LEC法熔体内输运特性数值模拟及凝胶法晶体生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
学科间的交叉、融合以及向微观世界不断深入是当今科学研究的两大重要特征。热科学与材料科学的交叉已成为近年来极具活力的新学科生长点;而一些全新的测试仪器,如原子力显微镜等的出现,为人们探索过去欲探索却无法探索的微观世界创造了条件。本课题利用热科学的基本理论,用数值计算方法,研究晶体生长中熔体内的热、质输运特性,并利用原子力显微镜对晶体生长界面的微观形貌进行观察,研究晶体生长的微观机理。分别选择了适合熔体生长的重要的化合物半导体材料砷化镓和适合凝胶法晶体生长的具有优良电、光特性的高氯酸钾作为研究对象。主要内容为:
     (1)对LEC法砷化镓单晶生长中熔体内热量、动量及质量输运建立了三维时相关的紊流数学模型,在模型中考虑了熔体/晶体界面的溶质分凝效应,采用基于交错网格的有限容积法(FVM)进行数值求解。通过计算结果比较,认为低Re的k-ε紊流模型能较好地定量描述温度梯度及旋转驱动下的熔体流动特性;对已有文献中的CZ熔体流动特性进行数值模拟,并与其实验结果进行比较,验证了数学模型和计算方法的正确性。
     (2)对浮力和热毛细力驱动的熔体内自然对流,通过改变加热温差分析了浮力和热毛细力对熔体流动状态的影响。研究结果表明,加热温差增大到某一临界值时,熔体流动将由轴对称的稳态流动转换为非轴对称的振荡流动;流动状态转换的机制归结为热毛细力引起的不稳定性,熔体高度的变化对流动状态转换的临界温差几乎没影响;熔体流动为非轴对称的振荡流动时,熔体内出现热流体波波型,该波波型没有沿周向旋转,仅是形状随加热温差增大由规则变为不规则。
     (3)对浮力、热毛细力和晶体旋转共同作用驱动的混合对流,通过改变晶体转速,分析了各力及其相互作用对熔体流动状态的影响。研究结果表明,熔体中温度梯度驱动的浮力和热毛细力的联合作用与晶体旋转产生的离心力和科里奥利力的联合作用相匹配时,熔体流动表现为与热毛细不稳定流动不同的非轴对称振荡流动。通过对熔体内温度场分布特征的分析,揭示了引起该非轴对称的振荡流动的机制为斜压不稳定性。在斜压不稳定流动中,熔体内出现沿晶体旋转方向旋转且具有垂直方向的完全正关联特性的斜压热流体波。分析了LEC法砷化镓熔体内斜压热流体波波型的形成机理。数值预测到了发生斜压不稳定流动的熔体内的诸多流动特征。一定范围内的熔体高度变化对流动状态转换的临界晶体转速没有明显影响。得出了不同加热温差下的临界
The intersections and syntheses between different disciplines and the penetrating into the microcosm are the two important characteristics of the science research at present. The cross between thermal science and material science has become the vigorous growth point of the new subject in the recent years. At the same time, the coming forth of some neoteric measuring instruments such as the Atom Force Microscope make it possible for people to explore the unknown microcosm. With the aid of basic theory of the thermal science, the numerical simulation is performed to study the characteristics of heat and mass transport in the melt during crystal growth, and the Atom Force Microscope is used to observe the microtopography on the growth interface in order to study the crystal growth mechanism in the present dissertation. Gallium arsenide(GaAs) and potassium perchlorate(KClO4) are selected as research objects, respectively. The former is important compound semiconductor material and usually grown from melt, and the latter shows excellent electronic and optical properties and is suitable for gel crystal growth. The main contents are:
     (1) A three-dimensional and time-dependent turbulent mathematical model is established for the heat、momentum and mass transport in the Liquid Encapsulated Czochralski (LEC) GaAs melt, in which the dopant segregation effect at the melt/crystal interface is considered. The numerical method is based on a finite volume discretization on staggered grids. A low-Reynolds number k-εturbulent model is proved to be suitable for capturing accurately the essentials of flow driven by temperature gradient and rotation in the melt. The turbulent mathematical model is used to simulate the CZ silicon melt convection in the previously published experiment, and its validity is evaluated by comparing the results with the experimental data.
     (2) For the natural convection driven by the buoyancy and Marangoni force in the melt, the effects of the change of the buoyancy and Marangoni force on the flow state are analyzed by changing the temperature difference between the crystal and the crucible walls. The results show that the flow will transform from axisymmetric steady flow to non-axisymmetric oscillatory flow when the temperature difference exceeds the critical value, and that the mechanism of the transform is attributed to the Marangoni instability, and that the critical temperature difference value is found to be almost independent of the melt depth in the crucible. The thermal wave patterns are found to
引文
[1] 邓志杰. GaAs 单晶材料发展现状和展望. 世界有色金属. 2000. 10. pp8-11.
    [2] 梁骏吾, 郑敏政, 袁桐, 段维新. 中国信息产业领域相关重点基础材料科技发展战略研究. 材料导报. 2000. 14(2). pp1-4.
    [3] M.Watanabe, M.Ehuchi, K.Kakimoto. The baroclinic flow instability in rotating silicon melt. J.Crystal Growth. 1993. 128. pp288-292.
    [4] D.Vizman, S.Eichler, J.Friedrich, G.M.üller. Three-dimensional modeling of melt flow and interface shape in the industrial liquid-encapsulated Czochralski growth of GaAs. J.Crystal Growth. 2004. 266. pp396-403.
    [5] J.L.Morton, N.Ma, D.F.Bliss, G.G.Bryant. Dopant segregation during liquid-encapsulated Czochralski crystal growth in a steady axial magnetic field. J.Crystal Growth. 2002. 242. pp471-485.
    [6] D.T.J. Hurle. Convective transport in melt growth systems. J.Crystal Growth. 1983. 65. pp124-132.
    [7] C.Wagner. R.Friedrich Direct numerical simulation of momentum and heat transport in idealized Czochralski crystal growth configurations, International. Journal of Heat and Fluid Flow. 2004.25.pp431–443.
    [8] 赖占平, 齐德格, 高瑞良等. LEC 技术生长 3inch 掺 Si GaAs 单晶的研究. 功能材料与器件学报. 2000. 12(6). 4. pp312-315.
    [9] A.Grant Elliot, Ariel Flat, David A.Vanderwater. Silicon incorporation in LEC growth of ingle crystal gallium arsenide. J.Crystal Growth. 1992. 121. pp349-359.
    [10] G.C.Hillier, D.A.Macquistan, I.C. Bassignana. Variation in the lattice parameter and crystal quality of commercially available Si-doped GaAs substrates. J.Crystal Growth. 1997.78.pp445-458.
    [11] R.E. Liesegang, Photog. Archiv. 1896. 21.p221.
    [12] L.W.Eisher, F.L.Simons. Amer. Mineral. 1926. 11.p124.
    [13] Henish H.K.Henisch, J.Dennis, J.L.Hanoka. Crystal growth in gels. J.Phys.Chem.Solids. 1965. 26. pp493-496.
    [14] H.K.Henisch. Crystal Growth in Gel, The Pennsylvania State University Press, USA. 1970
    [15] 王刚刚, 杨海涛, 饶子和. 利用凝胶介质提高古菌 DNA 结合蛋白晶体的衍射分辨率. 生物化学与生物物理进展. 2003. 30(3). pp471-473.
    [16] M.Muziká?, V.Komanick?, W.R.Fawcett. A detailed study of gold single crystal growth ina silica gel. J.Crystal Growth. 2006. 290 . pp615–620.
    [17] B.Lorber, C.Sauter, J.D.Ng. Characterization of protein and virus crystals by quasi-planar wave X-ray topography: a comparison between crystals grown in solution and in agarose gel. J.Crystal Growth. 1999. 204. pp357-368.
    [18] O.Vidal, M.C.Robert, B.Arnoux, B.Capelle. Crystalline quality of lysozyme crystals grown in agarose and silica gels studied by X-ray diffraction techniques. J.Crystal Growth. 1999. 196. pp559-571.
    [19] K.Ramamurthi, P.Kaliannan, K.Ganesamurthy. Growth of Doped Potassium Perchlorate Single Crystals in Silica Gel and Their Characterization. Cryst. Res. Technol. 1998. 33(2). pp177-181.
    [20] K.Suryanarayana, S.M.Dharmaprakash. Physico-chemical characterization of calcium strontium tartrate crystals. J.Phys. Chem Solids. 1997. 58(10). pp1599-1602.
    [21] 郑燕青, 施尔畏等. 晶体生长理论研究现状与发展[J]. 无机材报. 1999. 14(3). pp321~332.
    [22] 陈宗淇, 王光信, 徐佳英. 胶体与界面化学(下). 北京. 高等教育出版社. 2001. 第一版.
    [23] J.J.Derby, L. J.Atherton, P.M.Gresho. An integrated process model for the growth of oxide crystals by the Czochralski method. J.Crystal Growth. 1989. 97. pp792-826.
    [24] F.Dupret, P.Nicodeme, Y.Ryckmans, P.Wouters, M.J.Crochet. Global modelling of heat transfer in crystal growth furnaces. Int.J.Heat Mass Transfer. 1990. 33(9). pp1849–1871.
    [25] D.E.Bornside, T.A.Kinney, R.A.Brown. Minimization of thermoelastic stresses in Czochralski grown silicon: application of the integrated system model. J.Crystal Growth. 1991. 108. pp779-805.
    [26] J.J.Derby, Q.Xiao. Some effects of crystal rotation on large-scale Czochralski oxide growth: analysis via a hydrodynamic thermal-capillary model. J.Crystal Growth. 1991. 113. pp575-586.
    [27] T.A.Kinney, D.E.Bornside, R.A.Brow, K.M.Kim. Quantitative assessment of an integrated hydrodynamic thermal-capillary model for large-diameter Czochralski growth of silicon: comparison of predicted temperature field with experiment. J.Crystal Growth. 1993. 126. pp413-434.
    [28] Q.Xiao, J.J.Derby. The role of internal radiation and melt convection in Czochralski oxide growth: deep interfaces, interface inversion, and spiraling. J.Crystal Growth. 1993. 128. pp188-194.
    [29] Q.Xiao, J.J.Derby. Bulk-flow versus thermal-capillary models for Czochralski growth ofsemiconductors. J.Crystal Growth. 1993. 129. pp593-609.
    [30] T.A.Kinney, R.A.Brown. Application of turbulence modeling to the integrated hydrodynamic thermal-capillary model of Czochralski crystal growth of silicon. J.Crystal Growth. 1993. 132. pp551-574.
    [31] W.Zhou, D.E.Bornside, R.A.Brown. Dynamic simulation of Czochralski crystal growth using an integrated thermal-capillary model. J.Crystal Growth. 1994. 137. pp26-31.
    [32] Q.Xiao, J.J.Derby. Three-dimensional melt flows in Czochralski oxide growth: high-resolution, massively parallel, finite element computations. J.Crystal Growth . 1995 . 152. pp169-181.
    [33] J.C.Brice, T.M.Bruton, O.F.Hill, P.A.C.Whiffin. The Czochralski growth of Bi12SiO20 crystals. J.Crystal Growth. 1974. 24/25. pp429-431.
    [34] P.A.C. Whiffin, T.M. Bruton, J.C. Brice. Simulated rotational instabilities in molten bismuth silicon oxide. J.Crystal Growth. 1976. 32. pp205-210.
    [35] C.D.Brandle. Simulation of fluid flow in Gd3Ga5O12 melts. J.Crystal Growth. 1977. 42. pp400-404.
    [36] R.Lamprecht, D.Schwabe, A.Scharmann, E.Schultheiss. Experiments on buoyant, thermocapillary, and forced convection in Czochralski configuration. J.Crystal Growth. 1983. 65. pp143-152.
    [37] A.D.W. Jones. An experimental model of the flow in Czochralski growth. J.Crystal Growth. 1983. 61. pp235-244.
    [38] A.D.W. Jones. Flow in a model Czochralski oxide melt. J.Crystal Growth. 1989. 94. pp421-432.
    [39] D.C.Miller, T.L.Pernell. Fluid flow patterns in a simulated garnet melt. J.Crytal Growth. 1982.58. pp253-260.
    [40] J.R.Ristorelli, J.L.Lumley. Instabilities, transition and turbulence in the Czochralski crystal melt. J.Crystal Growth. 1992. 116. pp447-460.
    [41] W.W.Fowlis, R.Hide. Thermal convection in a rotating annulus of liquid: effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes. J.Atmos. Sci. 1965. 22. pp541.
    [42] G.Küppers, D.Lortz. Transition from laminar convection to thermal turbulence in a rotating fluid layer. J.Fluid Mech. 1969. 35. pp609-620.
    [43] H.Yamagishi, I.Fusegawa, Experimental Observation of a Surface Pattern on a Caochralski Silicon Melt. J.Jpn. Assoc. J.Crystal Growth. 1990. 17. pp304-311.
    [44] K.Kakimoto, M.Eguchi, H.Watanabe, T.Hibiya. Direct observation by X-ray radiographyof convection of molten silicon in the Czochralski growth method. J.Crystal Growth. 1988. 88. pp365-370.
    [45] K.Kakimoto, M.Eguchi, H. Watanabe, T.Hibiya. Natural and forced convection of molten silicon during Czochralski single crystal growth. J.Crystal Growth. 1989. 94. pp412-420
    [46] M.Tanaka, M.Hasebe, N.Saito. Pattern transition of temperature distribution at Czochralski silicon melt surface. J.Crystal Growth. 1997. 180. pp487-496.
    [47] A.seidl, G.McCord, G.Müller, H.-J.Leister. Experimental observation and numerical simulation of wave patterns in a Czochralski silicon melt. J.Crystal Growth. 1994. 137. pp326-334.
    [48] Kishida. Y.,M.Tanaka, H.Esaka. Appearance of a baroclinic wave in Czochralski silicon melt. J.Crystal Growth. 1993. 130. pp75-84.
    [49] Y.-S.Lee, Ch.-H.Chun. Transition from regular to irregular thermal wave by coupling of natural convection with rotating flow in Czochralski crystal growth. J.Crystal Growth. 1999. 197. pp297-306.
    [50] Y.-S.Lee, Ch.-H.Chun. Prandtl number effect on traveling thermal waves occurring in czochralski crystal growth. Advances in Space Research. 1999. 24(10). pp1403.
    [51] H.J.Leister, M.Perié. Numerical simulation of a 3D Czochralski-melt flow by a finite volume multigrid-algorithm. J.Crystal Growth. 1992. 123. pp567-574.
    [52] Q.Xiao, J.J.Derby. Three-dimensional melt flows in Czochralski oxide growth: high-resolution, massively parallel, finite element computations. J.Crytal Growth. 1995. 152. pp169-181.
    [53] C.J.Jing, N.Imaishi, S.Yasuhiro, Y.Miyazawa. Three-dimensional numerical simulation of spoke pattern in oxide melt. J.Crytal Growth. 1999. 200. pp204-212.
    [54] S.Enger, B.Basu, M.Breuer. F.Durst. Numerical study of three-dimensional mixed convection due to buoyancy and centrifugal force in an oxide melt for Czochralski growth. J.Crytal Growth. 2000. 219. pp144-164.
    [55] V. I. Polezhaev, O.A.Bessonov, N.V.Nikitin, S.A.Nikitin. Convective interaction and instabilitiesin GaAs Czochralski model. J.Crystal Growth. 2001. 230(1-2). pp40-47.
    [56] N.Nikitin, V.Polezhaev. Direct simulations and stability analysis of the gravity driven convection in a Czochralski model. J.Crystal Growth. 2001. 230(1-2). pp30-39.
    [57] J.A.Burton, R.C.Prim, W.P.Slichter. The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical. J.Chem, Phys. 1953. 21. pp1987.
    [58] L.O.Wilson. On interpreting a quantity in the burton, prim and slichter equation as a diffusion boundary layer thickness. J.Crystal Growth. 1978. 44. pp247-250.
    [59] D.Camel,J.J.Favier. Theoretical analysis of solute transport regimes during crystal growth from the melt in an ideal Czochralski configuration. J.Crystal Growth. 1983. 61. pp125-137.
    [60] L.O.Wilson. The effect of fluctuating growth rates on segregation in crystals grown from the melt : I. No backmelting. J.Crystal Growth. 1980. 48. pp435-450.
    [61] C.T.Yen, W.A.Tiller. Incorporating convection into one-dimensional solute redistribution during crystal growth from the melt I. The steady-state solution. J.Crystal Growth. 1992. 118. pp259-267.
    [62] Ran Zuo,Zengyuan Guo. Two-dimensional analysis on solute segregation in crystal growth from melt I.Solution at crystal/melt interface. J.Crystal Growth. 1996. 158. pp377-384.
    [63] J.He, S.Kou. LEC growth of In-doped GaAs with bottom solid feeding. J.Crystal Growth. 2000. 216. pp21-25.
    [64] H. Okada, T. Katsumata, T. Obokata, T. Fukuda, W. Susaki. LEC growth of undoped SI GaAs single crystals for opto-electronic application. J.Cryst Growth. 1986. 75. pp319-322
    [65] J.M.García-Ruíz. Growth history of PbS single crystals at room temperature. J.Crystal Growth. 1986. 75. pp441-453.
    [66] Sanjay Pandita, Vinay Hangloo, K.K.Bamzai. Crystal growth of praseodymium molybdate by gel method, International Journal of Inorganic Materials. 2001. 3. pp675–680.
    [67] 姚连增. 晶体生长基础. 合肥. 中国科学技术大学出版社. 1995. pp329-357.
    [68] W.Kossel. Extenoling the L aw of Bravais. Nach Ges. Wiss Gottingen. 1927. pp135- 143
    [69] F.C.Frank. Discussions of the Faraday Society. London. Buter Worth Scientific Publications. 1959. pp67.
    [70] W.K.Burton, N.Cabrera, F.C.Fran. The Grow th of Crystals and the Equilibrium Strcture of Their Surfaces. Phil Trans Soc. 1951. 243. pp299-358.
    [71] K.A.Jackson. Liquid Metals and Solidification. Ohio. Amer. Soc. Met. Noveley. 1959. pp17.
    [72] D.E.Temkin. Crystallization Processes, New York. Consultants Bureau. 1960. pp15-22
    [73] 闵乃本. 晶体生长的物理基础. 上海. 上海科学技术出版社. 1986.
    [74] 仲维卓, 华素坤. 晶体生长形态学. 北京. 科学出版社. 1999. pp208.
    [75] V.I.Polezhaev, O.A.Bessonov, N.V.Nikitin. Convective interaction and instabilities in GaAs Czochralski model. J.Crystal Growth. 2001. 230(1-2). pp40-47.
    [76] W.Miller. W.Schr(?)oder. Numerical modeling at the IKZ: an overview and outlook. J.Crystal Growth. 2001. 230. pp1–9.
    [77] W.Miller, U.Rehse, K.B(?)ottcher. Influence of melt convection on the interface duringCzochralski crystal growth. Solid-State Electron. 2000. 44. pp825–830.
    [78] V.I.Polezhaev, O.A.Bessonov, N.V.Nikitin, S.A.Nikitin, Convective interaction and instabilities in GaAs Czochralski model, J.Crystal Growth. 2001. 230. pp40–47.
    [79] K.Koai, A.Seidl, H.-J.Leister, G.M(?)uller, A.K(?)ohler, Modeling of thermal fluid in the liquid encapsulated Czochralski process and comparison with experiment, J.Crystal Growth. 1994. 137. pp41-47.
    [80] N.Nikitin, V.Polezhaev. Direct simulations and stability analysis of the gravity driven convection in a Czochralski model. J.Crystal Growth. 2001. 230. pp30-39.
    [81] S.Gondet, T.Duffar, G.Jacob, N.Van den Bogaert, F.Louchet. Thermal stress simulation and interface destabilisation in indium phosphide grown by LEC process. J.Crystal Growth. 1999. 198/199. pp129-134.
    [82] D.Vizman, S.Eichler, J.Friedrich, G.Müller. Three-dimensional modeling of melt flow and interface shape in the industrial liquid-encapsulated Czochralski growth of GaAs. J.Crystal Growth. 2004. 266. pp396–403.
    [83] E.V. Yakovlev, V.V.Kalaev, I.Yu.Evstratov, Ch.Frank-Rotsch, M.Neubert, P.Rudolph, Yu.N.Makarov. Global heat and mass transfer in vapor pressure controlled Czochralski growth of GaAs crystals. J.Crystal Growth. 2003. 252. pp26–36.
    [84] O.V.Smirnova, V.V.Kalaev, Yu.N.Makarov, Ch.Ch.Frank-Rotsch, M.Neubert, P.Rudolph. 3D computations of melt convection and crystallization front geometry during VCz GaAs growth. J.Crystal Growth. 2004. 266. pp67–73.
    [85] D.J.Carlson, A.F.witt. Microsegration in conventional Si-doped LEC GaAs. J.Crystal Growth. 1991. 108. pp508-518.
    [86] 陶文全. 数值传热学. 西安交通大学出版社. 第二版. 2001. p416.
    [87] K.Kakimoto,M.Watanabe,M.Ehuchi, T.Hibiya. Flow instability of the melt during Czochralski Si crystal growth:dependence on growth conditions; a numerical simulation study. J.Crystal Growth. 1994. 139. pp197–205.
    [88] Y.F.Zou, G.-X. Wang, H.Zhang, V.Prasad, D.F.Bliss. Macro-segregation, dynamics of interface and stresses in high pressure LEC grown crystals. J.Crystal Growth. 1997. 180. pp524-533.
    [89] H.L.Swinney, J.P.Gollub. Hydrodynamic Instabilities and the Transition to Turbulence. Berlin, Germany. Springer-Verlag Berlin Heidelberg. 1981.
    [90] J.S.Fein, R.L.Pfeffer. An experimental study of the effects of Prandtl number on thermal convection in a rotating, differentially heated cylindrical annulus of fluid [J]. J Fluid Mech. 1976. 75. pp81-112.
    [91] P.Hintz, D.Schwabe. Convection in a Czochralski crucible-Part 2:rotating crystal. J.Crystal Growth. 2001. 222. pp356-364.
    [92] Biswajit Basu, Sven Enger, Michae Breuer, Franz Durst. Three-dimensional simulation of flow and thermal field in a Czochralski melt using a block-structured finite-volume method. J.Crystal Growth. 2000. 219. pp123-143.
    [93] J.He, S.Kou. LEC growth of In-doped GaAs with bottom solid feeding. J.Crystal Growth. 2000. 216. pp21-25.
    [94] I.C.Bassignana, D.A.Macquistan, G.C.Hillier, R.Streater, D.Beckett, A.Majeed, C.Miner. Variation in the lattice parameter and crystal quality of commercially available Si-doped GaAs substrates. J.Crystal Growth. 1997. 178. pp445-458.
    [95] Mingwei Li, Wenrui Hu, Nuohu Chen, Danling Zeng, Zemei Tang. Numerical analysis of LEC growth of GaAs with an axial magnetic field International. Journal of Heat and Mass Transfer. 2002. 45. pp2843–2851.
    [96] M.Leuchs, A.Materny,Absorption. resonance Raman and resonance CARS investigations on the permanganate ion doped in potassium perchlorate single crystals[J]. J.Raman Spectroscopy.1992. 23. pp673-679.
    [97] V.R.Pai Verneker, K.Rajeshwar. Crystal structure transformations in ammonium and alkali metal perchlorates. Thermochimica Acta. 1975. 13. pp305-314.
    [98] Ljup?o Pehov, Vladimir M.Petru?evski. Fourier transform infrared study of perchlorate (35ClO4- and 37ClO4-) anions isomorphously isolated in potassium permanganate matrix. Vibrational anharmonicity and pseudo-symmetry effects. J.Phys.Chem.Solids. 2002. 63. pp1873-1881.
    [99] L.Pejov, V.M.Petru?evski. Infrared spectra of permanganate anions in potassium perchlorate matrices: vibrational anharmonicity, effective symmetry and vibrational mode mixing effects Spectrochimica Acta Part A. 2002. 58. pp2991-3002.
    [100] F.Affouard. Ph.Depondt.Rotational dynamics in orientationally disordered KClO4.Computational Material Science. 1998. 10. pp57-62.
    [101] Jianjun Liu, Chun-gang Duan, W.N.Mei. Order-Disorder Structural Phase Transitions in Alkali Perchlorates. Journal of Solid State Chemistry. 2002. 163. pp294-299.
    [102] H.D.Lutz, G.w?schenbach. Infrared Reflection Spectra of KC lO4 Single Crystals. Jounal of Molecular Structure. 1986. 147. pp47-56.
    [103] J.R.Byerg, S.J.k.Jensen, L.T.Muus. ESR Spectra from Paramagnetic Centers in Irradiated KC lO4.I. The ClO2 Center. J.Chem,Phys. 1967. 46. pp131-137.
    [104] M.Leuchs, A.Materny, D.Gǒttges. Absorption, Resonance Raman and Resonance CARSInvestigations on the Permanganate Ion Doped in Potassium Perchlorate Single Crystals at Low Temperatures. Jounal of Raman Spectroscopy. 1992. 23. pp673-679
    [105] A.R.Patel. Growth of single crystal of KClO4 in silical gels. J.Crystal Growth. 1979. 47. pp 213-218.
    [106] A.Moreno, G.J.-Martinez, T.H.-Perez, N.Batina, M.Mundo, A.McPherson. Physical and chemical properties of gels: Application to protein nucleation control in the gel acupuncture technique. J.Crystal Growth. 1999. 205. pp375-381.
    [107] 张克从, 张乐潓主编. 晶体生长科学与技术. 北京. 科学出版社. 1997.
    [108] 侯万国, 孙德军, 张春光.应用胶体化学. 北京. 科学出版社. 1998. p125.
    [109] 沈钟, 王果庭. 胶体与表面化学. 北京. 化学工业出版社. 1997. p111.
    [110] R.K.Iier. The Chemistry of Silica. Wiley. New York. 1979.
    [111] H.Sawada. Bonding electrics in orthorhombic potassium perchlorate[J]. Mat. Res. Bull. 1993. 28 .pp867-870.
    [112] 王喜庆. 凝胶体系中有机分子和沸石分子筛的晶体生长与结构研究[学位论文]. 复旦大学. 2001. pp4-6.
    [113] C.J.Brinker, G.W.Scherer. Sol-Gel Science (The Physics and Chemistry of Sol-Gel Processing). San Diego. Academic Press. 1990.
    [114] 陈宗淇, 王光信, 徐佳英. 胶体与界面化学(下). 北京. 高等教育出版社. 2001. 第一版.
    [115] H.K.Henisch. Crystal Growth in Gels[M]. The Pennsylvania State University Press. 1970.
    [116] P.Hartman, C.S.Strom. Structure morphology of crystals with barite (BaSO4) structure[J]. J.Crystal Growth. 1989. 97. pp502-512.
    [117] C.J.Schneer. Crystal Form and Structure, Pennsylvania: Mutchinson&Ross Inc. 1977.
    [118] A.A.Chemov. Roughening and melting of crystalline surfaces. Prog Cryst Growth. 1993. 26. p195.
    [119] 孙洵, 孙大亮, 许心光等. KDP(DKDP)晶体中液相包裹散射的形成. 中国科学(E 辑)32. pp447-451.
    [120] 向思清, 索辉, 阮圣平, 朱玉梅, 刘冰冰, 全宝富, 徐宝琨. Sol - Gel 法制备 SnO2 纳米晶薄膜.功能材料(增刊). 2000. 31. pp72-73.
    [121] 郎佳红, 顾彪, 徐茵, 秦福文, 曲钢. ECR - PEMOCVD 生长 GaN RHEED 图像研究. 应用激光. 24(1). pp31-35.
    [122] A.I.Malkin, A.A.Chernov, I.V.Alexeev. Growth of dipyramidal face of dislocation-free ADP crystals; free energy of steps. J.Crystal Growth . 1989. 97. pp765-769.
    [123] Dirk Bosbach, Christopher Hall, Andrew Putnis. Mineral precipitation and dissolution inaqueous solution: in-situ microscopic observations on barite 001 with atomic forc microscopy. Chemical Geology. 1998. 151. pp143–160.
    [124] W.W.Mullins, R.F.Sekerka. Morphological Stability of a Particle Growing by Diffusion or Heat Flow. J.Appl. Phys. 1963. 34. pp323.
    [125] J.P.van der Eerden, H.Muller-Krnmbhaar, Formation of macrosteps due to time dependent impurity adsorption. Electrochim. Acta.1986.31.pp1007-1012.
    [126] K.Sangwal, S.Veintemillas-Verdaguer, J.Torrent-Burgues. Growth habit and surface morphology of L-arginine phosphate monohydrate single crystals. J.Crystal Growth. 1995. 155. pp135-143.
    [127] K.Sangwal, J.Torrent-Burgues, F.Sanz, P.Gorostiza. Atomic force microscopic study of step bunching and macrostep formation during the growth of L-arginine phosphate monohydrate single crystals. J.Crystal Growth. 1997. 172. pp209-218.
    [128] S.R.Coriell, B.T.Murray, A.A.Chernov, G.B.Mcfadden. Step bunching on a vicinal face of a crystal growing in a flowing solution. J.Crystal Growth. 1996. 169. pp773-785.
    [129] A.A.Chernov. How does the flow within the boundary layer influence morphological stability of a vicinal face. J.Crystal Growth. 1992. 118. pp333.
    [130] I.Sunagawa, P.Bennema. Modes of vibrations in step trains: Rhythmical bunching. J.Crystal Growth. 1979. 46. pp451-457.
    [131] A.J.Malkin, Yu.G.Kuznetsov, A.MePherson. In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization. J.Crystal.Growth. 1999. 196 .pp471-488.
    [132] A.A.Chemov. Modem Crystallography III: Crystal Growth, Springer-Verlag, Berlin. Heidelberg, New York, Tokyo. 1984. p153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700