版社.1998:168-173.
    [40]Poulos H.G.Chen L.T.,Hull T.S.Model tests on pile groups subjected to lateral soil movement[J].Soils and Foundations.1997,37(1):1-12.
    [41]常保平.抗滑桩的桩间土拱和临界间距问题探讨[A].滑坡文集编委会.滑坡文集(第十三集)[C].北京:中国铁道出版社.1998:73-78.
    [42]王成华,陈永波,林立相.抗滑桩间土拱特性及最大桩间距分析[J].山地学报.2001,19(6):556-559.
    [43]冯君,吕和林,王成华.普氏理论在确定抗滑桩间距中的应用[J].中国铁道科学.2003,24(6):79-81.
    [44]贾海莉,王成华,李江洪.基于土拱效应的抗滑桩与护壁桩的桩间距分析[J].工程地质学报.2004,12(1):98-103.
    [45]周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报.2004,26(1):132-135.
    [46]郑磊,殷坤龙,简文星.抗滑桩设计中关于确定桩间距问题的分析[J].岩土工程学报.2005,6:71-74.
    [47]熊良宵,李天斌.土拱效应在抗滑桩工程中的应用[J].防灾减灾工程学报.2005,25(3):275-277.
    [48]王乾坤.抗滑桩的桩间土拱和临界间距的探讨[J].武汉理工大学学报.2005.27(8):64-67.
    [49]周应华,周德培,冯君.推力桩桩间土拱几何力学特性及桩间距的确定[J].岩土力学.2006,27(3):455-462.
    [50]赵明华,陈炳初,刘建华.考虑土拱效应的抗滑桩合理桩间距分析[J].中南公路工程.2006,31(2):1-3.
    [51]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学.2006,27(3):445-450.
    [52]G.R.Martin C.-Y.Chen.Soil-structure interaction for landslide stabilizing piles[J].Computers and Geotechnics.2002,29:363-386.
    [53]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学.2004,25(2):174-178.
    [54]张建华,谢强等.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学报.2004,23(4):699-703.
    [55]韩爱民,肖军华,梅国雄.被动桩中土拱形成机理的平面有限元分析[J].南京工业大学学报.2005,27(3):89-92.
    [56]韩爱民,肖军华,梅国雄.被动桩中土拱效应特征与影响参数研究[J].工程地质学报.2006,14(1):111-116.
    [57]李忠诚,杨敏.被动受荷桩成拱效应及三维数值分析[J].土木工程学报.2006.39(3):114-117.
    [58]琚晓冬,冯文娟,朱金明.桩后土拱作用范围研究[J].土木工程学报.2006.28(3):197-200.
    [59]中华人民共和国交通部.公路工程抗震设计规范(JTJ 004-89)[M].北京:人民交通出版社,1989.
    [60]李宁,程国栎,谢定义.西部大开发中的岩土力学问题[J].岩土工程学报.2001,23(3):268-272.
    [61]George D.Bouckovalas,Achilleas G.Papadimitrioul.Numerical evaluation of slope topography effects on seismic ground motion[J].Soil Dynamics and Earthquake Engineering.2005,25:547-558.
    [62]许红涛,卢文波,周创兵等.基于时程分析的岩质高边坡开挖爆破动力稳定性计算方法[J].岩石力学与工程学报.2006,25(11):2213-2219.
    [63]祁生文.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报.2006,49(2):518-523.
    [64]周永江,王开云,符文熹等.高地震烈度区堆积体边坡动力响应时程特征分析[J].山地学报.2007,25(1):93-98.
    [65]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动.2005,25(1):164-171.
    [66]翟阳,韩国城.边坡对土坝稳定影响的振动台模型试验研究[J].烟台大学学报(自然科学与工程版).1996,(4):67-71.
    [67]张平,吴德伦.动荷载下边坡滑动的试验研究[J].重庆建筑大学学报.1997.19(2):80-86.
    [68]于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型试验[J].清华大学学报(自然科学版).2007,47(6):789-792.
    [69]Meei-Ling Lin,Kuo-Lung Wang.Seismic slope behavior in a large-scale shaking table model test[J].Engineering Geology.2006,86:118-133.
    [70]凌贤长,王丽霞,王东升等.非自由液化场地地基动力性能大型振动台模型试验研究[J].长江科学院院报.2005,18(2):34-39.
    [71]凌贤长,郭明珠,王东升等.液化场地桩基桥梁震害响应大型振动台模型试验研究[J].岩土力学.2006,27(1):7-10.
    [72]陈国兴,庄海洋,杜修力等.土-地铁隧道动力相互作用的大型振动台试验--试验结果分析[J].地震工程与工程振动.2007,27(1):164-170.
    [73]陈国兴,王志华,宰金珉.土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程.2002,18(4):47-54.
    [74]王志华,刘汉龙,陈国兴等.土-结构相互作用效应对结构基底地震动影响的试验研究[J].地震工程与工程振动.2005,25(3):132-137.
    [75]孟上九,刘汉龙,袁晓铭等.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报.2005,24(11):1978-1985.
    [76]武思宇,宋二祥,刘华北等.刚性桩复合地基的振动台试验研究[J].岩土工程学报.2005,27(11):1334-1337.
    [77]钱德玲,赵元一,王东坡.桩-土-结构体系动力相互作用的试验研究[J].上海交通大学学报.2005,39(11):1856-1861.
    [78]吕西林,陈跃庆,陈波等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动.2000,20(4):20-29.
    [79]J.Kuwano,A.Takahashi,Et..Al J.R.Dungca.Shaking table tests on the lateral response of a pile buried in liquefied sand[J].Soil Dynamics and Earthquake Engineering.2006,26:287-295.
    [80]Kuo-Lung Wang Meei-Ling Lin.Seismic slope behavior in a large-scale shaking table model test[J].Soil Dynamics and Earthquake Engineering.2006,86:118-133.
    [81]邵龙潭,唐洪祥,孔宪京,等.随机地震作用下土石坝边坡的稳定性分析[J].水利学报.1999,11:66-71.
    [82]彭定,陈玲玲.三峡船闸高边坡在地震作用下的稳定性分析[J].长江科学院院报.2001,18(6):47-49.
    [83]刘惠军,孙冠平,刘小伟.天池滑坡坝在地震作用下稳定性分析[J].岩石力学与工程学报.2003,22(增2):2809-2812.
    [84]徐则民,张倬元,许强,等.九寨黄龙机场填方高边坡动力稳定性分析[J].岩石力学与工程学报.2004,23(11):1833-1890.
    [85]刘春玲,祁生文,童立强.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报.2004,23(16):2730-2733.
    [86]祁生林,祁生文,伍法权,等.基于剩余推力法的地震滑坡永久位移研究[J].工程地质学报.2004,12(1):63-68.
    [87]黄显贵,陈植华,郭英丽.基于地震力的滑坡稳定性分析[J].安全与环境工程.2005,12(1):82-84.
    [88]段斌,何江达,李莉,等.瀑布沟水电站尾水隧洞出口高边坡地震作用效应及稳定性[J].东北水利水电.2005,22(5):1-3.
    [89]王环玲,徐卫亚.高烈度区水电工程岩石高边坡三维地震动力响应分析[J].岩石力学与工程学报.2005,24(增2):5890-5895.
    [90]王成虎,何满潮,刘墨山.某水电站高边坡在地震作用下的稳定性分析[J].地震工程与工程振动.2006,26(3):248-251.
    [91]R.K.Brummer D.D.Tannant,X.Yi.Rockbolt behaviour under dynamic loading:field tests and modelling[J].International Journal of Rock Mechanics & Mining Sciences.1995,32(6):537-550.
    [92]林成功.台湾921集集大地震滑坡动力分析研究[D].重庆大学博士学位论文.2003
    [93]张俊,杨志银.土工离心模型试验的发展与应用[J].岩土工程界.2005,8(6):29-30.
    [94]James S.Smith Charles Harris,Michael C.R.Davies,Et..Al.An investigation of periglacial slope stability in relation to soil properties based on physical modelling in the geotechnical centrifuge[J].Geomorphology.2008,93:437-459.
    [95]Aigen Zhao Ali Porbaha,Masaki Kobayashi.Upper bound estimate of scaled reinforced soil retaining walls[J].Geotextiles and Geomembranes.2000,18:403-413.
    [96]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [97]J.L.Feng M.C.He,X.M.Sun.Stability evaluation and optimal excavated design of rock slope at Antaibao open pit coal mine,China[J].International Journal of Rock Mechanics & Mining Sciences.2008,45:289-302.
    [98]Chairat Teerawattanasuk Dennes T.Bergadoa.2D and 3D numerical simulations of reinforced embankments on soft ground[J].Geotextiles and Geomembranes.2008,26:39-55.
    [99]T.Khelifa S.Benmebarek,N.Benmebarek.Numerical evaluation of 3D passive earth pressure coefficients for retaining wall subjected to translation[J].Computer and Geotechnics.2008,35:47-60.
    [100]Anil Swarup R.K.Goela,P.R.Sheorey.Bolt length requirement in underground openings[J].International Journal of Rock Mechanics & Mining Sciences.2008,44:802-811.
    [101]B.Rezai A.Refahi,J.Aghazadeh Mohandesi.Use of rock mechanical properties to predict the Bond crushing index[J].Minerals Engineering.2007,20:662-669.
    [102]C.-Y.Chen G.R.Martin.Response of piles due to lateral slope movement [J].Computers and Structures.2005,83:588-598.
    [103]包承纲,饶锡保.土工离心模型的试验原理[J].长江科学院院报.1998,15(2):2-7.
    [104]杨庆华,姚令侃,齐颖,等.散粒体离心模型自组织临界性及地震效应分析[J].岩土工程学报.2007,29(11):1630-1635.
    [105]濮家骝.土工离心模型试验及其应用的发展趋势[J].岩土工程学报.1996.18(5):92-94.
    [106]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报.1996,18(3):80-86.
    [107]张锐.基于离散元细观分析的土壤动态行为研究[D].吉林大学博士学位论文.2005
    [108]周健,池永.颗粒流方法及离散元程序[J].岩土力学.2000,21(4):271-274.
    [109]D.D.Tannant,P.A.Lilly C.Wang.Numerical analysis of the stability of heavily jointed rock slopes using PFC2D[J].International Journal of Rock Mechanics & Mining Sciences.2004,40:415-424.
    [110]N.Djordjevic.Discrete element modelling of the influence of lifters on power draw of tumbling mills[J].Minerals Engineering.2003,16:331-336.
    [111]F.N.Shi N.Djordjevic,R.D.Morrison.Applying discrete element modelling to vertical and horizontal shaft impact crushers[J].Minerals Engineering.2003,16:983-991.
    [112]Z.Asaf I.Shmulevich,D.Rubinstein.Interaction between soil and a wide cutting blade using the discrete element method[J].Soil Tillage Research.2007,97:37-50.
    [113]David O.Potyondy.Simulating stress corrosion with a bonded-particle model for rock[J].International Journal of Rock Mechanics and Mining Sciences.2007,44:677-691.
    [114]Jianqiao Li Rui Zhang.Simulation on mechanical behavior of cohesive soil by Distinct Element Method[J].Journal of Terramechanics.2006,43:303-316.
    [115]Wonjoon Jeong Seonhong Kim,Dongho Jeong.Numerical simulation of blasting at tunnel contour hole in jointe rock mass[J].Tunnelling and Undeground Space Technology.2006,21:306-307.
    [116]Wulf Schubert Young-Zoo Lee.Determination of the round length for tunnel excavation in weak rock[J].Tunnelling and Undeground Space Technology.2008,23:221-231.
    [117]P.A.Cundall D.O.Potyondy.Abonded-particle model for rock[J].Rock Mechanics and Mining Sciences.2004,41:1329-1364.
    [118]周健,池毓蔚,池永,等.砂土双轴试验的颗粒流模拟[J].岩土工程学报.2000,22(6):701-704.
    [119]A.E.Skinner.A note on the influence of the interparticle friction on the shearing strength of a random assembly of spherical particles[J].Geotechnique.1969,19:150-157.
    [120]Y.Nakata and M.D.Bolton Y.P.Cheng.Discrete element simulation of crushable soil[J].Geotechnique.2003,53(7):633-641.
    [121]Itasca Consulting Group Inc.Fast Lagrangian Analysis of Continua in 3Dimensions User's Guide[M].USA:Itasca Consulting Group Inc.,2002.
    [122]Itasca Consulting Group Inc.Fast Lagrangian Analysis of Continua in 3Dimensions Theory and Background[M].USA:Itasca Consulting Group Inc.,2002.
    [123]Itasca Consulting Group Inc.Fast Lagrangian Analysis of Continua in 3Dimensions Structural Elements[M].USA:Itasca Consulting Group Inc.,2002.
    [124]梁钟琪.土力学及路基[M].北京:中国铁道出版社,1995.
    [125]陈昌凯,阮永芬,熊恩来.地震作用下边坡稳定的动力分析方法[J].地下空间与工程学报.2005,1(7):1054-1057.
    [126]胡定,张利民.土工抗震试验与分析[M].成都:成都科技大学出版社,1991:169-180.
    [127]刘小生,王钟宁,汪小刚等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,知识产权出版社,2005.
    [128]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [129]Itasca Consulting Group Inc.Fast Lagrangian Analysis of Continua in 3Dimensions Optional Features[M].USA:Itasca Consulting Group Inc.,2002.
    [130]Rafael Baker Robert Shukha.Design implications of the vertical pseudo-static coefficient in slope analysis[J].Computer and Geotechnics.2008,35:86-96.
    [131]Leshchinsky D Ling Hi,Mohri Y.Soil slopes under combined horizontal and vertical seismic accelerations[J].Earthquake Engineering and Structural Dynamics.1997,26:1231-1241.
    [132]Mohri Y Ling Hi,Kawabata T.Seismic analysis of sliding wedge:extended Francais-Culmann's analysis[J].Soil Dynamics and Earthquake Engineering.1999,18:387-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700