水溶性高分子在气液界面的物理化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水溶性高分子在气液界面的物理化学性质和在溶液中与小分子的相互作用行为是高分子溶液及其界面研究的热点之一,对于理解准二维空间的高分子凝聚态、小分子与高分子相互作用的物理现象和规律具有重要意义。本文以聚乙二醇为模型分子,对水溶性高分子的气液界面热力学和吸附与解吸动力学,溶液中高分子与小分子的相互作用进行了系统的研究。
     在仔细分析聚乙二醇气液界面的表面张力曲线和表面压等温曲线基础上,研究了气液界面上聚乙二醇单分子膜和吸附膜的性质、组成、聚乙二醇在膜中的构象、溶液性质对膜的组成、性质及膜中聚乙二醇吸附状态的影响。聚乙二醇气液界面的铺展膜,当表面浓度<0.40mgm~(-2)时,为二维有序单分子膜,其表面压对表面浓度的依赖关系符合二维空间的标度规律,膜中聚乙二醇分子以伸直链构象吸附于气液界面,当表面浓度>0.40mgm~(-2)后,聚乙二醇分子链段将以环型或尾链进入次表面相。在本文实验条件下,聚乙二醇气液界面吸附膜为多层吸附膜,相近表面压下,气液界面上聚乙二醇过剩浓度和单元链节密度远远大于单分子膜中的浓度和密度。由于高分子表面活性物质在气液界面吸附的非理想性,描述小分表面活性剂气液界面吸附热力学的Gibbs方程已不能很好的用于描述象聚乙二醇这类水溶性高分子气液界面吸附的热力学。
     本体溶液的性质对聚乙二醇气液界面单分子膜及吸附膜的性质组成、膜中聚乙二醇分子链的构象有明显的影响。在热力学不利的盐溶液表面,聚乙二醇单分子膜和吸附膜的平衡表面压及表面张力增大,膜中聚乙二醇分子单元链节所占平均面积减小,单元链节密度增大,水的含量减少,聚乙二醇分子链曲折程度增大,并向邻近的气相凸出,膜变得更为凝聚,静态弹性模量减小,可压
    
    缩性减小。在热力学有利的二甲基乙酞胺气液界面上,由于强极性的二甲基乙
    酞胺对本体水及聚乙二醇分子周围水结构的破坏,使聚乙二醉溶剂化能力增
    加,从而使聚乙二醇气液界面膜的平衡表面压降低,膜中聚乙二醇单元链节平
    均占有面积增加,单元链节密度减小,水的含量增加,以环链或尾链进入邻近
    溶液的次表面相,聚乙二醇气液界面膜的静态弹性模量增大,膜变得更为扩张,
    易于压缩。因此,由于溶液性质不同,小分子化合物与水溶性高分子之间的相
    互作用,将导致聚乙二醇气液界面热力学性质和热力学状态的明显改变。
     本文基于溶液表面吸附与解吸动力学理论的讨论,采用表面刮去法,测定
    了聚乙二醇溶液的动态表面张力,研究了聚乙二醇溶液界面的吸附动力学以及
    影响因素。同时,通过聚乙二醇气液界面铺展膜,在膜面积恒定条件下,测定
    了表面铺展膜的动态表面压,研究了聚乙二醇气液界面的解吸动力学和影响因
    素。
     应用动态表面张力(Y,)或动态表面压(n:)的时间效应建立的动态表面
    张力(Y,)或动态表面压(n、)与表面过剩浓度rs的定量关系,在各种时间效
    应下研究了聚乙二醇在溶液扩散的表观扩散系数,以及溶液性质对聚乙二醇扩
    散吸附动力学的影响。通过聚乙二醇气液界面铺展膜的表面张力与时间的依赖
    关系,转化得到了表面压(n)与表面浓度(C mol cm一与时间(t)的关系
    曲线,研究了表面分子膜的解吸扩散系数。
     研究结果表明,聚乙二醇气液界面膜表现出良好的稳定性。聚乙二醇分子
    从气液界面膜中的解吸发生在气液界面与次表面相之间,通过向次表面相解
    吸,聚乙二醇分子获得在更大的空间调整分子构象的机会,再重新吸附到气液
    界面,以便体系达到某种最稳定的热力学状态。由于高分子链的交叠,缠结,
    聚乙二醇解吸能垒较高,其解吸扩散系数比它从溶液内部向气液界面吸附的扩
    散系数要小。
     溶液的性质对聚乙二醇的吸附和解吸动力学有明显影响。在热力学不利的
    盐溶液中或其气液界面,聚乙二醇的溶剂化能力减弱,分子链蜷缩,相互交叠
    程度减小,聚乙二醇高分子在溶液中扩散阻力减小,使得聚乙二醇分子易于从
    溶液本体向气液界面吸附或从气液界面向次表面相解吸,结果吸附和解吸扩散
    系数均增大。反之,在热力学有利的二甲基乙酞胺溶液中或其气液界面上,由
    于水的结构被破坏,聚乙二醇溶剂化能力增强,分子链变得扩张,链的交叠程
    
    度增大,聚乙二醇在溶液中扩散阻力增加,使其从本体溶液向气液界面的吸附
    或从气液界面向次表面相的解吸变得困难,结果吸附与解吸扩散系数均减小。
     在分析讨论了聚乙二醇与阴离子表面活性剂分子在溶液中相互作用原理和
    形成复合物的热力学模型基础上,通过测定聚乙二醇与十二烷基硫酸钠溶液的
    电导,粘度曲线,研究了阴离子型小分子表面活性剂与聚乙二醇在溶液中的相
    互作用,及由此带来的对溶液中聚乙二醇分子尺寸和构象变化的影响。基于酞
    菩配合物的电子吸收光谱理论,溶液中酞菩配合物聚集理论及聚集体对其电子
    吸收光谱影响的机理讨论,研究了聚乙二醇对溶液中四磺化酞著铜聚集行为的
    影响,以及二者之间的相互作用对四磺化酞首铜的紫外吸收光谱的影响。
     在溶液中,由于聚乙二醇与十二烷基硫酸钠的相互作用,形成了复合物,
    使得溶液电导曲线出现两个转折点,一个是标志复合物开始形成的临界浓度
     (ca。)点,
Recently, the physicochemical properties of water-soluable polymer at air solution interface and the interaction between small molecules and polymers in aqueous solution are attractive points of study in macromolecule solution and its interface. The study is of significance in understanding the physical phenomena and laws of condensed phase in quesi-two-dimensional space and the interaction of small molecules with macromolecules in solution. In the present thesis, we report the results of investigation on the thermodynamic properties, adsorption and desorption kinetics of polyethylene glycol (PEG) at air solution interface as well as the interaction of PEG with small molecules in aqueous solution.Based on careful analysis of surface tension and pressure isotherms, the properties, organization of PEG spared and adsorb films well as the conformation of PEG molecules at tihe air aqueous solution interface were studied under the different conditions.. The results showed that the PEG spread film at air solution interface is a monolayer with two dimensional characteristics, when the surface concentration of PEG under about 0.40mgm-2. The concentration dependence on the surface pressure of PEG monoelayers could be expressed by the scaling law in two dimentional space. In the monoelayer, PEG molecules attached at the air solution interface with a train
    
    conformation. When the surface concentration of PEG was over 0.40mg m"2, PEG molecules at the interface might loop or tail into the aqueous subphese. Under the experiment conditions, PEG adsorb films at air solution interface were multi-layer fihns at the nearly same surface pressure of the spread fihns, the surface concentration and the monomer density of PEG in the adsorb fihns were higher than those in the spread fihns. Because the adsorption of PEG at air solution interface exhibited a non ideal characteristics, the Gibbs adsorption isotherm equation used for the adsorption thermodynamics of surfactant is no longer suitable for that of surface active macromolecules such as PEG very well.The properties of bulk solution exhibited obviously influence on the properties, organization, and molecule conformation both of PEG spread and adsorb films at absolution interface. At the thermodynamically unfavorable salt solution surface, the equilibrium surface pressure and monomer density of PEG spread and adsorb films increased with the increase of salt concentration, but the static Gibbs elasticity and the compressibility of the fihns decreased with the increase of salt concentration. At the salt solution surface, the zig-zig degree of PEG molecules was intensified and the molecular segments tended to immerse in adjacent air phase. On the contrary, at the thermodynamically favorable dimethylacetylamide (DMA) solution surface, the equilibrium surface pressure and the monomer density of PEG spread and adsorb fihns decreased due to the water structure destroyed by the strong polar of DMA and the increased solventibility of PEG. At the DMA solution surface, the static Gibbs elasticity of PEG surface spread and adsorb fihns increased with the increase of the DMA concentration, the fihns turn to be compressed easily and PEG molecules tended to loop or tail into the adjacent aqueous subphase. It was clear that the interaction of small molecules with PEG molecules in different solutions resulted in the varitions of thermodynamic properties and the state of PEG fihns at the absolution interface.On the discussion of adsorption and desorption kinetics, the dynamic surface tension of PEG solution was determined by the sweeping method to investigate the adsorption kinetics of PEG at air solution interface and the affecting factors on the
    
    adsorption kinetics. At the same time, the dynamic surface pressure of PEG spread films were measured under the condition of constant surface area to study the desorption kinetics of PEG at air solution interface and the effect of different factors on the desorption kinetics.The diffusion coefficients of PEG adsorption and desorption were calculated by the quan
引文
[1] Zhang, L., XuX., Chen, J., et al., J. Apply Polym. Sci., 2000, 75, 1083
    [2] Zhang, L., Ding, Q., Meng, D., et al., J. Chromatog A, 1999, 839, 49
    [3] Zhang, L., Xu, X, Pan, S., J. Polym. Sci., Part B: Polym. Phys., 2000, 38, 32
    [4] Bos, Milldams, and Rinamdo, M., Int. J. Biol. Macromol., 1987, 9, 153
    [5] 郑昌仁,钱晓菌,王海波等,高分子学报,1988,3:227
    [6] 王德润,于宪潮,赵天链,高分子学报,1990,3:222.
    [7] Mc Comick, C. L. and Chen, G. S., J. Polym. Sci., Polym. Chem., 1982, 20, 1817
    [8] Mc Comics, C. L., Nuance, T., Johnson, C., B., Polymer ,1958, 29, 731
    [9] Creamer M. C., Farmer-Welch, C. G., Mc Mormick, C. L., Polymer Prepr, Am. Chem. Soc., Div. Polym. Chem., 1993, 34(1) :999
    [10] Hu, Y., Armentnout, R. S., Mc Crock, C. L., Marcromolecules, 1997, 30, 3538
    
    [11] 薄淑琴,吕泽,杨国钧,97全国高聚物分子表征讨论会预印集,武汉,1997,59
    [12] Bo, S., Lu, Z., Yang, G., Zhang, Z., IUPAC International Symposium on Macromolecalar Condensed State, Beijing, China, 1996, 35
    [13] Bo. S., Lu, Z., Yang, G., Zhang, Z., International Conferences Polymer Characterization POLYCHAR-6, Denton, USA, 1998, 0-48
    [14] 吕泽,疏水缔合型丙烯酰胺共聚物的制备及溶液和流变性能研究,[硕士论文],长春,中国科学院长春应用化学研究所,1995
    [15] Wu, C., Zhan, S., Macromolecules 1995, 8, 5388, 1995, 8, 8381
    [16] Chu, B., Wu, C., Macromol. Symp., 1996, 106, 421, Polym. Sci., 1996, 38(4),324
    [17] Gao, J., Wu, C., Macromolecules, 1997, 30, 6873
    [18] 吴奇,汪晓辉,高均,高分子通报,1998,3,93,1998,3,1
    [19] Desai, N. N., Shah, D. D., Polym. Prepr., 1981, 22(2), 39
    [20] Brakeman, J. C., Longmuir, 1991, 7, 69
    [21] Alli, D., Bocton, S., Gaylord, N. S., J. Appl. Polym., Sci., 1991,42, 947
    [22] Goddand, E. D., J. Soc. Comet. Chem., 1990, 41, 23
    [23] Kawabata, N; Hayashi, T, Nishilkawa, M., Bull. Chem. Soc., 1986, 59, 2861
    [24] Margolin, A., Sherstyuk, S. F., Izumdov, V. A., Zezin, A. B. Jpn., Kabanov, V. A., Eur. J. Biohem., 1985, 146, 625
    [25] Clark, K. M., Glatz. C. E., Biotechnol. Prog., 1987, 3,241
    [26] Fisher, R. R., Glatz, C. E., Biotechnol ,Bioeng., 1988, 32, 777
    [27] Bozzano A. G., Andrea, G., Glatz, C. E., J. Membr. Sci., 1991, 55.181
    [28] Dubin, P. L., Strege, M. A., West, J., In Large Scale Protein Purification ladish, M, Ed., Americanchemical Society, Washington, D. C., 1990, Chapter 5
    [29] Goddard, E. D., Colloids Surf., 1986, 19, 255
    [30] Goddard, E. D., Colloids Surf., 1986, 19, 301
    [31] Chu, B., Laser Light Scattering; Academic Press, New York, 1974
    [32] Berne, B. J., Decora, R., Dynamic Light Scattering, wiley, New Yonk, 1974
    [33] Schmitz, K, S., An Introduction to Dynamic Light Scattering by Macromolecules; Academic Press, Boston, 1990
    [34] Zana, R., In Surfactant Solutions, New Methods of Investigat, Zana, R. Ed., Surfactant Science Series, Vol 22, Marcel Dekker New York, 1987
    [35] Ware, B. R., Haas, D, D., In Fast Methods in Physical Biochemistry and Cell Biology, Shaft, R. I., Fernadez, S. M., Eds., Elsevier, Amsterdam, 1983
    [36] Gilanyi, T., Wolfram, E., Colloids Surf., 1981, 3, 181
    [37] Moroi, Y., Akisida, H., Saito, M., Matuura, R.J., Colloid Interface Sci., 1997, 61,233
    [38] Henderson, J. A., Richards, R. W., Penfold, J., Macromolecaless, 1993, 26, 4591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700