海底管线水平向整体屈曲低阶模态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界海洋石油工业的迅猛发展,海底管线在海洋石油、天然气开采中得到了广泛的应用。为了降低运输难度,原油需要在高温、高压条件下输送,但这样会导致海底管线发生温度应力下的整体屈曲,因此揭示海底管线发生整体屈曲的机理,建立温度荷载作用下管线整体屈曲的分析方法具有重要的理论意义和实用价值。本文采用解析法与数值模拟法相结合的手段,对海底管线水平向整体屈曲产生机理和模拟分析方法进行了系统研究。研究内容如下:
     对理想状态下海底管线水平向整体屈曲进行了分类,针对不同屈曲模式的管线建立了数学和力学分析模型;应用理论力学、材料力学、结构力学、高等数学等理论知识对管线屈曲的低阶模态进行求解,并推导相应的解析解,进而分析海底管线和土体之间的摩擦系数、输油温度、屈曲内力和屈曲幅值之间的关系;提出了采用改进的Riks算法并构建温度场和温度流模型、合理设置海底管线和地基土体之间接触关系,实现了对温度应力下海底管线水平向整体后屈曲的数值模拟;应用ABAQUS有限元软件,对具有不同初始缺陷的管线进行了模拟分析,研究海底管线在温度流和温度场这两种热荷载作用下,水平向整体屈曲的发生及发展规律,将分析结果与解析解进行了对比。
     研究表明,海底管线与土体之间的摩擦系数对理想管线的水平向整体屈曲有很大影响,当仅考虑低阶屈曲模式时,海底管线更易发生第二种模式的水平向整体屈曲;当初始缺陷较小时,管线拱起幅值与温度的关系曲线出现不稳定现象,而当初始缺陷较大时管线的屈曲呈渐变型;随着管线初始缺陷幅值的增加,管线发生水平向整体屈曲的临界温差降低;考虑管线输油温度沿程损失时,得到的海底管线水平向整体屈曲临界温差和屈曲应力都较小。
With the rapid development of the world marine petroleum industry, submarine pipelines have been widely used in the offshore oil and gas exploitation. In order to reduce the difficulty of transportation, oil and gas must be transported in the condition of high pressure and temperature, which always leads to the global buckling of submarine pipelines under temperature stress. Therefore, it is of practical engineering significance and high theoretical value to reveal the mechanism of pipeline buckling and develop the analysis approaches under thermal load. This paper mainly applies a method combined with theoretical deduction and numerical simulation to study the mechanism and analysis approaches of pipelines’global lateral buckling. The main research contents are as follows:
     Submarine pipelines’global lateral buckling is classified in ideal conditions. Mathematical model and mechanical model are introduced respectively for different category of pipeline. Afterwards the theory knowledge including theoretical mechanics, material mechanics, structural mechanics and advanced mathematics is used to get the corresponding analytical solutions for model curve shape. Based on the results above, further analysis on linkage between and among coefficient of friction between pipelines and soils, temperature, buckling strength and buckling amplitude is carried out. This paper introduces the improved Riks method to establish models of temperature field and temperature flow,properly modeling contact relationship between submarine pipeline and soil simultaneously, which are ultimately applied to finite element simulation for post-buckling behaviors of submarine pipeline withstanding temperature stress.
     The study approves that the coefficient of friction between pipelines and soils has a great influence to global lateral buckling of submarine pipeline. In considering low-level buckling mode merely, the second global lateral buckling mode of submarine pipeline occurs more easily. When initial defect is small, the curve of arch magnitude versus temperature has obvious instability, which appears to have a gradual change when initial defect is large. With the pipelines’initial imperfection increases, the global lateral buckling of pipelines’critical temperature decreases; In considering temperature flow, the global lateral buckling of pipelines’critical temperature and buckling stress are little smaller.
引文
[1]周延东,刘日柱,我国海底管道的发展现状与前景[J],中国海上油气(工程),1998,10(4):1-5
    [2]刘润,郭林坪,刘文彬,徐余,温度应力下海底管线水平屈曲分析[LIll科技论文在线,2011,6(5):368.373
    [3]赵天奉,高温海底管道温度应力计算与屈曲模拟研究[D],大连理工大学,2008,博士论文
    [4]Preston R,Drennan E Cameron C,et al,Controlled lateral buckling of large diameter pipeline by snaked lay[C],Proceedings of the Ninth(1999) International Ofl~hore and Polar Engineering Conference,Brest,France,1999:58.63
    [5]Hobbs,R E,In-service Buckling of Heated Pipelines,Journal of Transportation Engineering[J],1984,110(2):175—189
    [6]Hobbs,R E,and Liang,F,Thermal Buckling of Pipelines Closed to Restraints,International Conference on Offshore Mechanics and Arctic Engineering[J],1989,1(5):121—127
    [7]Taylor,N.,G.Gan,A.B,Submarine Pipeline Buckling--Imperfection Studies[J],Thin Walled Structures,1986,1(4):295—323
    [8]Craig,I.G.,Nash,N.W,Oldfield,G A,Upheaval Buckling:A Practical Solution Using Hot Water Flushing Technique[C],Ott~hore Technology Conference,No 0TC6334,1990:539 550
    [9]Han sChoi,ExpansionAnalysis ofOffShore PipelinesClosetoRestraints[C],Proceedings of the Fifth International Offshore and Polar Engineering Conference,The Hague,The Netherlands,1995:81—88
    [10]B.A.Ose,YongBai,PerR,Nystram and PerA.Damsleth,AFinite-Element Model for In-Situ Behavior of Offshore Pipelines on Uneven Seabed and Its Application to On-BoRom Stability[C],Proceedings of the Ninth International Offshore and Polar Engineering Conference,1999,Brest,France:132—140
    [11]Wenchao Zhang,Justin Tuohy,Athree-dimensional finite element analysis of unburied flexible flowline-a case study[C],Proceedings of OMAE’02 21st international conferernce on ofl~hore mechanics and artic engineering,2002:1-8
    [12]Junes A Villaxraga,Jose F Rodriguez,Cora Ma~inez,Buried Pipe Modeling with Initial Imperfection[J]s,Journal of Pressure Vessel Technology,2004,1 (126):250一257
    [13]刘润,闫澍旺,孙国民,温度应力下海底管线屈曲分析方法的改进[J].天津大学学报,2005,38(2):124.128
    [14]Peek R,Yun H,Flotation to trigger lateral buckles in pipelines on a flat seabed [LIll Journal ofEngineering Mechanics,2007,133(4):442-451
    [15]Paul Jukes,Ayman Eltaher,Jason Sun,The latest developments inthe design and simulation of deepwater subsea oil and gas pipeline using FEA[C],Proceedings of the Third(2009)Intemational Deep-Ocean Technology Symposium,2009,70-82
    [16]刘羽霄,李昕,周晶,蛇形铺管形状对海底管道横向屈曲的影响[J],石油工程建设,2010,36(3):25—28
    [17]刘羽霄,葛涛,李昕,周晶,初始几何缺陷对海底管道横向屈曲的影响[J],大庆石油学院学报,2011,35(3):76-80
    [18]Vaz M A,Patel M.H.,Lateral buckling of bundled pipe systems[J],Marine Structure,1999,1(12):21—40
    [19]Bruton D,Carr M,Crawford M,Poiate E,The Safe Design ofHot On-BoRom Pipelines with Lateral Buckling using the Design Guideline Developed by the SAFEBUCK Joint Industry Project[C],Deep Ofl~hore Technology Conference,2005,Vitoria,Espirito Smato,Brazil
    [20]BokaianA,Thermal expansion ofpipe-in-pipe systems[J],Marine Structure,2004,1(17):475—500.
    [21]赵天奉,段梦兰,潘晓东,刚性连接双层海底管道高温侧向屈曲分析方法的研究[J],,海洋工程,2008,26(3):65.69
    [22]赵天奉,段梦兰,潘晓东,冯现洪,双层海底管道跨越设计的垂向屈曲研究[J],中国海上油气,2010,22(3):197.201
    [23]王秉儒,王守信,材料力学简明教程[M],北京:机械工业出版社,1993
    [24]SYZ 4059-91,输油(气)埋地钢质管道抗震设计规范[z]
    [25]Crisfield,M A,A Fast Incremental/Iteration Solution Procedure that Handles“Snap-Through”[LIll Computers and Structures,1981,vol 13:55 62
    [26]Ramm,E,Strategies for Tracing the Nonlinear Response Near Limit Points[J],Nonlinear Finite Element Analysis in Structural Mechanics,Edited by E Wunderlich.E. Stein.and K J Bathe,Springer-Verlag,Berlin,1981Wunderlich.E. Stein.and K J Bathe,Springer-Verlag,Berlin,1981
    [27]Powell G and J Simons,Improved Iterative Strategy for Nonlinear Structures[Jl,International Journal for Numerical Methods in Engineering,1981,vol 17:1455 1467
    [28]Dassauk Systems Simulia Corp,2010,Abaqus Standard User’S Maamal[M],version6 10,USA,2010
    [29]王勖成,绍敏,有限元法基本原理和数值方法[M],北京:清华大学出版社,1995
    [30]龚晓南,土工计算机分析[M],北京:中国建筑工业出版社,2000
    [31]徐芝纶,弹性力学简明教程[M],北京:人民教育出版社,1980
    [32]杨海霞,章青,邵国建,计算力学基础[M],南京:河海大学出版社,2001
    [33]钱家欢,殷宗泽,土工原理与计算[M],北京:中国水利水电出版社,1996
    [34]张学言,闫澍旺,岩土塑性力学基础[M],天津:天津大学出版社,2004
    [35]费康,张建伟,ABAQUS在岩土工程中的应用[M],北京:中国水利水电出版社,2010
    [36]庄茁,ABAQUS/Standard有限元软件入门指南[M],北京:清华大学出版社,1998
    [37]何满潮,黄润秋,王金安,姚磊华,王树仁,工程地质数值法[M],北京:科学出版社,2006
    [38]赵腾伦,ABAQUS在机械工程中的应用[M],北京:中国水利水电出版社,2010
    [39]岳辉建,不规则混凝土壳体的温度效应研究[D],同济大学,2006,硕士论文
    [40]刘羽霄,高温/高压海底管道横向热屈曲机理及控制措施研究[D],2010,博士论文
    [41]宋岩新,杨庆,唐小微,万少石,ABAQUS后处理二次开发在海底管线稳定性分析中的应用[J],中国海洋平台,2008,23(4):18-22
    [42]刘润,闫澍旺,王洪播,张军,徐余,砂土对埋设管线约束作用的模型试验研究[LIll岩土工程学报,2011,33(4):559-565
    [43]任艳荣,ABAQUS软件在管土相互作用中的应用[LIll中国海洋平台,2007,8:48-51
    [44]陈卫忠,吴国军,嘉善坡,ABAQUS在隧道及地下工程中的应用[M],北京:中国水利水电出版社,2009
    [45]曹金风,石亦平,ABAQUS有限元分析常见问题解笞[M],北京,机械工业出版社,2009QUS非线性有限元分析与实例[M],北京:科学出版社,2005 ,塑性力学[M],上海,同济大学出版社,2002出版社,2009
    [46]石亦平,周玉蓉,ABAQUS有限元分析与实例[M],北京,机械工业出版社,2006
    [47]庄茁,ABA
    [48]任艳荣,刘玉标,顾晓云,弹塑性海床上的管土相互作用分析[M],工程力学,2004,21(2):84-87
    [49]曾攀,有限元分析及应用[M],北京:清华大学出版社,2004
    [50]夏志皋

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700