纳米Si_3N_4基陶瓷复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以纳米Si_3N_4粉末作为原料,采用热压烧结方法制备了纳米Si_3N_4基陶瓷复合材料,运用XRD、SEM、TEM、EDX等手段对材料的显微组织进行了分析,研究了TiC、TiN、WC等第二相颗粒以及碳纳米管的添加对纳米Si_3N_4陶瓷力学性能的影响。
     首先,介绍了Si_3N_4陶瓷的组织性能、制备方法、增韧机理和发展趋势,并在此基础上指出了本文研究的目的和意义。其次,介绍了纳米Si_3N_4基陶瓷复合材料的制备工艺、力学性能的测试方法以及显微组织的表征方法。
     研究发现,将纳米Si_3N_4粉末进行超声分散,可以改善其分散状况;加入适量的表面活性剂能改善纳米Si_3N_4粉末的分散效果;分散体系的PH值也影响纳米Si_3N_4粉末的分散效果。纳米Si_3N_4陶瓷的主要组成相为α-Si_3N_4、β-Si_3N_4和Si_2N_2O,其组织由尺寸为100纳米左右的品粒组成。纳米Si_3N_4陶瓷的抗弯强度和断裂韧性均随α-Si_3N_4起始粉末含量的增加而先升后降,在其含量为40wt.%时达到最大值;硬度随α-Si_3N_4起始粉末含量的增加而降低。
     将TiC颗粒加入到纳米Si_3N_4陶瓷中,在液相烧结过程中,TiC与Si_3N_4发生反应,生成了TiC_(0.7)N_(0.3)。力学性能测试结果表明,添加适量的TiC颗粒可以提高纳米Si_3N_4陶瓷的抗弯强度和断裂韧性,当TiC的添加量为10wt.%时,抗弯强度和断裂韧性均达到最大值;纳米Si_3N_4陶瓷复合材料的硬度随TiC含量的增加而升高。
     纳米TiN颗粒与Si_3N_4基体之间有很好的化学相容性。添加适量的纳米TiN颗粒可以明显地提高纳米Si_3N_4陶瓷的抗弯强度和断裂韧性,抗弯强度和断裂韧性的最大值分别在纳米TiN添加量为10wt.%和15wt.%获得;纳米TiN颗粒的添加对纳米Si_3N_4陶瓷的硬度影响不大。纳米Si_3N_4-TiN陶瓷复合材料中的主要增韧机制为热膨胀失配增韧和裂纹偏转增韧。
     纳米Si_3N_4-WC陶瓷复合材料的硬度低丁纳米Si_3N_4陶瓷,但随WC含量的增加而逐渐升高。适量WC颗粒的添加可以提高纳米Si_3N_4陶瓷的断裂韧性和抗弯强度,其最大值分别在WC添加量为4wt.%和8wt.%时获得。
     CNTs-Si_3N_4纳米陶瓷复合材料的相组成主要为α-Si_3N_4、β-Si_3N_4和Si_2N_2O,碳纳米管在烧结过程中能保持良好的热稳定性。CNTs-Si_3N_4纳米陶瓷复合材料的抗弯强度和断裂韧性均随碳纳米管的含量的增加呈现先升后降的变化趋势,其最大值分别在CNTs含量为2wt.%和4wt.%时获得。碳纳米管含量为2wt.%时,硬度略有提高,然后随碳纳米管含量的继续增加而逐渐降低。碳纳米管增韧纳米氮化硅陶瓷材料的主要机制为碳纳米管的拔出、桥联和裂纹偏转机制。
     纳米氮化硅陶瓷的热震行为符合Hasselman的经典模型,起始粉末中适量α-Si_3N_4粉末的存在,能提高纳米氮化硅的抗热震性能。TiC颗粒的添加能改善纳米Si_3N_4陶瓷的热震抗力,添加了10wt.%TiC的纳米氮化硅陶瓷复合材料的临界温差△Tc最高,热震循环疲劳抗力最好。这是因为TiC的添加使裂纹产生钝化、偏转,消耗了更多的裂纹应变能,对裂纹的扩展有一定的阻碍作用。
The Si_3N_4 matrix nano-ceramic composites were fabricated by hot press sintering using nano-Si_3N_4 powders. The microstructures were analyzed by means of XRD, SEM, TEM. EDX and so on. The effect of the second phases such as TiC、TiN、WC particles and CNTs on the mechanical properties of Si_3N_4 nano-ceramics were investigated.
     First, the microstructure, fabrication methods, mechanical properties, toughening mechanisms and development tendency of Si_3N_4 ceramics as well as the development status of nano-composite ceramics were introduced. Based on the above work, the purposes and significance of this thesis were pointed out. Secend, the fabrication techniques, the testing methods of mechanical properties and the observing methods of microstructure of Si_3N_4 matrix nano-ceramic composites were introduced.
     The research results show that the dispersion effect of nano-Si_3N_4 powders can be improved after being ultrasonically dispersed. The introduction of proper amount of surfactant can improve the dispersion effect of nano-Si_3N_4 powders. In addition, PH values of dispersing system also affect the dispersion effect. The main phases in Si_3N_4 nano-ceramics areα-Si_3N_4,β-Si_3N_4 and Si_2N_2O, and the SEM micrographs show that the microstructure of sintered materials consists of grains with approximate size of 100 nm. The flexural strength and the fracture toughness increase initially with the increase of the amount ofα-Si_3N_4 starting powders then decrease, and the maximum mechanical properties are obtained when the amount ofα-Si_3N_4 powders is 40wt.%. The hardness values decrease with the increase ofα-Si_3N_4 starting powders amount.
     The TiC particles that added as a dispersed phase react with Si_3N_4 during the liquid phase sintering, with the formation of TiC_(0.7)N_(0.3). Adding proper amount of TiC particles can increase the flexural strength and the fracture toughness of Si_3N_4 nano-ceramics. The maximum values of the flexural strength and the fracture toughness were obtained when the amount of TiC particles is 10wt.%. The Vickers hardness of Si_3N_4 nano-ceramic composites increases with the increase of TiC amount.
     There is a good chemical consistency between TiN particles and Si_3N_4 matrix. The addition of proper amount nano-TiN particles can significantly increase the flexural strength and the fracture toughness. The maximum values of the fracture toughness and the flexural strength could be obtained when the amount of TiN particles was 10wt.% and 15wt.% respectively. However, the addition of nano-TiN particles has little effect on the hardness of Si_3N_4 nano-ceramics. The main toughening mechanism existing in Si_3N_4-TiN nano-ceramic composites are thermal expansion mismatch toughening mechanism and crack deflection toughening mechanism.
     The Vickers hardness of Si_3N_4-WC nano-ceramic composites is lower than that of Si_3N_4 nano-ceramics, while increases with the increase of WC amount. Adding proper amount of WC particles can increase the fracture toughness and the flexural strength of Si_3N_4 nano-ceramics. The maximum values of the fracture toughness and the flexural strength can be obtained when the amount of WC particles is 4wt.% and 8wt.% respectively.
     The main phases in CNTs-Si_3N_4 nano-ceramic composites areα-Si_3N_4,β-Si_3N_4 and Si_2N_2O. The carbon nanotubes can maintain good thermal stability during the sintering process of Si_3N_4 ceramics. The fracture toughness and the flexural strength initially increase with the increase of carbon nanotubes amount then decrease, and the maximum values of the fracture toughness and the flexural strength can be obtained when the amount of carbon nanotubes is 4wt.% and 2wt.% respectively. The Vickers hardness values has a little increase when the amount of carbon nanotubes is 2wt.%, then gradually decrease with the increase of carbon nanotubes amount. The main toughening mechanism existing in CNTs-Si_3N_4 nano-ceramic composites are pullout of CNTs, bridging of CNTs and crack deflection.
     The thermal shock behavior of Si_3N_4 nano-ceramics is similar to the mode of Hassalman. The existence ofα-Si_3N_4 starting powders can improve thermal shock resistance. The addition of proper amount TiC particles can improve the thermal shock resistance. When the TiC amount is 10wt.%, the critical temperature difference is highest and the thermal fatigue resistance is the best. It is because that TiC particles can induce crack passivation and deflection, which dissipates more crack strain energy and hinders the extension of thermal shock cracks.
引文
[1] 赵振波,于晓东,梁胜德等.自韧化氮化硅陶瓷的研究与进展[J].无机材料学报,1997,12(1):1-10.
    [2] 张长瑞,郝元恺.陶瓷基复合材料[M].北京:国防科技大学出版社,2001:28-30.
    [3] 冯志峰,徐政,张培志.气压烧结氮化硅陶瓷致密化研究[J].建筑材料学报,1999,2(3):241-244.
    [4] K. Niihara. New design concept of structural ceramics-ceramic nanocomposites[J]. Journal of the Ceramic Society of Japan, 1991, 99(10): 974-982.
    [5] A. Zerr, G. Miehe, G. serghiou, et al. Synthesis of cubic silicon nitride [J]. Nature, 1999, 400 (6747): 340-342.
    [6] J. Z. Jiang, K. Stahl, R. W. Berg et al. Structural characterization of cubic silicon nitride[J].Europhysics Letters, 2000, 51(10): 62-67.
    [7] 李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1990:122.
    [8] 郭瑞松,蔡舒,季惠明等.工程结构陶瓷[M].天津:天津大学出版社,2002:141-173.
    [9] 刘维良,喻佑华.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004:206-207.
    [10] J.E. Sheehan. Passive and active oxidation of hot-pressed silicon nitride materials with two magnesia contents[J]. Journal of the American Ceramic Society, 1982, 65(7): 111-113.
    [11] W.C. Tripp, H.C. Graham. Oxidation of Si_3N_4 in the range 1300℃ to 1500℃[J]. Journal of the American Ceramic Society, 1976, 59 (9-10): 399- 403.
    [12] 张其土,丁子上.Si_3N_4材料的钝化氧化和活化氧化[J].南京化工学院学报,1994,16(3):20-25.
    [13] 张其土,李旭平.Si_3N_4材料氧化的热力学分析[J].耐火材料,1997,31(5):256-259,262.
    [14] 张其土.Si_3N_4陶瓷材料的氧化行为及其氧化机理[J].南京化工大学学报,1999,21(5):9-13.
    [15] 罗学涛,袁润章.Y-La-Si_3N_4陶瓷高温氧化和热震对其力学性能影响[J].武汉工业大学学报,1998,20(3):16-19.
    [16] J.J. Moore, H.J. Feng. Combustion synthesis of advanced material: Part I. Reaction parameters, Part Ⅱ. Classification, application and modeling[J]. Progress in Materials Science, 1995,39: 243-273, 275-316.
    [17] 王华,戴永年.用稻壳合成氮化硅超微粉的反应动力学特征[J].耐火材料,1996,30(2):77-79,87.
    [18] 宋国瑞,兰祝刚,姚惠贞.LCVD法沉积Si_3N_4薄膜微透镜的研究[J].真空科学与技术,1997,17(2):84-87.
    [19] 周海,吴大兴,杨川等.DC-PVCD法快速制备Si_3N_4薄膜[J].硅酸盐学报,1997,25(4):489-493.
    [20] 洪若瑜,郑国梁,李洪钟.高频等离子体化学气相沉积法制氮化硅的化学平衡计算[J].化工冶金,1997,18(4):295-302.
    [21] [日]樱井良文,小泉光惠等编著,陈俊彦,王余君译.新型陶瓷材料及其应用[M].北京:中国建筑工业出版社,1983:135.
    [22] 王为民,梅炳初,袁润章.氮化物陶瓷的自蔓延燃烧合成[J].武汉工业大学学报.1994,16(1):54-58.
    [23] 王华彬,张学忠,韩杰材等.自蔓延高温合成氮化硅的生长机理[J].材料科学与工艺,2001,9(1):64-67.
    [24] A. Pawelec. B. Strojek, G. Weisbrod, et al. Preparation of silicon nitride powder from silica and ammonia[J]. Ceramics International, 2002, 28: 495-501.
    [25] 陈殿营,张宝林,庄汉锐等.自蔓延燃烧合成β-Si_3N_4棒晶[J].无机材料学报,2002,17 (4):696-702.
    [26] A.J. Pyzik, D.F. Carrou. Technology of self-reinforced silicon nitride[J]. Annual Review of Materials Science, 1994, 24: 189-212.
    [27] K.R. Lai, T.Y. Tien. Kinetics of β-Si_3N_4 grain growth in Si_3N_4 ceramic sintered under high nitrogen pressure[J]. Journal of the American Ceramic Society, 1993, 76: 91 -96.
    [28] Y. Goto, G. Thamas. Phase transformation and micro-structural changes of Si_3N_4 during sintering[J]. Journal of Materials Science, 1995, 30: 2194-2198.
    [29] 徐友仁,黄莉萍,符锡仁等.添加稀土氧化物的热压氮化硅陶瓷[J].中国科学,1985,4A:384-387.
    [30] S.Y. Yoon, T. Alcatsu. E. Uasuda. The microstructural and creep deformation of hot-pressed Si_3N_4 with different amounts of sinter additives[J]. Journal of Materials Research, 1996, 11:120-126.
    [31] I. Tanaka, K. Igashira, T. Okamoto, K. Niihara. High-temperature fracture mechanism of low-Ca doped silicon nitride[J]. Journal of the American Ceramic Society, 1995,78:752-759.
    [32] 卢芳云,蔡清裕,周新贵等.氮化硅粉末的冲击波活化与烧结研究[J].硅酸盐学报,1999,27(1):107-111.
    [33] 庄清平.纳米SiO_2与有机物分子的亲和性和分散性[J].中国粉体技术, 2003,6:36-41.
    [34] 徐鑫,黄莉萍,符锡仁.β-Si_3N_4粉末烧结及其显微结构形成[J].无机材料学报,2000,15(1):50-54.
    [35] 池跃章.影响氮化硅制品显微结构及性能的因素[J].陶瓷工程,1997.31(4):12-14,43.
    [36] 李柳生, Kleebe H-J,Ziegler G.添加剂和升温速度对Si_3N_4陶瓷显微结构的影响[J].硅酸盐学报,1997,25(4):466-469.
    [37] 李风梅,陈大明,李斌太.添加剂对自韧热压氮化硅陶瓷结构及性能的影响[J].第九界全国复合材料学术会议论文集.北京:世界图书出版公司,1996:24-27.
    [38] 穆柏春,李明,由向群等.稀土对陶瓷力学性能和显微组织的影响[J].中国稀土学报[J],2000,18(1):38-40.
    [39] L. Gao, H.T. Yang, R.Z. Yuan. Sintering and microstructures of silicon nitride with magnesia and cerium additives[J]. Journal of Materials Processing Technology, 2001. 115: 298-301.
    [40] H. Yang, G. Yang, R. Yuan. Pressless sintering of silicon nitride with magnesia and ceria[J].Materials Research Bulletin, 1998, 33(10): 1467-1473.
    [41] Y. Goto, G. Thomas. Microstructure of silicon nitride ceramics sintered with rare-earth oxides[J]. Acta Metallurgica et Materialia, 1995, 43(3): 923-930.
    [42] H.H. Lu, J.L. Huang. Effects of Yb_2O_3 and Y_2O_3 on the microstructure and mechanical properties of silicon nitride[J]. Ceramics International, 2001, 27: 621-628.
    [43] W.T. Luo, J.L. Huang, Z.H. Shi. The effects of ytterbium oxide on the microstructure and R-curve behaviors of silicon nitride[J]. Materials Chemistry and Physics, 2002, 73: 123-128.
    [44] Z.L. Hong, H. Yoshida, Y. Kuhara. The effect of additives on sintering behavior and strength retention in silicon nitride with Re-disilicate[J]. Journal of the European Ceramic Society,2002, 22: 527-534.
    [45] R. Anatoly. Silicon nitride and silicon nitride ceramics[J]. Current Opinion in Solid State and Materials Science, 1999, 4: 453-459
    [46] H.T. Yang, L. Gao, G.Q. Shao. Grain boundary glassy phase and abnormal grain growth of silicon nitride ceramics[J]. Ceramics International, 2001, 27: 603-605.
    [47] W.J. Tseng, H. Kita. As-fired strength of sintered silicon nitride ceramics[J]. Ceramics International, 2000, 26: 197-202.
    [48] 董文麒.氮化硅陶瓷[M].北京:中国建筑工业出版社,1987:56-57.
    [49] I. Tanka, G. Pezzottr, K. Matsushita. Impurities enhanced cavity formation in at elevated temperatures[J]. Journal of the American Ceramic Society, 1991, 74: 752-759.
    [50] C. J. Hwang, W. Susnitzky, R. Newman. Controlled crystallization in self-reinforced silicon nitride with Y_2O_3, SrO and CaO: crystallization behavior[J]. Journal of the American Ceramic Society, 1995, 78: 3072-3080.
    [51] 陈源,黄莉萍,孙兴伟等.烧结助剂对氮化硅陶瓷高温性能的影响[J].硅酸盐学报,1997,25(2): 183-187.
    [52] 郭景坤.关于先进结构陶瓷研究[J].无机材料学报,1999,14(2):193-202.
    [53] 邬凤英,庄汉锐,马利泰等.添加稀土氧化物的气压烧结氮化硅[J].无机材料学报,1994,9(3):303-308.
    [54] 庄汉锐,华道权,徐素英.反应烧结氮化硅的热压[J].无机材料学报,1991,6(5):315-320.
    [55] 杨海涛,杨国涛,袁润章.氮化硅陶瓷烧结过程中玻璃相的自动析晶[J].中国有色金属学报,1998,8(1):119-122.
    [56] H.T. Yang, R.Z. Xu, P.Y. Huang. The role of MgO-CeO_2 in densification of Si_3N_4[J].Transactions ofNonferrous Metals Society of China, 1996, 6(3): 91-95.
    [57] T. Nishimura, M. Mitomo, H. Suematsu. High temperature strength of silicon nitride ceramics with ytterbium silicon oxy-nitride[J]. Journal of Materials Research, 1997, 12(1): 203-209.
    [58] H. Park, H. E. Kim, K. Niihara. Microstructure evolution additive[J]. Journal of the American Ceramic Society, 1997, 80(3): 750-756.
    [59] S.Q. Guo, N. Hirosaki, Y. Yamamato. Improvement of high temperature strength of hot-pressed sintering silicon nitride with Lu_2O_3 addition[J]. Scripta Materialia, 2000, 45 (7):867-874.
    [60] F. Monteverde, A. Bellosi. High oxidation resistance of hot pressed silicon nitride containing yttria and lanthana[J]. Journal of the European Ceramic Society, 1998, 18: 2313-2321.
    [61] 马光华,王永清.氮化硅陶瓷韧化的研究进展[J].陶瓷学报,2001,22(2):99-102.
    [62] 李江涛,葛昌纯.原位燃烧合成Si_3N_4/Ti(C,N)/SiC复相陶瓷热力学分析[J].硅酸盐学报,1998,26(3):300-304.
    [63] L. Gao, J.G. Li, T. Kusunose, et al. Preparation and properties of TiN- Si_3N_4 composites[J].Journal of the European Ceramic Society, 2004, 24: 381-386.
    [64] 孙兴伟,刘学建,葛其明等.(TiB_2,TiN)-Si_3N_4基复合材料的性能及显微结构[J].硅酸盐学报,2000,28(1):65-67.
    [65] 翟洪祥,袁泉,黄勇等.SiC晶须及原位增强Si_3N_4基复合材料的断裂过程[J].硅酸盐学报,1998,26(5):571-577.
    [66] 饶平根,叶建东,毛骏飙等.ZrO_2-Si_3N_4陶瓷复合材料中的化学不相容性[J].无机材料学报,1999,14(5):711-715.
    [67] 罗学涛,张立同.氮化硅陶瓷自增韧技术进展[J].复合材料学报,1997,14(3):1-8.
    [68] F.F.Lange.Fracture toughness of Si_3N_4 as a function of the initial α-phase content[J].Journal of the American Ceramic Society,1979,62:428-430.
    [69] 罗学涛,袁润章.β晶种增韧Si_3N_4复合材料的制备和力学性能[J].硅酸盐学报,1999,27(4):461-465.
    [70] P. F. Becher, E. Y. Sun, K. P. Plucknett, et al. Microstructural design of silicon nitride with improved fracture toughness: I Effect of grain shape and size[J]. Journal of the American Ceramic Society, 1998, 81 (1): 2821-2830.
    [71] 吴义兵,杨辉,葛曼珍.层状复合陶瓷断裂特性[J].材料科学与工程,1997,15(3):11-14.
    [72] 关振铎,李淑琴,杨征.Si_3N_4-TiN/BN层状陶瓷材料阻力曲线及其增韧机制的研究[J].硅酸盐学报,2001,29(1):8-12.
    [73] H. Y. Liu, S. M. Hsu. Fracture behavior of multilayer silicon nitride/ boron nitride ceramics[J].Journal of the American Ceramic Society, 1996,79 (9): 2452-2457.
    [74] 郭海,黄勇,李建保.层状氮化硅陶瓷的性能与结构[J].硅酸盐学报,1997,25(5):532-536.
    [75] 张立德.纳米材料[M].北京:化学工业出版社,2000:6.
    [76] 潘劲松,黄学辉,顾少轩.纳米材料的类别划分及其依据[J].材料导报,2000,14(11):28-29.
    [77] 戴遐明,艾德生,李庆丰等.纳米陶瓷材料及其应用[M].北京:国防工业出版社,2005:276.
    [78] 郭景坤,徐跃萍.纳米陶瓷及其进展[J].硅酸盐学报,1992,20(3):286-291.
    [79] 高春华,黄新友.纳米陶瓷的性能及其制备技术[J].云南大学学报,2002,16(1):92-96.
    [80] 施锦行.纳米陶瓷的制备及其特性[J].中国陶瓷.1997,33(3):36-38.
    [81] 邵刚勤,段兴龙,袁润章.纳米陶瓷、复相陶瓷及纳米复相陶瓷[J].材料科学与工艺,2003,11(2):211-214.
    [82] 靳喜海,高濂.纳米复相陶瓷的制备、显微结构和性能[J].无机材料学报,2001,16(2):200-206.
    [83] 金正爱,邱向东.纳米陶瓷复合材料的制备及特性[J].中国有色金属学报,1998,8(增刊2):124-128.
    [84] 张志杰,苏达根.纳米-纳米复相陶瓷的制备[J].中国陶瓷,2003,39(1):12-14.
    [85] 王辅忠,陈维石,安希忠等.纳米复相陶瓷研究动态[J].陶瓷,2003,1:11-13.
    [86] U. BetZ, A. Sturm, J.F. Loffier, et al. Microstructural development during final-stage sintering of nanostructured zirconia based ceramics[J]. Materials Science & Engineering A, 2000,281: 68-74.
    [87] 杨明辉,郝春云,杨海涛等.无压烧结Al_2O_3/si_3N_4纳米复合陶瓷的力学性能[J].山东陶瓷,2004,27(5):3-5.
    [88] 韩保红,闫石,马英忱等.纳米/微米结构Al_2O_3-ZrO_2复相陶瓷韧化力学[J].振动工程学报,2004,17(增刊):877-879.
    [89] 张恒,张力.纳米复合材料实用化技术前景[J].材料导报,2001(8):20-22.
    [90] 曾照强,胡晓清,林旭平等.添加Cr_2O_3对Al_2O_3-TiC陶瓷烧结及纳米结构形成的影响[J].硅酸盐学报,1998,26(2):178-181.
    [91] 张伟儒,顾培芷,王长文.Si_3N_4/纳米SiC复相陶瓷的研究[J].硅酸盐学报,1998,1:4-9.
    [92] H. Tan, W. Yang. Toughening mechanisms of nano-composite ceramics[J]. Mechanics of Materials, 1998,30: 111-123.
    [93] M. Steritzke. Review: Structural ceramic nanocomposites[J]. Journal of the European Ceramic Society, 1997,17: 1061-1082.
    [94] R. Vaβen, D. St(?)ver. Processing and properties of nanophase non-oxide ceramics[J]. Materials Science & Engineering A, 2001, 301:59-68.
    [95] A. Bellosi, J. Vicens, V. Medri, S. Guicciardi. Nanosize silicon nitride: characteristic of doped powders and of the related sintered materials[J]. Applied Physics A: Materials Science & Processing, 2004, 10: 1007-1023.
    [96] A. Bellosi, D. Sciti, S. Guicciardi. Synergy and competition in nano-and micro-design of structural ceramics[J]. Journal of the European Ceramic Society, 2004,24: 3295-3302.
    [97] 周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995:326-371.
    [98] 束德林.金属力学性能(第二版)[M].北京:机械工业出版社,1997:61-157.
    [99] 关振铎,胡一昕.压痕法测定结构陶瓷K_(IC)精度的探讨[J].硅酸盐学报,1987,15(4):380-384.
    [100] E. Mikio. Physical properties and cutting performance of silicon nitride ceramics[J]. Wear,1985, 102: 195-210.
    [101] A.G. Evans, E.A. Charles. Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society, 1976, 59 (7-8): 371-374.
    [102] P.K. Panda, P.K. Panda, T.S. Kannan, et al. Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment[J]. Science and Technology of Advanced Materials, 2002,3: 327-334.
    [103] M. Collin, D. Rowcliffe. Analysis and prediction of thermal shock in brittle materials[J]. Acta Materialia, 2000,48: 1655-1665.
    [104] 毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社,2003:4-8.
    [105] 盖国胜.超微粉体技术[M].北京:化学工业出版社,2004:130-137.
    [106] 李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2004:147.
    [178] 许珂敬,许煜汾.表面活性剂在制备纳米ZtO_2粉体中的作用[J].材料研究导报,1999,13(4):434-436.
    [108] 孙静,高濂,郭景坤.分散剂用量对几种纳米氧化锆粉体尺寸表征的影响[J].无机材料学报,1999,14(3):465-469.
    [109] 刘程.表面活性剂应用手册[M].北京:化学工业出版社,1992:1-5.
    [110] H.D. Kim, B.D. Han. Novel two-step sintering process to obtain a bimodal microstructure in silicon nitride[J]. Journal of the American Ceramic Society, 2002, 85(1): 245-252.
    [111] J. Szépv(?)lgyi, I. Mohai. Densification of nanosized amorphous and crystalline silicon nitride powders[J]. Ceramics International, 1999,25: 717-721.
    [112] D.D. Lee, S.J.L. Kang, G. Petzow. Effect of α to β phase transition on sintering of silicon nitride ceramics [J]. Journal of the American Ceramic Society. 1990, 73 (3): 767-769.
    [113] D.D. Lee, S.J.L. Kang, D.N. Yoon. Mechanism of grain growth and α-β transformation during liquid phase sintering of β′-sialon[J]. Journal of the American Ceramic Society, 1988,71(9): 803-806.
    [114] M. Kramer, M. J. Hoffman, G. Petzow. Grain growth of silicon nitride dispersed in a oxynitride glass[J]. Journal of the American Ceramic Society. 1993, 76 (11): 2778-2784.
    [115] C.J. Hwang, T.Y. Jian. Microstructure development in silicon nitride ceramics[J]. Materials Science Forum, 1989, 47: 84-109.
    [116] V.P. Paranosenkov, I.Yu. Kelina, L.A. Plyasunkova, et al. Preparation of dense ceramics based on silicon nitride nanopowders[J]. Refractories and Industrial Ceramics, 2003, 44 (4):223-226.
    [117] 徐鑫,黄莉萍,葛其明等.无压烧结制备氧氮化硅陶瓷[J].无机材料学报,2001,16(1):165-168.
    [118] 张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2001:260-274.
    [119] 王零森.特种陶瓷[M].中国工业大学出版社,2003:129-132.
    [120] 谭寿洪,陈忠明,江东亮.液相烧结SiC陶瓷[J].硅酸盐学报,1998,26(2):191-196.
    [121] H.K. Schmid, M. Aslan. Microstructural characterization of Al_2O_3-SiC nanocomposites[J].Journal of the European Ceramic Society, 1998, 18: 39-49.
    [122] 师瑞霞,尹衍升,周春华等.钴包覆纳米Al_2O_3/TiC_p复相陶瓷的力学性能及其增韧机[J].机械工程材料,2004,28(11):28-31.
    [123] 蒋俊,祝昌军,高玲等.Al_2O_3-TiC复相陶瓷的研究进展[J].江苏陶瓷,2002,35(1):26-29.
    [124] 董倩,唐清,李文超.Al_2O_3-TiC基复相陶瓷的制备和性能[J].过程工程学报,2001,1(3):331-335.
    [125] 吕志杰,艾兴,赵军等.Si_3N_4/TiC纳米复合陶瓷材料显微结构[J].山东大学学报(工学版),2005,35(1):13-16.
    [126] J.Vleugels,D.T.Jiang.Development and characterization of sialon composites with TiB_2,TiN,TiC and Ti(C,N)[J].Journal of Materials Science,2004,39:3375-3381.
    [127] 徐智谋,易新建,熊维皓等.Ti(C,N)固溶体粉末的组织结构研究[J].粉末冶金技术,2004,22(1):3-6.
    [128] R.G. Duan, G. Roebben, J. Vleugels, et al. Effect of TiX(X=C, N, O) additives on microstructure and properties of silicon nitride based ceramics[J]. Scripta Materialia, 2005,53: 669-673.
    [129]杨建,薛向欣,谢朋等.TiN对Sialon陶瓷结构和性能的影响[J].材料工程,2002,1:44-48.
    [130] K. Yamada, N. Kamiya. High-temperature mechanical properties of Si_3N_4- MoSi_2 and Si_3N_4-SiC composites with network structures of second phase[J]. Materials Science & EngineeringA, 1999, 261: 270-277.
    [131] I. Tateoki, K. Hideki. Tribological behavior of Mo_5Si_3 particle reinforced silicon nitride composite[J]. Journal of the American Ceramic Society, 2005, 88 (1): 228-232.
    [132] 郭英奎.烧结温度对WC增韧Al_2O_3陶瓷耐磨性的影响[J].宇航材料工艺,2002,2:22-24,47.
    [133] 汪霖.氧化铝陶瓷抗热震性研究(D).中科院上海硅酸盐研究所,2001.
    [134] 杨海涛,徐润泽,黄培云等.碳化钨对常压烧结氮化硅陶瓷致密化的影响[J].硬质合金,1997,14(1):28-31.
    [135] T.I. Zuka, H. Kita, H. Hyuga, et al. In situ synthesis and microstructures of tungsten carbide-nanoparticles-reinfor-ced silicon nitride composites[J]. Journal of the American Ceramic Society, 2004,87(3): 337-41.
    [136] 李峰,白朔,成会明.碳纳米管及其应用[J].燃料化学学报,2001,29(1):95-96.
    [137] 姬海宁,张怀武.碳纳米管的研究与发展[J].磁性材料及器件,2001,8:37-41.
    [138] W.A . de Heer. Recent development of carbon nanotubes[J]. Current Opinion in Solids State and Materials Science, 1999,4: 355-359.
    [139] Z.L. Wang, P. Poncharal, W.A. de Heer. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM[J]. Journal of Physics and Chemistry of Solids,2000,61: 1025-1030.
    [140] 程瑞玲,王依民.聚合物/碳纳米管复合材料的研究现状及在纤维中的应用[J].合成技术及应用,2003,18(2):25-29.
    [141] 王彪,王贤保,胡平安等.碳纳米管/聚合物纳米复合材料研究进展[J].高分子通报,2002,6:8-14.
    [142] K.T Lau, D.H Dav. The revolutionary creation of new advanced materials-carbon nanotube composites [J].Composites: Part B, 2002,33: 263-277.
    [143] R.Z. Ma, J.Wu, B.Q. Wei, et al. Processing and properties of carbon nanotubes-nano-SiC ceramic [J]. Journal of Materials Science, 1998, 33: 5243-5246.
    [144] R.W. Siegel, S.K. Changs, B.J. Ash. Mechanical behavior of polymer and ceramic matrix nanocomposites[J]. Scripta Materialia, 2001,44: 1472-1475.
    [145] J.W An, D.S Lim. Effect of carbon nanotube additions on the microstructure of hot-pressed alumina[J]. Journal of Ceramic Processing Research, 2003,3 (3): 201-204.
    [146] G.D. Zhan, J.D. Kuntz, J. Wan, et al. Single-wall carbon nanotubes as attractive toughing agents in alumina-based nanocomposites[J]. Nature Materials, 2003, 2: 38-42.
    [147] G.D Zhan, J.D. Kuntz, J.E. Garay. Electrical properties of nanoceramics reinforced with ropes of single walled carbon nanotubes[J]. Applied Physics Letters, 2003, 83 (6): 1228-1230.
    [148] Cs. Balazsi, Z. Kónya, F. Wéber, et al. Preparation and characterization of carbon nanotube reinforced silicon nitride composites [J]. Materials Science & Engineering C, 2003, 23: 1133-1137.
    [149] 刘学建,黄智勇,向长淑等,反应烧结工艺制备碳纳米管/氮化硅陶瓷基复合材料[J].硅酸盐学报,2006,34(2):133-136.
    [150] W.D. Kingery. Metal-ceramic interaction: IV, absolute measurement of metal-ceramic interfacial energy and interfacial adsorption of silicon from iron-silicon alloys[J]. Journal of the American Ceramic Society, 1954,37: 42-25.
    [151] W.D. Kingery. Factors affecting thermal stress resistance of ceramic materials[J]. Journal of the American Ceramic Society, 1955,38: 3-15.
    [152] D.P.H. Hasselman. Approximate theory of thermal stress resistance of brittle ceramics involving creep[J]. Journal of the American Ceramic Society, 1969,50: 454-457.
    [153] D.P.H. Hasselman. Griffith criterion of thermal shock resistance of single-phase versus multiphase brittle ceramics[J]. Journal of the American Ceramic Society, 1969, 52: 288-289.
    [154] D.P.H. Hasselman. Unified theory of thermal shock fracture initiation, crack propagation in brittle ceramics[J]. Journal of the American Ceramic Society, 1969, 52: 600-604.
    [155] T.K. Gupta. Strength degradation and crack propagation in thermally shocked alumina[J].Journal of the American Ceramic Society, 1972,55 (5): 249-253.
    [156] J.A. Coppola, D.P.H. Hasslman. Strength loss of brittle ceramics subjected to severe thermal shock[J]. Journal of the American Ceramic Society, 1972, 55 (9): 481-489.
    [157] J. Zhao, X. Ai, X.P. Huang. Relationship between the thermal shock behavior and the cutting performance of a funtionally gradient ceramic tool[J]. Journal of Materials Processing Technology, 2002, 129: 161-166.
    [158] A.G. Evans, Fracture Mechanics: Perspectives and Direction[M]. In: Wei R P. Gangloff R P eds. ASTM STP1020, American Society for Testing and Materials, Philadelphia, 1989:267-291.
    [159] R.H. Dauskardt, W. Yu, R.O. Ritchie. Fatigue crack propagation in transformation toughened zirconia ceramic[J]. Journal of the American Ceramic Society, 1987,70: 248-252.
    [160] R.O. Ritchie, R.H. Dauskardt. Cyclic fatigue of ceramics: A fracture mechanics approach to subcritical crack growth and life prediction[J]. Journal of the Ceramic Society of Japan,1991,99: 1047-1062.
    [161] M. Okazaki, A.J. Mcevily, T. Tanaks. On the mechanism of fatigue crack growth in silicon nitride. Metallurgical and Materials Transactions A, 1991,22: 1425-1434.
    [162] M.J. Reece, F. Guiu, M.F.R. Sammur. Cyclic fatigue crack propagation in alumina under direct tension-compression loading[J]. Journal of the American Ceramic Society, 1989, 72:248-352.
    [163] S. Suresh, L.X. Han, J.J. Petrovic. Fracture of Si_3N_4-SiC whisker composites under cyclic loads[J]. Journal of the American Ceramic Society, 1988,71: 158-161.
    [164] D.A. Kroha, D.P.H. Hasselman. Static and cyclic fatigue behavior of a polycrystalline alumina[J]. Journal of the American Ceramic Society, 1972, 55: 208-211.
    [165] D.B. Marshall, M.C. Shaw, R.H. Dauskardt, et al. Crack-tip transformation zone in toughened zirconia[J]. Journal of the American Ceramic Society, 1990, 73: 2659-2666.
    [166] 詹国栋,周洋.非相变增韧陶瓷的疲劳行为[J].机械工程材料,1994,18(6):1-3.
    [167] R. Kossowsky. Cyclic fatigue of hot pressed Si_3N_4[J]. Journal of the American Ceramic Society, 1973,56: 531-535.
    [168] A.G. Evans, E.R. Fuller. Crack propagation in ceramic materials under cyclic loading conditions[J]. Metallurgical and Materials Transactions, 1974, 5: 27-33 .
    [169] L.A. Sylva, S. Suresh. Crack growth in transforming ceramics under cyclic tensile loads[J].Journal of Materials Science, 1989, 24: 1729-1738.
    [170] S. Horibe. Cyclic fatigue crack growth from indentation flow in Si_3N_4[J]. Journal of Materials Science Letters, 1988, 7: 725-727.
    [171] W.J. Lee, D.E. Case. Cyclic thermal shock in SiC whisker reinforced alumina composite[J].Materials Science & Engineering A, 1989, 119: 103-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700