球轴承多体接触动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球轴承被广泛用于机械系统的旋转支撑部件,对机械系统动力学性能有着重要的影响。目前,国内外滚动轴承力学研究主要运用静力学和拟动力学方法,深入研究润滑、摩擦、温度、波纹度或保持架的影响。在当今国际制造水平向静音轴承发展的过程中,为了降低球轴承振动、优化轴承动态性能和探索轴承工程应用环境的影响,精确的轴承动力学设计与动力学分析是球轴承的理论研究和工程应用亟待解决的关键问题。本文主要研究目的是提出一种快速有效的球轴承多体接触动力学分析的新方法,忽略润滑和保持架接触冲击的影响,建立球轴承的三维多参数耦合多体接触动力学分析模型,深入研究球轴承的接触振动机理。
     本文基于云南省省院省校合作项目“数控万能工具铣床XK8140动态数字样机建模与仿真分析关键技术研究”(批准号:2004YX12)的资助,从多体系统动力学观点出发,围绕球轴承多体接触动力学问题进行了相关研究。在轴承外圈等效方法、球轴承刚柔多体接触动力学模型、新型广义-α法、动力学分析和球轴承柔性多体接触振动分析等方面取得了研究成果。论文的主要研究工作包括:
     (1)基于柔性多体动力学理论,提出了以等效刚体单元的相对坐标和曲线铁木辛柯梁单元描述球轴承外圈的运动和结构弹性变形的新方法。结合球轴承套圈滚道的表面方程,研究了套圈滚道表面的三角网格模型,从而运用基于罚函数法的接触力显式表达式,建立了钢球和套圈的接触动力学模型。在此基础上,建立了考虑钢球和套圈动态接触关系的球轴承多参数耦合刚柔多体接触动力学模型。
     (2)针对球轴承多体接触动力学分析中涉及的多体接触冲击、游隙等非线性因素和具有套圈单元离散引起的高频振荡特征,结合隐式数值积分解耦法,提出了适用于球轴承接触动力学分析的新型广义-α法。通过数值实例讨论了新型广义-α法的阻尼耗散特性、数值精度、收敛阶次、稳定性和计算效率。
     (3)运用新型广义-a法对球轴承刚柔多体接触动力学模型进行了仿真研究,计算了运转状态下球轴承的接触非线性振动特性。分析了不同结构参数、转速和载荷等因素对球轴承的接触载荷分布、弹性变形、接触角、振动位移、加速度和频率等动力学特性和接触振动响应的影响。计算并探讨了运转状态下球轴承的接触非线性振动频率的变化规律,表明运转状态下在径向力作用时的球轴承接触非线性振动频率比在预紧力作用时的具有更加明显的非线性、时变性和周期性等特点。以固定式加速度计安装方式实现了球轴承振动真实信号的测量,实验验证了球轴承刚柔多体接触动力学的理论研究方法、计算分析结果的正确性和有效性。进一步丰富了球轴承振动理论,为球轴承动态设计和动态性能改善提供了参考。
     (4)结合有限元方法与柔性多体动力学方法,考虑套圈结构弹性变形、钢球和套圈动态接触关系,建立了新的球轴承柔性多体接触动力学分析模型。在不同载荷条件下计及转速、游隙和离心力影响时,分别讨论了运转状态下球轴承的动态接触应力、弹性变形、接触角等接触振动特性。进一步认识了滚动轴承变支承刚度下的柔性接触振动规律和载荷分布规律。
     理论研究方法和研究结果是多体接触动力学方法在球轴承动力学中的新尝试,丰富和完善了滚动轴承的振动理论,对以振动和疲劳寿命为目标的滚动轴承与轴承系统的动态设计、动力学分析和工程应用不仅具有重要的实用价值,而且具有重要的理论意义。
Ball bearings, as a kind of basic supporting components, are widely used in rotating machines. Their vibration and performances have an important influence on dynamic behavior of mechanical systems. The statics and quasi-dynamic method have been applied to study the effect of lubrication, friction, temperature, waviness or pockets on rolling bearings mechanics at present. With the trend of making quiet running bearings in today's world, in order to reduce vibration, optimize dynamic performances and research the effect of working conditions, accurate dynamic design and analysis of ball bearings have to be studied in the theoretical research and engineering application of ball bearings. The major purpose of this thesis is to provide a new, rapid and effective method on the multi-bodies contact dynamics of ball bearings. Without the effect of lubrication and pockets impact, the three dimensional multi-bodies contact dynamics analysis models of ball bearings have been constructed with multi-parameters coupling. The contact vibration mechanism of ball bearings has been studied thoroughly.
     This thesis is based on the Yunnan Province Fund Cooperative Project" Reseaching on the key technologies of modeling and dynamic simulation analysis for virtual prototype of CNC universal tool milling machine"(Authorize number: 2004YX12). According to dynamics of multibody systems, the focus of this thesis is on multibody contact dynamics problem of ball bearings. Some progress and accomplishment have been made on the key issues such as equivalent method of outer ring, the multi-rigid-flexible bodies contact dynamics model of ball bearings, new generalized-a algorithms, dynamics analysis and the multi-flexible bodies contact vibrations analysis of ball bearings. The major focus of this thesis is listed as follow:
     (1)A new method for outer ring's motion and structural elastic deformation is studied by the relative coordinates of equivalent rigid elements and curved Timoshenko beam elements based on multi-flexible bodies dynamics. The triangle mesh model for ring's races is established based on the surface equations. The rolling contact dynamics models are constructed and the calculation programme is written for dynamic contact force based on penalty method. Therefore, the multi-rigid-flexible bodies contact dynamics analysis models of ball bearings are established with multi-parameters coupling and dynamic contact between balls and rings.
     (2)It takes account of the nonlinear factors such as multibody contact-impact, clearances and the essential characteristics such as high frequency vibration resulting from discrete rings. A new generalized-a algorithm is studied by implicit numerical integration decoupling algorithms for contact dynamics analysis of ball bearings. The new generalized-a algorithm's numerical dissipation, convergence, precision, stability and efficiency have been discussed by famous numerical experiments.
     (3) The new generalized-a algorithm was applied to simulate contact nonlinear dynamics and vibrations of ball bearings. The effect of different structural and load parameters, rotating speeds on dynamics characteristics and contact vibration rules such as contact load distribution, elastic deformation, contact angle, vibration displacements, accelerations and frequencies of ball bearings has been analyzed. The curves of contact nonlinear vibration frequencies were calculated and discussed. It is found that the nonlinear frequencies of contact vibration with radial load are more obvious to nonlinearity, time variety and period than that with axial preload. The contact dynamics theoretical models, numerical algorithms and research results have been verified experimentally by the digital measurement system of ball bearings' vibration and fixed measurement method with the use of accelerometer. The contact dynamics models and results have been further enriched vibration theory of ball bearings and given to reference for dynamic design and improving dynamic characteristics of ball bearings.
     (4)Considering ring's elastic deformation and dynamic contact between balls and ring's races, the new multi-flexible bodies contact dynamics analysis models of ball bearings are established, which are based on finite element method and multi-flexible bodies dynamics. Considering the effect of different load parameters, rotate speed, clearances and centrifugal force and so on, the distributions and rules of dynamic contact stress, elastic deformation and contact angle have been discussed. The flexible contact vibrations rules and load distributions rules of ball bearings under the varying supporting stiffness have been understood further by the research results.
     The theoretical methods and research results are a new try of multi-bodies contact dynamics for vibration of ball bearings and have significances not only in perfecting and enriching the vibration theory of rolling element bearings but also in guiding the design, analysis and application of ball bearings and bearings systems with the purpose of vibration and fatigue life.
引文
[1]赵联春.球轴承振动特性研究[D]:[博士学位论文].杭州:浙江大学.2003.
    [2]陈淤学.基于接触力学的圆柱滚子轴承振动研究[D]:[博士学位论文].武汉:华中科技大学.2006.
    [3]汪久根,章维明.滚动轴承噪声的分析[J].轴承.2005.9:39-42.
    [4]汪久根,王庆久,章维明.滚动轴承动力学的研究[J].轴承.2007.3:40-45.
    [5]吴云鹏,张文平,孙立红.滚动轴承力学模型的研究及其发展趋势[J].轴承.2004.7:44-46.
    [6]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用—建模、分析、修改、控制、优化[M].北京:机械工业出版社.2004.
    [7]胡海岩.先进机械系统的若干动力学与控制问题.面向21世纪的中国振动工程研究[J].北京:航空工业出版社.1999.
    [8]胡海岩.力学—现代工程技术的支柱.http://www.sciei.com.2001.
    [9]Johnson K L著,徐秉业译.接触力学[M].北京:高等教育出版社.1992.
    [10]Johnson K L,Gray G G.Development of corrugations on surfaces in rolling contact[J]. Proc Instn Mech Engrs.1975(13).75:45-58.
    [11]Gupta P K著,臧新群译.滚动轴承动力学分析[M].湖北:湖北科技技术出版社.1990.
    [12]Gupta P K, Dill J F, Bandow H E. Dynamics of rolling element-bearings experimental validation of the DREB and RAPIDREB computer programs [J]. J. of Trib.1985,107:132-137.
    [13]赵联春,马家驹.球轴承的弹性接触振动[J].机械工程学报.2003(35).5:60-64.
    [14]陈淤学,王冠兵,杨曙年.弹性体线接触副的非线性振动研究[J].轴承.2007.11:8-11.
    [15]Stribeck, R. Ball Bearing for Various Loads[J]. Trans. ASME 29,420-463.
    [16]Hertz, H. The Contact of Elastic Solids[J]. J. Reine Angew. Math.1881.92:156-171.
    [17]Sjovall, H. The Load Distribution within Ball and Roller Bearings under Given External Radial and Axial Load[J]. Teknisk Tidskrift, Mek.,1993.h.9.
    [18]汪久根 鄢建辉朱聘和等.球轴承的摩擦系数分析[J].机床与液压.2003.4:40-41.
    [19]王彦伟,罗继伟,陈立平.圆锥滚子轴承接触分析[J].华中科技大学学报.2007(39).4:19-21.
    [20]Jones A B. Ball motion and slidingfriction in ball bearings[J]. J. of Basic Eng.1959.81:1-12.
    [21]Jones A B. A general theory for elastically constrained ball and radial miler bearings under arbitrary load and speed conditions[J]. J. of Basic Eng.1960.82:309-320.
    [22]Harris, T. A. An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings[J]. Journal of Lubrication Technology.1971.93:17-24.
    [23]Harris, T. A. Rolling Bearing Analysis[M]. John Wiley & Sons, New York,4th Ed.2000.
    [24]Palmgren, A. Ball and Roller Bearing Engineering[M].2nd ed..Burbank, Philadelphia.1946.
    [25]Lundberg, G., and Palmgren, A. Dynamic Capacity of Rolling Bearings[J]. Acta Polytech. Mech. Eng.1947(1).3:153-160.
    [26]Lee, D, J and Choi, D, H. Reduced weight design of a flexible rotor with ball bearing stiffness characteristics varying with rotational speed and load[J]. Journal of Vibration and Acoustics.2000.122:203-208.
    [27]Gargiulo, E. P.. A simple way to estimate bearing stiffness[J]. Machine design.1980.52: 107-110.
    [28]White, M. F.. Rolling element bearing vibration transfer characteristics:effect of stiffness[J]. Journal of applied Mechanics. Transactions of A SME.1979.46:677-684.
    [29]Lim, T. C.,& Singh, R.. Vibration transmission through rolling element bearings, part I: Bearing stiffness formulation[J]. Journal of Sound and Vibration.1990.139:179-199.
    [30]Lim, T. C.,& Singh, R.. Vibration transmission through rolling element bearings, part II: System studies[J]. Journal of Sound and Vibration.1990.139:201-225.
    [31]Lim, T. C.,& Singh, R.. Vibration transmission through rolling element bearings,,part III: Geared rotor system studies[J]. Journal of Sound and Vibration.1991.151:31-54.
    [32]Lim, T. C.,& Singh, R.. Vibration transmission through rolling element bearings, part IV: Statistical energy analysis[J]. Journal of Sound and Vibration.1992.153:37-50.
    [33]Lim, T. C.,& Singh, R.. Vibration transmission through rolling element bearings, part V: Effect of distributed contact load on roller bearing stiffness matrix[J]. Journal of Sound and Vibration.1994.169:547-553.
    [34]Houpert, L.. Uniform Analytical Approach for Ball and Roller Bearings calculations[J]. Journal of Tribology, Transactions of ASME.1997.119:851-858.
    [35]Andrew Liew. A study of a rotor system with ball bearing induced non-linearities; and the development of transfer matrix techniques suitable for analysing such systems[D][PHD Thesis]. University of New South Wales.2002.
    [36]H.V Liew, T.C. Lim., Analysis of time-varying rolling element bearing characteristics[J]. Journal of Sound and Vibration.2005.283:1163-1179.
    [37]Jang, G.H., and Jeong, S. W.. Vibration Analysis of a rotating System Due to the Effect of Ball Bearing Waviness. Journal of Sound and Vibration[J].2004.269:709-726
    [38]Liao, N. T. and Lin, J. F. A New Method for the Analysis of Deformation and Load in a Ball Bearing with Variable Contact Angle. Journal of Mechanical Design[J].2001(123).7:304-312.
    [39]Liao, N.T. and Lin, J.F. Ball Bearing Skidding under Radial and Axial Loads[J]. Mechanism and Machine Theory.2002(37):91-113.
    [40]Liao, N.T. and Lin, J.F. An Analysis of Misaligned Single-Row Angular-Contact Ball Bearing[J]. ASME, Journal of Mechanical Design.2003(30):291-305.
    [41]Liao, N.T. and Lin, J.F. Rolling-Sliding Analysis in Ball Bearing Considering Thermal Effect[J]. ASME, Journal of Mechanical Design.2003(25):256-269.
    [42]Liao, N.T. and Lin, J.F. Analysis of the Motion and Friction Behavior at the Contact Area of a Ball Bearing[J]. Journal of Mechanical Engineering Science, Proceedings of the Institution of Mechanical Engineers Part C (IMechE).2001.
    [43]Liao, N.T. and Lin, J.F. A New Method Developed for the Analysis of Ball Bearing Fatigue Life Considering Variable Contact Angles[J]. STLE, Tribology Transactions.2004.25: 192-205.
    [44]赵联春,曹志飞.传感器安装方式对轴承振动测量特性的影响[J].轴承.2003.1:26-28.
    [45]赵联春,马家驹,马纯青.载荷对球轴承振动特性影响的试验研究[J].轴承.2003.5:38-41
    [46]赵联春,马家驹,马纯青等.润滑对球轴承振动特性的影响[J].摩擦学学报.2003.5:421-425.
    [47]赵联春,马家驹,曹志飞.设计和应用参数对球轴承振动特性的影响[J].轴承.2006.1:4-8.
    [48]陈淤学,王冠兵.圆柱滚子轴承的动态刚度分析[J].轴承.2007.4:1-5.
    [49]陈淤学,杨曙年.圆柱滚子轴承的动载荷分布[J].轴承.2007.1:9-11.
    [50]Wijnant Y H, Venner C H. Analysis of an EHL circular contact incorporating rolling element vibration [C]//Proceedings of the 23 Leeds-Lyon Symposium on Tribology,1996:445-456
    [51]Wijnant Y. H., Wensing J. A.and Van Nijen G. C.. The Influence of Lubrication on the Dynamic Behavior of Ball Bearings[J]. Journal of Sound and Vibration,1999(4).222:579-596.
    [52]唐云冰.航空发动机高速滚动轴承力学特性研究[D]:[博士学位论文].北京:北京航空航天大学.2006.
    [53]廖能通.高速滚珠轴承之运动接触机制与疲劳寿命分析[D]:[博士学位论文].台湾:国立成功大学.2002.
    [54]康渊.滚动接触之刚度探讨[D]:[博士学位论文].台湾:私立中原大学.2001.
    [55]周麟恩.高速主轴轴承系统之运动与动态特性分析[D]:[硕士学位论文].台湾:国立中山大学.2001.
    [56]徐延忠,蒋书运,黄国庆等.高速角接触陶瓷球轴承与钢球轴承动力学特性对比分析[J].精密制造与自动化.2004.3:18-22.
    [57]徐延忠,蒋书运.高速角接触陶瓷球轴承动态特性研究[J].东南大学学报.2007(20).3:319-323.
    [58]丁长安,张雷.线接触弹性接触变形的解析算法[J].摩擦学学报.2001(21).2:135-138.
    [59]丁长安,张雷,黎桂华.球轴承基本受载变形特性分析[J].润滑与密封.2006.8:75-77.
    [60]丁长安,周福章.滚道控制理论与滚动体姿态角的确定[J].机械工程学报.2001(37).2:58-61.
    [61]姜维,杨咸启,常宗瑜.高速角接触球轴承动力学特性参数分析[J].轴承.2008.6:1-4.
    [62]王黎钦,崔立,郑德志等.航空发动机高速球轴承动态特性分析[J].航空学报.2007(28).6:1461-1467.
    [63]崔立,王黎钦,郑德志等.航空发动机高速滚子轴承动态特性分析[J].航空学报.2008(29).2:492-498.
    [64]崔立,王黎钦,郑德志等.高速球轴承打滑的临界负荷研究[J].航空动力学报.2007(22).11:1971-1976.
    [65]张家库,李志远,张朝煌.高速角接触球轴承变形和接触角的数值分析与求解[J].合肥工业大学学报.2008(31).11:1764-1767.
    [66]李兴林,刘泽九.国外滚动轴承疲劳寿命试验的现状及其发展趋势[J].轴承.1995.12:30-38.
    [67]罗继伟.滚动轴承受力分析及其进展[J].轴承.2001.9:28-31.
    [68]刘春浩.滚动轴承的结构振动问题[J].合肥工业大学学报.2000.5:42-43.
    [69]刘春浩,顾家铭,周赤忠.陀螺仪电动机转子轴承研究现状与展望[J].机械工程学报.2006(42).11:17-25.
    [70]刘春浩,郝亚硕.球轴承径向弯曲振动的研究[J].合肥工业大学学报.1998.5:20-23.
    [71]刘春浩,马纯.球轴承径向振动频谱的计算机模拟[J].合肥工业大学学报.1997.5:41-44.
    [72]罗祝三,高向群.轴向受载的高速球轴承的拟动力学分析[J].航空动力学报.1996(11).3:257-260.
    [73]罗祝三,吴林丰.任意载荷作用下高速滚动轴承的寿命计算[J].机械工程学报.1990(26).5:57-65.
    [74]彼得·艾伯哈特,胡斌.现代接触动力学[M].东南大学出版社.2003.
    [75]万长森.滚动轴承的分析方法[M].北京:机械工业出版社.1983.
    [76]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社.1999.
    [77]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社.1996.
    [78]Javier Garcia de Jalon and Eduardo Bayo. KINEMATIC AND DYNAMIC SIMULATION OF MULTIBODY SYSTEMS:The Real-Time Challenge[M]. Springer-Verlag.1993.
    [79]Wu S. C, Haug E. J. A substructure technique for dynamics of flexible mechanical systems with contact-impact. Journal of Mechanical Design[J].1990,112:390-398.
    [80]陈萌.虚拟样机的接触碰撞动力学仿真研究[D]:[博士学位论文].武汉:华中科技大学.2003.
    [81]ADAMS/Solver, User's Manual&Help, MSC.Software,2005.
    [82]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社.2005.
    [83]RecurDyn/Solver, Theoretical Manual, FuctionBay, Seoul/Korea,2007.
    [84]Hippmann, G.:An Algorithm for Compliant Contact between Complex Shaped Surfaces in Multibody Dynamics[C]//Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Ambrosio, J.A.C. (ed), Portugal,2003.
    [85]Albert Turtscher, Frank FaBbender, Thomas Kelichhaus. Simulation of Dynamic Stresses Including Flexible Contacts Using MFBD Technology[J]. SAE BRASIL.2006-01-2286.
    [86]Eberhard, P.; Schiehlen, W. Computational Dynamics of Multibody Systems:History, Formalisms and Applications[J]. Journal of Computational and Nonlinear Dynamics,2006.1: 1-12.
    [87]Hippmann, G. An Algorithm for Compliant Contact between Complexly Shaped Bodies[J]. Multibody System Dynamics,2004.12:345-362.
    [88]Ebrahimi, S.; Eberhard, P. Rigid-Elastic Modeling of Gear Wheels in Multibody Systems[J]. Multibody System Dynamics,2006.16:55-71.
    [89]Ebrahimi, S.; Hippmann, G.; Eberhard, P.:Extension of the Polygonal Contact Model for Flexible Multibody Systems[J]. International Journal of Applied Mathematics and Mechanics. 2005.1:33-50.
    [90]Waiters C T. The dynamics of ball bearings[J]. J. of Lub. Tech.1971.93:1-10.
    [91]Gupta P K. Cage unbalance and wear in ball bearings[J]. Wear.1991.147:93-104.
    [92]Gupta P K. Dynamic loads and cage wear in high-speed rolling bearings[J]. Wear. 1991.147(1):119-134.
    [93]Meeks C R, Ng K O. The dynamics of ball separators in ball bearings-partl:analysis[J]. AsLE Trans.1985.28(3):277-287.
    [94]Meeks C R, Tran L. Ball bearing dynamic analysis using computer methods-part 1: analysis[J]. J. of Trib.1996.118(1):52-58.
    [95]Wensing J A, van Nijen G C.The dynamic behaviour of a system that includes a rolling bearing[J]. Proc Inst Mech Engrs.2001,215:509-518.
    [96]Wensing J. A. Dynamic behaviour of ball bearings on vibration test spindles[C]//16th International Modal Analysis Conference, Santa Barbara, USA,1998.
    [97]Wensing J. A. and Nijen, G. C.2d computational model for vibration analysis of waviness in rolling bearing applications[C]//Inst. Mech. Eng.,6th int. Conference on Vibrations in Rotating Machinery,1996:371-382.
    [98]Wensing J. A. On the dynamics of ball bearings[D][PHD Thesis]. Enschede:University of Twente.1998.
    [99]Iakov Nakhimovski. Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems[D][PHD Thesis]. LINKOPINGS UNIVERSITET.2002.
    [100]H. Rubio, J.C.Garcia Prada, C.Castejon.Dynamic analysis of rolling bearing system using Lagrangian model Vs. FEM code[J].12th IFToMM World Congress, Besancon (France), 2007.6:18-21.
    [101]Kang, Y., Chang, Y. P., Tsai, J. W., Mu, L. H., and Chang, Y. F. An Investigation in Stiffness Effects on Dynamics of Rotor-Bearing-Foundation System[J]. Journal of Sound and Vibration. 2000(2).231:343-374.
    [102]唐云冰,高德平,罗贵火.航空发动机高速滚珠轴承力学特性分析与研究[J].航空动力学报,2006(21).2:354-360.
    [103]唐云冰,高德平,罗贵火.航空发动机滚动轴承的载荷分布研究[J].航空学报.2006(27).6:1117-1121.
    [104]樊莉谭南林沈栋平.基于显式动力学的滚动轴承接触应力有限元分析[J].北京交通大学学报.2006.30(4):109-112.
    [105]张乐乐高祥谭南林等.基于ANSYS/LS-DYNA的滚动轴承仿真与分析[J].机械设计.2007(9).24:62-65.
    [106]李晓强王秀梅许胜利.基于ANSYS的推力球轴承接触的有限元分析[J].现代机械.2008.2:6-7.
    [107]高霁 苏新伟 钟佳丽等.Hertz理论在球轴承应用方面的局限性[J].轴承..2008.11:9-11.
    [108]蒋立冬,应丽霞.高速重载滚动轴承接触应力和变形的有限元分析[J].机械设计与制造.2008.10:62-64.
    [109]王兴东,董元龙,刘源洞等.低速重载轴承的有限元分析及研究[J].武汉科技大学学报.2008(31).1:104-107.
    [110]李昌孙志礼等.深沟球轴承动态有限元数字仿真[J].东北大学学报.2008(29).11:1625-1628.
    [111]Kannel J W, Bupara S S. A simpliliec model of cage motion in angular contact bearings operating in the EHD lubrication regime[J]. J. of Lub. Teeh.1978.100:395-403.
    [112]Aramaki H. Roling bearing analysis program package"BRAIN"[J]. Motion&Control. 1997.3:15-24.
    [113]Stacke L E, Fritzson D. Dynamic behaviour ofroling bearings:simulations and experimentals[J]. Proc. Instn. Mech. Part J.2001.215(6):499-508.
    [114]Ghaisas N, Wassgren c R, Sadeghi F. Cage instability in cylindrical roller bearings[J]. J. of Trib.2004.126:681-689.
    [115]刘文秀,杨咸启,陈贵.高速滚子轴承保持架碰撞模型与运动分析[J].轴承.2003.9:1-5.
    [116]杨咸启.轴承系统温度场分析[J].轴承,1997(3):2~6.
    [117]Timoshenko. S. Theory Of Elasticity[M]. McGraw-Hill Companies.3 edition.1970.
    [118]Wu J S, Chiang LK. Out-of-plane responses of a circular curved Timoshenko beam due to a moving load[J]. Int. J. Solids. Struct.2003.40:7425-7448.
    [119]Wu J S, Chiang LK. Free vibration of a circularly curved Timoshenko beam normal to its initial plane using finite curved beam elements[J]. Computers and Structures.2004.82: 2525-2540.
    [120]Wu J S, Chiang LK. Dynamic analysis of an arch due to a moving load[J]. Journal of Sound and Vibration.2004.269:511-534.
    [121]Davis, R., Henshel, R.D., Warburton, G.B. Curved beam finite elements for coupled bending and torsional vibration[J]. Earthquake Eng. Struct. Dynam.1972.1:165-175.
    [122]Davis, R., Henshell, R.D., Warburton, G.B. Discussion of effects of transverse shear and rotatory inertia on the coupled twist bending vibrations of circular rings[J]. Sound Vibrat. 1972.(2).21:241-247.
    [123]Palaninathan, R., Chandrasekharan, P.S. Curved beam element stiffness matrix formulation[J]. Comp. Struct.1985(4).21:663-669.
    [124]Lebeck, A.O., Knowlton, J.S. A finite element for three-dimensional deformation of a circular ring[J]. Int. J. Numer. Meth. Eng.1985.21:421-435.
    [125]Edmund Wittbrodt, Iwona Adamiec-Wojcik, J. Wittenburg et al. Dynamics of Flexible Multibody Systems:Rigid Finite Element Method[M]. Springer Berlin Heidelberg New York.2006.
    [126]江焯林,黎绍发,贾西平等.典型三角网格细分算法[J].计算机工程,2009,3:7-11.
    [127]Shuh-Ren Liang, Alan C. Lin. Probe-radius compensation for 3D data points in reverse engineering[J]. Computers in Industry.2002.48:241-251.
    [128]NEGRUT D, RAMPALLI R, OTTARSSON G. On an implementation of the HHT method in the context of index 3 differential algebraic equations of multibody dynamics[J]. ASME. Computational and Nonlinear Dynamics.2007,2:73-85.
    [129]JAY L O, NEGRUT D. Extensions of the HHT-method to differential-algebraic equations in mechanics[J]. Electronic Transactions on Numerical Analysis.2007,26:190-208.
    [130]JAY L O, NEGRUT D. A second order extension of the generalized-alpha method for constrained systems in mechanics[C]//MULTIBODY DYNAMICS 2007, ECCOMAS Thematic Conference,25-28 June 2007, C.L. Bottasso, P. Masarati, L. Trainelli (eds.) Milano, Italy. Berlin:Springer,2008(12):143-158.
    [131]HILBER H, HUGHES T, TAYLOR R. Improved numerical dissipation for time integration algorithms in structural dynamics[J]. Earthquake Engineering and Structural Dynamics.1977,5:283-292.
    [132]ARNOLD M, BRULS O. Convergence of the generalized-a scheme for constrained mechanical systems[J]. Multibody System Dynamics.2007,6:22-40.
    [133]BRULS O., ARNOLD M. The generalized-a scheme as a linear multi-step integrator: Towards a general mechatronic simulator[J] Journal of Computational and Nonlinear Dynamics,2008,3:41-57.
    [134]BRULS O, GOLINVAL J C. The generalized-a method in mechatronic applications[J]. Z. Angew. Math.Mech. (ZAMM).2006,86:748-758.
    [135]BRULS O, GOLINVAL J C. On the numerical damping of time integrators for coupled mechatronic systems[J]. Computer Methods in Applied Mechanics and Engineering.2006,32: 212-227.
    [136]GERADIN M., CARDONA A. Flexible Multibody Dynamics:A Finite Element Approach[M]. Wiley, New York.2001.
    [137]YEN J, PETZOLD L R. A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE a-method[J]. Computer Methods in Applied Mechanics and Engineering.1998,158: 341-355.
    [138]LUNK C, SIMEON B. Solving constrained mechanical systems by the family of Newmark and a-methods[J]. Z. Angew. Math.Mech. (ZAMM).2006,86(10):772-784.
    [139]GAVREA B, NEGRUT D, POTRA F. The Newmark integration method for simulation of multibody systems:analytical considerations[C]//Proceedings of IMECE 2005, ASME International Mechanical Engineering Congress and Exposition 2005, November 5-11,2005, Orlando, USA, IMECE 2005-81770.
    [140]CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-a method[J]. Transactions of ASME, Journal of Applied Mechanics.1993,60(2):371-375.
    [141]ERLICHER S, BONAVENTURA L, BURSI O. The analysis of the generalized-a method for nonlinear dynamic problems[J]. Computational Mechanics.2002,28:83-104.
    [142]于开平赵婕樊久铭等.结构动力响应数值分析的新的广义-α方法的频率域分析[J],振动工程学报,2004,4:393-398.
    [143]于开平李静杨利芳等.求解结构动响应的两种有渐进消去特性的算法[J],工程力学,2004,4:101-105.
    [144]于开平邹经湘.结构动力响应数值算法耗散和超调特性设计[J],力学学报,2005,4:467-476.
    [145]李小军唐晖.结构体系动力方程求解的显式积分格式的能耗特性[J],工程力学,2007,2:28-33.
    [146]GOBAT J I, GROSENBAUGH M A.. Triantafyllou M S. Generalized-a time integration solutions for hanging chain dynamics [J]. Journal of Engineering Mechanics.2002,6:677-683.
    [147]BAE S, KIM II W, YOO H H, et al. A Decoupling Method for Implicit Numerical Integration of Constrained Mechanical Systems[J], Mechanics of Structures and Machines.1999,27:129-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700