WC/Al203-Cr-Mo-Ni金属陶瓷的制备及其组织、力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压模具是白铜合金挤压设备的关键部件,白铜管热挤压模工作时承受温度高,压力大,金属陶瓷的耐磨性、红硬性及韧性不够,且易产生裂纹,塌陷变形等不足,本文针对成形模具对陶瓷材料的要求,从提高陶瓷模具材料的综合力学性能出发,采用多元微米复合成功制备出具有较高综合力学性能的WC/Al2O3-Cr-Mo-Ni金属陶瓷模具材料。论文系统研究了复合材料的高能球磨工艺、材料组分、热压烧结工艺、力学性能、微观结构及抗热震性能的关系,并对WC/Al2O3-Cr-Mo-Ni金属陶瓷模具材料的增韧补强机理进行了探讨。
     论文研究了高能行星球磨制备金属陶瓷单质粉末及复合粉末的工艺方法,制备出尺寸细小分布均匀的复合粉末,研究了WC、Al2O3和金属Ni的含量对WC/Al2O3-Cr-Mo-Ni陶瓷模具材料力学性能和微观结构的影响,并对其热压烧结工艺参数进行了优化,最终成功研制了具有良好综合力学性能的WC/Al2O3-Cr-Mo-Ni陶瓷模具材料。研究表明:所研制的WC/Al2O3-Cr-Mo-Ni陶瓷模具材料的抗弯强度及断裂韧性随Ni含量的增加而提高,随Al2O3含量的增加而降低,硬度的变化趋势则相反,当Ni含量为7%、Al2O3含量为10%时,在热压烧结工艺为1500℃,压力25MPa,保温30min的条件下,该金属陶瓷具有良好的综合力学性能,抗弯强度为567MPa,断裂韧性为7.46MPa·m1/2,维氏硬度为15.24GPa,基本达到现用模具材料的水平。同样的成分在采用热等静压工艺1400℃烧结出的样品性能更优异,其抗弯强度达到623MPa,断裂韧性为7.75MPa·m1/2,维氏硬度为15.98GPa。论文探讨了WC/Al2O3-Cr-Mo-Ni陶瓷模具材料的断裂方式,研究发现随着粘接相Ni含量的增加,陶瓷材料的断裂方式由沿晶断裂向沿晶断裂与穿晶断裂相混合的方式转变,金属Ni的添加对陶瓷材料具有很好的增韧作用。研究和分析了WC/Al2O3-Cr-Mo-Ni陶瓷模具材料的增韧补强机理,其主要强韧化机制有晶内型结构强韧化、细晶强韧化、裂纹偏转、裂纹桥联、裂纹分叉,WC/Al2O3-Cr-Mo-Ni陶瓷模具材料的力学性能的提高是以上几种韧化机制复合作用的结果。WC/Al2O3-Cr-Mo-Ni陶瓷模具材料的热震临界温差△Tc为260~280K,比单相氧化铝的要高约80K,多元复合是陶瓷材料抗热震性能改善的主要原因。
White copper alloy extrusion die is a key component of extrusion equipment,it suffered high temperatures and under pressure when working,and the wear resistance of metal ceramic, red hardness and toughness is not enough, and easy to crack,collapse deformation. From the requirement for die materials,multi-phase composite ceramic die materials with high mechanical properties were fabricated successfully with multi-phase composite method. The correlations among the material composition,the hot pressing process, the microstructures, mechanical properties and thermal shock resistance were investigated. The strengthening and toughening mechanisms of the multi-phase composite ceramic die materials were studied systematically.
     The elemental powders and the composite powders were fabricated by planet ball-milling,we have achieved the fine and uniformly powders,it is benefit to subsequently hot-pressed sintering. The effects of WC、Al2O3 and metal Ni on the microstructure and mechanical properties of multi-phase composite ceramic die materials were discussed. The hot press sintering parameters were optimized. WC/Al2O3-Cr-Mo-Ni composite ceramic composite ceramic die material was fabricated successfully. Result shows that excellent mechnical property and microstructure could be obtained only with the condition of the suitable volume fraction and the suitable HP sintering technique. With increasing Ni additions,the flexural strength and fracture toughness of the composites increased,while the hardness is decreased,with increasing Al2O3 content,the change of the mechnical property of the composite is opposited to that the addition of Ni content.WC/Al2O3-Cr-Mo-Ni composite ceramic have been developed successfully by hot-pressed at 1500℃under 25 MPa in flowing argon. A flexural strength of 567MPa, a fracture toughness of 7.46 MPa·m1/2 and a Vicker's hardness of 15.24GPa are obtained with the addition of 7wt.% Ni and 10wt.% Al2O3 microparticles. The mechnical perporty of the same component prepared by HIP sintering is superior to than of hot-pressed sample, its flexural strength, fracture toughness and Vicker's hardness are 623MPa,7.75MPa·m1/2 and 15.98GPa,respectively. The fracture surface of the composite was characterized by a mix of intergranular and transgranular fracture as a result of the presence of both intergranular and intragranular secondary phase particles due to the increasing of Ni content. Toughening mechanisms of multiple reinforced WC/Al2O3-Cr-Mo-Ni cermets were studied. The main toughening mechanisms are fine grain strengthening and toughening,intergranular toughneing,crack deflection,crack bridging,crack branching toughening. It is suggested that theincrement in the mechanical properties of muiti-phase reinforced WC/Al2O3-Cr-Mo-Ni ceramics is due to the combined effects of toughening mechanisms. Finally,the thermal shock resistance of composite was also studied, The critical temperature difference(△Tc) was 260~280K,higher 80K than that of monolith. Fined grains and multiphase improve the thermal shock resistance of the composites.
引文
[1]Guo JingKun(?):郭景坤)Journal of Inorganic Materials(无机材料学报)[J],1999, 14(2):193
    [2]Xu Chonghai.Journal of the European Ceramic Society [J],25(2005):605
    [3]罗源心,何向山.国内外热挤压工模具用材的发展[J].材料科学与工程,1991(1)25-29
    [4]许崇海.陶瓷模具材料的研究与应用[J].稀有金属材料与工程,2005,34(增刊1):262-265.
    [5]赵诗奎,许崇海,孝煦.ZrO2-Al2O3-TiC纳微米复合陶瓷模具材料的研究[J].硅酸盐通报,2009,28(增刊):118-121
    [6]许煜汾,蒋贤俊.ZTA精密陶瓷拉丝模拉制钨丝的研究[J].合肥工业大学学报(自然科学版),1996,19(4):29-34.
    [7]杨学锋,邓建新,姚淑卿.Al2O3/TiC复合陶瓷拉丝模材料的摩擦磨损性[J].硅酸盐学报,2005,33(12):1522-1526
    [8]刘军,周飞.热挤压模用陶瓷材料的性能与应用研究[J].稀有金属材料与工程,2003,32(3):232-235
    [9]罗军明,杨刚,万润根,等.3Y-TZP-Al2O3陶瓷拉拔模材料及应用研究[J].金刚石与磨料磨具工程,2002,(2):41-43
    [10]杨刚,艾云龙,罗军明,等.TZP陶瓷拉丝模的开发与应用[J].模具工业,2001,(9):36-38
    [11]沈辉,易佑宁.PSZ陶瓷热挤压模的制备及应用研究[J].江苏陶瓷,1996,29(2):10-12
    [12]梁金生,梁广川.反应烧结氮化硅陶瓷模具材料的研究[J].中国陶瓷工业,2000,7(3):9-11
    [13]刘军,佘正国,罗启富.Sialon陶瓷热挤压模的应用研究[J].中国机械工程,1995,6(3):57-58
    [14]许崇海,孙德明.模具用Ti(C,N)/Al2O3陶瓷材料的微观结构与力学性能[J].粉术冶金技术.2005,23(4):243-47
    [15]孙德明,刘立红,刘玉婷,等.Al2O3/Cr3C2/(W,Ti)C陶瓷模具材料研究[J].粉末冶金技术,2005,23(5):343-46
    [16]周凤池,肖振声.一种金属陶瓷模具材料[P].中国专利:1332262,2002-01-23
    [17]孙康宁,曹宗安.MC5陶瓷拉拔模具材料[J].金属热处理,1994,(6):20-22
    [18]钱中良,熊惟皓,张杰.金属陶瓷拉伸模具材料[J].材料导报,1996,(5):8-11
    [19]李荣久,陶瓷-金属复合材料[M].北京:冶金工业出版社,2004
    [20]布罗克斯JA,株洲硬质合金厂情报科译.世界硬质合金指南与手册,北京:冶金工业出版社,1973
    [21]张荆门,硬质合金工业的进展(1)[J].粉末冶金技术,2002,20(3):140~142
    [22]徐润泽.粉末冶金结构材料学[M].长沙:中南工业大学出版社.1998
    [23]张长瑞,郝元恺.陶瓷基复合材料原理、工艺、性能设计[M].长沙:国防科技大学出版社,2001
    [24]穆柏春.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002
    [25]Ettmayer P,Lengauer,W. Story of Cermets. Powder Metallurgy International,1989,21(2):37-48
    [26]章桥新,张东明.Ti (C,N)基金属陶瓷的制备和研究[J],新技术新工艺,1996,(1):15~16
    [27]Ettmayer P. Hardmetals and cermets. Anu. Rev. Mater. Sci.1989, 19:145-164
    [28]江玉和.非金属材料化学[M].北京:科学技术文献出版社.1992
    [29]Suzuki Hayashi K,Taniguchi Y. Cemented carbide and cermets tooling for film-perforat ing,Trans. JIM,1981,22(8):758~762
    [30]梅罗特拉P.K,胡斯顿W. R. SiC晶须增韧陶瓷刀具及组合物.中国,发明专利,公开号CN1204308A,1999.1.6
    [31]郭景坤.中国结构陶瓷研究的进展及其应用[J].硅酸盐通报.1995, (4):18-28
    [32]郭景坤.从复合材料到多相材料[J].材料研究学报.2000,14(2):124-126
    [33]郭景坤.关于先进结构陶瓷的研究[J].无机材料学报.1999,14(2):193-199
    [34]郭景坤.关于多相陶瓷材料的研究[J].材料导报.2000,14(7):1-2
    [35]郭景坤.二十一世纪材料研究的新趋向—多相材料.中国科学基金.2001,(5):289-290
    [36]徐利华,丁子上,黄勇.先进复相陶瓷的研究现状与展望(Ⅲ)—纳米陶瓷复合材料的研究发展[J].硅酸盐通报.1997(2):56-59
    [37]K. Niihara,N. Aakahira,T. Sekino. New nanocomposite structural ceramics. Materials Research Society Symposium Proceedings.1993,286:405-412
    [38]施剑林,先进结构陶瓷材料的制备与设计.中国科学基金.1998,(2):83-87
    [39]F. de Mestral, F. Thevenot. Optimisation of Mechanical Properties in the Ternary System TiB2-TiC-SiC, Using Optimal Design. Proceedings of the 12th International Plansee Seminar '89.1989,557
    [40]徐利华,丁子上,黄勇.先进复相陶瓷的研究现状与展望((11)—高组元复合陶瓷材料的研究发展[J].硅酸盐通报.1996 6:42-46
    [41]江东亮,郭景坤.复相陶瓷[J],硅酸盐学报.1991,19(3):258-267
    [42]赵东林,周万城.陶瓷基复合材料及其制造工艺[J],西安工程学院学报.1998,20(2):36-38
    [43]刘大成.氧化铝陶瓷及其烧结,中国陶瓷.1998,34(5):13-15
    [44]姚俊杰,李包顺,黄校先,等SiO2-Si3N4复合材料的力学性能及其增韧机理[J],无机材料学报.1997,12(1):47-53
    [45]郭景坤.陶瓷的脆性与增韧[J],硅酸盐学报.1987,15(5):285
    [46]梁开明,顾扣芬,顾守仁,等.ZTA陶瓷Zr02的韧化机制与断裂韧性[J],硅酸盐学报.1995,23(5):477-487
    [47]史可顺,高温陶瓷复合材料的进展[J],硅酸盐学报.1993,21(1):77-87
    [48]周洋,詹国栋,徐明英,等.氧化铝陶瓷复合材料的微观结构与增韧机理[J],无机材料学报.1997,12(2):161-168
    [49]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J],硅酸盐学报.1994,22(3):259-268
    [50]B.T.Lee,K.H.Lee,K.Hiraga.Stressinduced phase transformation of ZrO2 in ZrO2 (3%Y2O3(mol))-25%Al2O3(vol) composite studied by transmission electronmicroscopy[J]. ScriptaMater,1998,38(7):1101
    [51]W.D.Kingery.Factors affecting thermal shock resistance of ceramic materials[J].J.Am. Ceram.Soc.1955,38(1):3-15
    [52]E.H.Lutz,M.V Swain.Thermal Shock Behavior ofDuplex Ceramics[J],J.Am.Ceram.Soc.1991,74:19-30
    [53]Y.W.Mai:Thermal shock and Fracture-Strength Behavior of Two tool carbides[J].J.Am.Ceram.Soc.1976,59(11-12):491-494
    [54]D.E Hassehnan.Elastic energy at fracture and surface energy as design criteria for thermal shock[J].J.Am.Ceram.Soc.,1963,46(11):535-540
    [55]D.P.Hasseman.Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J].J.Am.Ceram.Soc.1969,52(11):600-604
    [56]贾德昌,周玉.陶瓷材料抗热震性研究进展[J].材料科学与工艺,1993,1(4):96-102
    [57]张彪,郭景坤,诸培南等.抗热震陶瓷材料的设计[J].硅酸盐通报,1995,14(3):35-40
    [58]徐永东,张立同,韩金探.高温结构陶瓷材料的设计准则[J].硅酸盐通报,1997,16(3): 55-58
    [59]钟香崇,赵海雪.氧化物-非氧化物耐火材料高温性能的研究[J].耐火材料,2000,34(2):63-68
    [60]Lshitsuka M.Sato T,Endo T,et al. Grain-size dependence of thermal shock resistance of Ytria-doped tetragonal zirconia polycrystals.J.Am.Ceram.Soc.1990.73:2523-2525
    [61]T.K.Gupta. Strength degradation and crack propagation in thermally shocked Al2O3.J.Am.Ceram.Soc,1972,55:249-53
    [62]关振铎.无机材料物理性能.北京:清华大学出版社,1992
    [63]元敬顺,谈家琪,沈继耀.复合添加剂对全粉料制α-Al2O3陶瓷抗热震性的影响.硅酸盐通报.2000.2:9-12
    [64]孙康宁Fe-Al/Al2O3复合材料的设计与研究:[博士学位论文].哈尔滨:哈尔滨工业大学.1999
    [65]Binns D B. Science of Ceramics. Hshmeanded G,ed.New York:Academic Press,1962.315
    [66]邱关明.新型陶瓷.北京:兵器工业出版社,1993,72:103-106
    [67]J. B. Fogagnolo,F. Velasco,M. Robert. Effect of mechanical alloying on the morphology[J]. Materials Science and Engineering,2003,342(1):131.
    [68]吴年强,李志章.机械合金化的机制[J].材料导报,1997,11(6):20-23
    [69]王世中,臧鑫士.现代材料研究方法[M].北京:北京航天航空大学出版社,1991:10
    [70]Singhal S C.Thermodynamic analysis of the high-temperature stability of silicon nitride and silicon carbide [J].Material Scierrce,1976,2 (3):123-130
    [71]Labruquere S,Blanchard H. Pailler R,et al. Enhancement of the oridation resistance of interfacial area in C/C composites[J]. Jounurl of the European Ceramic Society,2002,22(3):1001-1030
    [72]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992.
    [73]MV斯温.陶瓷的结构与性能[M].北京:科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700