考虑温度影响的钢筋混凝土结构施工过程安全分析与计算机实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土结构在施工阶段实际上是一个部分完成的结构和模板支撑系统构成的“时变结构”。经验表明,随着模板支撑系统的撤换这种结构很可能出现在整个“生命周期”中最不安全的受力状态,从而引发事故。为了控制这种事故的发生,自上个世纪60年代开始国内外做了大量的研究,探索了一些便于施工安全控制的简明的计算方法。美国学者P. Grundy和A. Kabaila提出了简化手算结构分析方法,此后,我国学者刘西拉教授于1985年建立了施工期结构分析的三维有限元法——精化方法。简化方法和精化方法是钢筋混凝土结构施工期荷载传递研究中的两个里程碑式的计算模型。
     随着现代施工技术的不断提高,钢支撑在钢筋混凝土结构施工中逐渐取代了木支撑得到了越来越广泛的使用。而一些实测研究表明,钢支撑在昼夜温差作用下热胀冷缩对施工期结构荷载传递的影响不能被忽略。
     为了研究温差对施工期钢筋混凝土结构荷载传递的影响规律,本文作了如下研究工作。
     首先,在结构模型方面,本文在国内外相关研究的基础上,增加考虑施工日夜环境温差的影响,统一了现有的钢筋混凝土框架,板柱和墙板结构在施工期的结构模型和分析方法,模型考虑了混凝土强度和弹性模量随龄期增长的影响。接着本文使用二维非稳态热传导方程建立了昼夜温差和钢支撑同混凝土结构柱子之间的温差的相互关系,并据此将温度的影响以广义的荷载添加到结构中。同时,本文还在模型中考虑了钢支撑上下木垫块引起支撑整体抗压刚度的影响。
     其次,本文根据前面的结构模型和温度模型编制了相应的“考虑温度影响的施工过程安全分析”(Safety Analysis during Construction consideringTemperature,SACT)应用软件。SACT能运行于windows2000,window XP,windows7等多个操作系统,可使用Excel2000,Excel2003,Excel2007,Excel2010等多个版本进行数据输入和输出。SACT采用MFC(Microsoft FoundationClasses)应用程序框架编写图形界面,能进行施工操作的逐步模拟和计算。SACT软件在编制过程中体现了模型中所考虑的温差以及钢支撑上下木垫块对施工期荷载传递的影响。通过同现场实测数据的比较验证了SACT计算结果的准确性和适用性。
     此外,文章还讨论了温差大小对施工期荷载传递的影响,揭示了不同昼夜温差影响下的钢筋混凝土结构施工期荷载传递规律,并建议了临界温差值,当昼夜温差大与临界温差时,温差对荷载传递的影响不应被忽略。
     最后,本论文还分析讨论了在温度影响下施工周期,钢支撑层数以及支撑刚度(木垫块厚度)对施工期混凝土结构荷载传递的影响,分析并得出了一些相关规律,提出了提高施工安全性的一些改进措施。这些结论对现场施工人员有一定的借鉴意义。
The reinforced concrete structure during construction is a time-dependent struc-ture which consists of a partly completed structure and a formwork shore system. Ex-perienceshowsthat,astheformworkshoresystemchanges,thetime-dependentstruc-ture may be under the most vulnerable stress state in its”lifetime” and accidents mayoccur. Since1960researchers all over the world have done a lot of researches andexplored some concise and practical calculation methods for construction safety con-trol. P. Grundy and A. Kabaila proposed a simplifed method which is easy to apply.Later in1985Xila Liu presented a three-dimensional fnite element method for struc-tures during construction—a refned method. The simplifed method and the refnedmethod are two ground-breaking methods for analyzing the load transfer in reinforcedconcrete structures during construction.
     With the development of construction techniques, steel supports are more andmorewidelyusedandgraduallyreplacingtimberingsupports. Experimentshaveshownthat,theefectofexpansionandcontractionofsteelsupportsontheloadtransferduringconstruction caused by daily temperature variation can not be neglected.
     In order to study infuences of temperature variation on the load transfer, the mainwork can be summarized as follows.
     At frst, existing structural analysis methods for reinforced concrete frames, slab- column systems, and wall slab structures are unifed based on related researches. Dur-ing analysis, the two-dimensional unsteady heat conduction equation is used to cal-culate the temperature diference between steel shores and concrete columns causedby daily temperature variation, and the efect of temperature variation is considered asa generalized load acting on structures. During analysis, the efects of wood blocksat both ends of steel shore are also considered while calculating the stifness of steelshores.
     Then a new software named Safety Analysis during Construction consideringTemperature (SACT) is programmed based on proposed structural model and analysismethods. SACT can run under operation systems such as windows2000, windows XP,and windows7, and multiple versions of Excel such as Excel2000, Excel2003, Excel2007, and Excel2010can be used for data input and output. The graphic interfaceis programmed using MFC application. SACT can simulate and calculate structuresduring construction step-by-step. The efect of temperature variation and the infuenceof wood blocks at both ends of steel shores are all taken into account while calculatingthe load transfer by SACT. The software is proved to be accurate and applicable bycomparing with feld test data.
     Efects of temperature variation on the load transfer during construction are alsodiscussed in the present paper. The load transfer pattern under the infuence of tem-perature is obtained and the critical temperature variation is proposed. If the ambienttemperaturevariationbetweendayandnightislargerthanthecriticaltemperaturevari-ation, the efects of temperature variation can not be neglected.
     Finally, efectsoftheconstructionperiod, layersofsteelshoresandthestifnessofsupports (the thickness of wood blocks) on the load transfer during construction underthe infuence of temperature are analyzed as well. Based on these analyses, relatedpatterns have been concluded and improvement measures for construction safety areproposed. These conclusions are signifcant for on-site construction personnel.
引文
[1]刘西拉.结构工程学科的现状与展望[M].[S.l.]:人民交通出版社,1997.
    [2]叶耀先.中国建筑结构倒塌事故分析[M].[S.l.]:建筑知识,1993年3月.
    [3]谢征勋.建筑工程事故分析及方案论证[M].[S.l.]:地震出版社,1996年4月.
    [4]GRUNDY P, KABAILA A. Construction loads on slabs with shored formwork in multistory building[J]. J.ACI60(12),1963,60:1729-1738.
    [5]AGARWAL R K, GARDNER N J. Form and shore requirements for multistory flat slab type building[J]. ACI Journal Proceedings,1974,71(11):559-569.
    [6]潘鼎.现浇混凝土楼板和模板支撑荷载传递的测试分析[J].工业建筑,1989,05.
    [7]杨宗放,郭正兴.高层建筑施工中现浇楼板的荷载传递与支模层数研究[J].施工技术,1988.
    [8]杨宗放,郭正兴.现代模板工程[M].[S.l.]:中国建筑工业出版社,1995.
    [9]LIU X L, CHEN W F, BOWMAN M D. Construction load analysis for concrete structures [J]. Journal of Structural Engineering,1985,111(5):1019-1036.
    [10]LIU X L, CHEN W F, BOWMAN M. Shore-slab interaction in concrete buildings[J]. Journal of Construction Engineering and Management,1986,112(2):227-244.
    [11]LIU X L, CHEN W F.Effect of creep on load distribution in multistory rein-forced concrete buildings during construction[J].ACI Structural Journal (Amer-ican Concrete Institute),1987,84(3):192-200.
    [12]LEE H M,Liu X L, CHEN W F. Creep analysis of concrete buildings dur-ing construction[J]. Journal of Stuctureal Engineering ASCE,1991,Vol.117No10:3135-3148.
    [13]李惠明.高层建筑结构过程中的安全分析[J].清华大学博士学位论文.
    [14]CHEN W F, MOSALLAM K. Concrete buildings analysis for safe construction[J]. CRC Inc,1991.
    [15]DUAN M Z, CHEN W F. Improved simplified method for slab and shore load anal-ysis during construction[J]. Project Report:CE-STR-95-24Purdue University,1995.
    [16]ROSOWSKY D V, PHILBRICK T W, HUSTON D R. Observations from shore load measurements during concrete construction[J]. Journal of Performance of Con-structed Facilities,1997,11(1):18-23.
    [17]KOTHEKAR A, ROSOWSKY D V, HUSTON D. Investigating the adequacy of vertical design loads for shoring[J]. Journal of Performance of Constructed Facilities,1998,12(1):41-47.
    [18]BEEBY A W. The forces in backprops during construction of flat slab structures[J]. Proceedings of the Institution of Civil Engineers:Structures and Buildings,2001,146(3):307-317.
    [19]FANG D P, ZHU H Y, GENG C D,et al. On-site measurement of load distribution in reinforced concrete buildings during construction[J]. ACI Structural Journal,2001,98(2):157-163.
    [20]FANG D P, GENG C D, Zhu H Y, et al. Floor load distribution in reinforced con-crete buildings during construction[J]. ACI Structural Journal,2001,98(2):149-156.
    [21]方东平,祝弘毅,耿川东,等.施工期钢筋混凝土结构特性的实测研究[J].土木工程学报,2001,34(2):7-10.
    [22]李莹.施工期钢筋混凝结构荷载传递分析的改进[D].[S.l.]:[s.n.],2002.
    [23]赵挺生,方东平,顾祥林,等.施工期现浇钢筋混凝土结构的受力特性[J].工程力学,2004,21(2):62-68.
    [24]赵挺生,方东平,张传敏.施工阶段多高层建筑钢筋混凝土结构统一模型[J].清华大学博士学位论文报,2004,44(12):1680-1683.
    [25]方东平,耿川东,蓝荣香,等.钢筋混凝土结构施工期安全分析与控制软件(SAC)及其应用[J].建筑技术,2001,32(5):302-303.
    [26]赵国藩.关于钢筋混凝土结构施工期安全分析与控制软件(SAC)及其应用的推荐意见[J].2000.
    [27]MARI A R. Numerical simulation of the segmental construction of three dimen-sional concrete frames[J]. Engineering Structures,2000,22(6):585-596.
    [28]PUENTE I, AZKUNE M, INSAUSTI A. Shore-slab interaction in multistory reinforced concrete buildings during construction:An experimental approach[J]. Engineer-ing Structures,2007,29(5):731-741.
    [29]ALVARADO Y A, CALDERON P A,ADAM J M, et al.An experimental study into the evolution of loads on shores and slabs during construction of multistory buildings using partial striking[J].Engineering Structures,2009,31(9):2132-2140.
    [30]FANG D P, Xi H F, WANG X M, et al. Load distribution assessment of reinforced concrete buildings during construction with structural characteristic parameter approach[J]. Tsinghua Science&Technology,2009,14(6):746-755.
    [31]莫良舜.新浇混凝土对模板侧压力计算公式的分析[J].施工技术,1988,03.
    [32]TALESNICK M, KATZ A. Measuring lateral pressure of concrete:From casting through hardening[J]. Construction and Building Materials,2012,34(0):211-217.
    [33]ROSOWSKY D V, HUSTON D R, FUHR P, et al. Measuring formwork loads during construction[J]. Concrete International,1994,16(11):21-25.
    [34]ROSOWSKY D V. Load combinations and load factors for construction[J]. Journal of Performance of Constructed Facilities,1996,10:4:175-181.
    [35]AMBROSE T P, HOUSTON D R, FUHR P L, et al. Shoring systems for construction load monitoring [J]. Smart Materials and Structures,1994,3(1):26.
    [36]KARSHENAS S, AYOUB H. Analysis of concrete construction live loads on newly poured slabs[J]. Journal of Structural Engineering,1994,120(5):1525-1542.
    [37]赵挺生,李树逊,顾祥林.混凝土房屋建筑施工活荷载的实测统计[J].施工技术,2005,34(7):63-65.
    [38]PENG J L, PAN A D, ROSOWSKY D V, et al. High clearance scaffold systems dur-ing construction—Ⅰ.Structural modelling and modes of failure[J]. Engineering Structures,1996,18(3):247-257.
    [39]PENG J L, PAN A D, ROSOWSKY D V, et al. High clearance scaffold systems during construction—Ⅱ.Structural analysis and development of design guidelines[J]. Engineering Structures,1996,18(3):258-267.
    [40]PENG J L. Structural modelling and design considerations for double-layer shoring systems [J]. Journal of Construction Engineering and Management,2004,130(3):368-377.
    [41]KARSHENAS S. Strength variability of conventional slab formwork sy stems [J]. Journal of Construction Engineering and Management,1997,123:3:324-330.
    [42]PENG J L. Stability analyses and design recommendations for practical shoring systems during construction[J]. Journal of Construction Engineering and Man-agement,2002,128(6):536-544.
    [43]PENG J L, CHAN S L, Wu C L. Effects of geometrical shape and incremental loads on scaffold systems[J].Journal of Constructional Steel Research,2007,63(4):448-459.
    [44]PENG J L, YEN T, LIN Y, et al. Performance of scaffold frame shoring under pattern loads and load paths[J]. Journal of Construction Engineering and Man-agement,1997,123(2):138-145.
    [45]PENG J L, CHEN K H, CHAN S L, et al. Experimental and analytical studies on steel scaffolds under eccentric loads[J]. Journal of Constructional Steel Research,2009,65(2):422-435.
    [46]KARSHENAS S, RIVERA D A M. Experimental investigation of performance of wooden formwork shores[J]. Journal of Performance of Constructed Facilities,1997,11:2(May):58-66.
    [47]KWAK H G, Kim J K. Determination of efficient shoring system in RC frame structures [J]. Building and Environment,2006,41(12):1913-1923.
    [48]ALVARADO Y A, CALDERON P A, GASCH I, et al. A numerical study into the evo-lution of loads on shores and slabs during construction of multistorey buildings. Comparison of partial striking with other techniques [J].Engineering Structures,2010,32(10):3093-3102.
    [49]AZKUNE M, PUENTE I, SANTILLI A. Shore overloads during shoring removal[J]. Engineering Structures,2010,32(11):3629-3638.
    [50]CALDERON P A, ALVARADO Y A, ADAM J M. A new simplified procedure to estimate loads on slabs and shoring during the construction of multistorey build-ings[J]. Engineering Structures,2011,33(5):1565-1575.
    [51]CHANDRANGSU T, RASMUSSEN K J R. Structural modelling of support scaffold systems[J]. Journal of Constructional Steel Research,2011,67(5):866-875.
    [52]AYYUB B M. Structural safety analysis of reinforced concrete buildings during construction[D].[S.1.]:[s.n.],1984.
    [53]EPAARACHCHI D C, STEWART M G, ROSOWSKY D V. Structural reliability of mul-tistory buildings during construction[J]. Journal of Structural Engineering,2002,128(2):205-213.
    [54]EPAARACHCHI D C, STEWART M G. Human error and reliability of multistory reinforced-concrete building construction[J]. Journal of Performance of Con-structed Facilities,2004,18(1):12-20.
    [55]ZHANG H, CHANDRANGSU T, RASMUSSEN K J R. Probabilistic study of the strength of steel scaffold systems[J]. Structural Safety,2010,32(6):393-401.
    [56]ZHANG H, RASMUSSEN K J R, ELLINGWOOD B R. Reliability assessment of steel scaffold shoring structures for concrete formwork[J]. Engineering Structures,2012,36(0):81-89.
    [57]J·弗朗西斯·扬,悉尼·明德斯,方秋清等译.混凝土[M].[S.l.]:中国建筑工业出版社,1989.
    [58]ACI COMMITTEE209. Guide for ModModel and Calculating Shrinkage and Creep in Hardened Concrete[M].[S.1.]:American Concrete Institute,2008.
    [59]周履,陈永春.收缩徐变[M].[S.l.]:中国铁道出版社,1994.
    [60]中华人民共和国建设部.早期推定混凝土强度试验方法标准(JGJ15–2008)[M].[S.l.]:[s.n.].
    [61]方东平,耿川东,祝宏毅,等.施工期钢筋混凝土结构特性的计算研究[J].土木工程学报,2000,33(6):57–62.
    [62]冈田清,明石外世树.建筑材料学[M].[S.l.]:湖南科学技术出版社,1982.
    [63]杨世铭,陶文铨.传热学[M].[S.l.]:高等教育出版社,2006.
    [64]中华人民共和国建设部.木结构设计规范(GB50005–2005)[M].[S.l.]:[s.n.].
    [65]单辉祖.材料力学[M].[S.l.]:高等教育出版社,1999.
    [66]曹军.钢筋混凝土结构施工期安全分析与控制软件SAC的工程实践评测[D].[S.l.]:上海交通大学硕士学位论文,2006.
    [67]中华人民共和国建设部.建筑结构可靠度设计统一标准(GB50068–2001)[M].[S.l.]:[s.n.].
    [68]中华人民共和国建设部.建筑施工扣件式钢管脚手架安全技术规范(JGJ130–2011)[M].[S.l.]:[s.n.].
    [69]耿川东.施工期钢筋混凝土结构分析与安全控制[D].[S.l.]:[s.n.],2000.
    [70]中华人民共和国建设部.凝土结构工程施工质量验收规范(GB50204–2002)[M].[S.l.]:[s.n.].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700