电力系统可靠性非同调元件辨识研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常,增装变压器、线路、断路器等电力系统元件后,系统可靠性会得到改善,其称为可靠性同调现象。目前,很多可靠性评估的研究成果都是以该假设为前提。但是,由于电力系统及其可靠性评估模型的非线性特性,系统中存在着可靠性非同调现象,即:增装一个电力元件后,系统可靠性没有得到改善甚至发生恶化。该类元件的存在不仅增加了设备投资,而且降低了系统可靠性。
     本文受国家自然科学基金项目“电力系统可靠性非同调机理及非同调元件辨识研究(50777067)”的资助,开展了可靠性非同调的产生机理、非同调指标体系和非同调元件辨识方法等研究,重点分析了计及与不计变电站电气主接线的多回平行输电线路、配电变电站及发输电组合系统的可靠性非同调特性和非同调影响因素,这可为电力系统可靠性优化、运行等提供更充分的决策依据,对系统的可靠经济运行具有重要意义。本文主要内容如下:
     ①分析了电力系统可靠性非同调机理,提出综合反映系统可靠性非同调特性的指标体系,并应用于多回平行输电线路、配电变电站等系统的非同调分析。分析了简单串并联系统以及复杂系统中可靠性非同调现象的产生机理,即将增装元件对系统可靠性的影响分为正效益和负效益两方面。当正效益大于负效益时,增装元件改善了系统可靠性,元件为同调元件;反之,为非同调元件。对于复杂电力系统,以期望缺供电量等指标作为可靠性非同调现象的判断依据,提出刻画电力系统可靠性非同调特性的指标体系,包括:可靠性非同调概率、非同调频率、非同调时间及非同调电量等。
     ②分析不计与计及变电站电气主接线的多回平行输电线路的可靠性非同调特性,在可靠性评估模型基础上建立非同调元件辨识模型,并得到非同调临界负荷的解析模型。给出了两回、三回以及四回平行输电线路的可靠性评估解析模型,基于可靠性非同调定义分别建立其可靠性非同调辨识模型,应用线路容量、可靠性参数等建立解析的非同调临界负荷模型。若要判断某系统是否非同调系统,只需将系统实际负荷水平与临界负荷相比较即可,若系统负荷大于临界负荷,系统同调;否则,系统非同调。该辨识模型为解析模型,无需进行可靠性评估即可直接进行非同调辨识。同时,分析了元件可靠性参数及负荷水平等因素对系统的非同调特性、非同调临界负荷以及系统非同调指标的影响。
     ③分析配电变电站单母线分段接线和桥形接线两种典型接线方式的可靠性非同调特性,分析了该类系统可靠性非同调现象产生的条件和影响因素,提出配电变电站可靠性非同调元件辨识模型。分析结果表明:负荷水平是影响可靠性非同调特性的最主要因素,元件可靠性参数的影响相对较小,且仅有断路器故障率会改变系统可靠性非同调特性,其它参数如断路器修复率、变压器的故障率和修复率等仅影响系统可靠性,不会改变非同调特性。
     ④分析了发输电组合系统元件退出前后可靠性的变化关系,探讨了发输电组合系统可靠性非同调元件辨识指标,并提出基于辨识指标的可靠性非同调元件辨识算法。为了减少辨识可靠性非同调元件的计算复杂性,借鉴电力系统分析中的故障排序思想,分析了发输电组合系统中可能存在的可靠性非同调现象,提出用输电损耗、系统负载率、最小支路负荷安全裕度和带权重线路介数等指标单独作为非同调元件辨识的辅助指标或加权得到一个非同调辨识综合指标,以反映元件退出前后可靠性变化规律。基于此,提出发输电组合系统可靠性非同调辨识算法。以IEEE-RTS 79系统为例进行算例分析,分析表明:前3个指标与系统可靠性指标之间具有明显的相关关系,但指标的大小不能完全反映出元件退出前后可靠性的变化规律,综合指标也只能识别出系统中的部分可靠性非同调元件。因此,尽管该模型可实现发输电系统可靠性非同调元件的初步辨识,但非同调元件的辨识指标还需更加深入的研究。
Generally, adding an electrical power component to a power system, such as generating unit, transformer and transmission line, can improve the system reliability performance, which is the so-called reliability coherence phenomenon in power systems. Many research achievements on the power system reliability evaluation are based on this rule. However, the reliability non-coherence (RN) phenomenon exists in power systems due to the nonlinearity of power systems and their reliability evaluation models, which refers to the fact that if one or more components are added to a power system, the system reliability would not be improved, or even become worse. This component is designated as the reliability non-coherence component (RNC). The RNC not only increases the component capital investment and maintenance cost, but also reduces the system reliability performance.
     Supported in part by the National Natural Science Foundation of China (“Study on the RN mechanism and recognizing the RNCs of power systems”, No. 50777067), this thesis studies the existence mechanism of the RN phenomenon, non-coherence indices, and methods for recognizing RNCs. It mainly focuses on the RN feature, influencing factors and RNC recognizing techniques of multiple parallel transmission lines (MPTL) with and without considering substation configurations, distribution substation configurations (DSC) and composite generation and transmission system (CGTS). This study can provide a useful decision information for power system reliability optimization and operations, and is of important significance to the reliability and economy of power system operations. This thesis mainly includes the following contents:
     ①The power system RN mechanism is analyzed, and the index system used to describe the degree of the system RN feature is proposed and applied in the RN analysis of MPTLs and DSCs. The RN mechanism of the simple series, parallel systems and complex systems is analyzed, and the impact of adding a component on the system reliability is divided into two parts: positive effect and negative effect. If the positive effect is larger than the negative effect, adding a component can improve the system reliability and the component is the reliability coherence component. Otherwise, the component is a RNC. The Expected Energy Not Supplied (EENS) index or other indices is used to act as the RN judgment standard for the complex power systems, and the RN index system is proposed to describe the degree of the system RN feature, which includes: RN probability, RN frequency, expected RN time and expected RN energy.
     ②The RN features of MPTLs with and without considering substation configurations are analyzed, the RN identification models are built based on the analytical reliability evaluation model, and the analytical model of the RN threshold load (RNTL) is obtained. The reliability analytical models for double-circuit transmission line (DCTL) system, three-circuit transmission line (TCTL) system and four-circuit transmission line (FCTL) system are deduced. The RN identification models for MPTLs are also built based on the definition of RN, and the analytical model of the RNTL is obtained based on the transmission line rated capacity and component reliability parameters. Without evaluating the system reliability, the RN feature of a MPTL can be judged using the comparison between the system load and the RNTL. If the system load is larger than the RNTL, the system has the reliability coherence feature; otherwise, the system has the RN feature. In addition, the impacts of component reliability parameters and load levels on the RN feature, RNTL and RN indices are also analyzed.
     ③The RN features, the existing conditions and influence factors of the RN phenomenon for DSC including the sectionalized single bus and bridge connections are analyzed, and the RNC identification model for DSC is built. The simulation results show that load level is the most important influence factor of RN feature. The component reliability parameters have a little impact on the system RN features. Only the failure rate of breakers can change the system RN feature; other parameters, such as the repair rate of breakers, the failure rate and the repair rate of transformers, only affect the system reliability and can not change the non-coherence feature.
     ④The reliability changing rule before and after removing a component from CGTS is analyzed. The identification indices of RNC in CGTS, which can be used to recognize the RNC, are discussed. In order to reduce the computation complexity of recognizing the RNCs, the thesis analyzes the RN phenomena of CGTS by using the experience of contingency ranking technique for power system, and proposes the indices, such as the transmission losses, system loadability, the minimum security margin of transmission lines and the weighted betweenness of transmission lines, or the comprehensive index which obtained by weighing the before-motioned indices, to recognize the RNCs of CGTS. The IEEE-RTS 79 is used as an example to illustrate the rationality of the proposed concepts. The analysis shows that there are significant correlation between the first three indices and the system reliability indices; however, the rank of the indices can not reflect perfectly the reliability changing rule, and the comprehensive index only recognizes some but not all RNCs in power systems. Therefore, although the algorithm can identify the RNCs preliminarily, the identification indices for CGTS still need more research.
引文
[1] U. S.-Canada Power System Outage Task Force. Final Report on the August 14th Blackout in the United States and Canada: Cause and Recommendations[EB/OL]. http://www.nerc.com, April 2004.
    [2]唐葆生.伦敦南部地区大停电及其教训[J].电网技术, 2003, 27(11): 1-5.
    [3] Ekraft Systems. Power Failure in Eastern Denmark and Southern Sweden on 23 September 2003- Final Report on the Courses of Evenrs[EB/OL]. http://www.pserc.wisc.edu/, November, 2003.
    [4] Union for the Coordination of Electricity Transmission (UCTE). Inter Report of the Investigation Committee on the 28 September 2003 Blackout in Italy[EB/OL]. http://www. pserc.wisc.edu/, October, 2003.
    [5]杨莳百,戴景宸,孙启宏.电力系统可靠性分析基础及应用[M].北京:水利电力出版社, 1986.
    [6]赵渊.大电力系统可靠性评估的灵敏度分析及其校正措施模型研究[D].重庆大学博士学位论文, 2004.
    [7] W. Li, J. Zhou, K. Xie, et al. Non-coherence in transmission line arrangements[C]. 2006 International Conference on Power System Technology, October 22-26, 2006, Chongqing, China. 2006: 2272-2277.
    [8]李文沅,周家启,谢开贵,等.在输电线和变电站组合联结网络中的非同调现象[J].中国电机工程学报, 2006, 26(14): 7-11.
    [9] W. J. lyman. Fundamental considerations in preparing master system plan[M]. Electrical World, 1933: 788-792.
    [10]陈文高.配电系统可靠性实用基础[M].北京:中国电力出版社, 1998.
    [11] R. Billinton, R. N. Allan. Reliability evaluation of power system[M]. Pitman, 1984.
    [12]谢开贵,周平,周家启,等.基于故障扩散的复杂中压配电系统可靠性评估算法[J].电力系统自动化, 2001, 2: 45-48.
    [13]刘柏私,谢开贵,张红云,等.高压配电网典型接线方式的可靠性分析[J].电网技术, 2005, 29(14): 45-49.
    [14]谢开贵,易武,夏天,等.面向开关的配网可靠性评估算法[J].电力系统自动化, 2007, 31(16): 40-44.
    [15] C. F. Desieno, L. L. Stine. Probability method for determining the reliability of electric power systems[J]. IEEE Trans. on PAS, 1964, 83: 174-179.
    [16]丁明,刘友翔,戴仁昶,等.输电系统的分层可靠性建模及概率模拟[J].清华大学学报, 1997, 37(S1): 99-103.
    [17]王韶,周家启.计及输电线路相关停运的大电网可靠性评估[J].重庆大学学报(自然科学版), 2005, 28(3): 30-34.
    [18]王韶,周家启.双回平行输电线路可靠性模型[J].中国电机工程学报, 2003, 23(9): 53-56.
    [19]丁明,戴仁昶,洪梅,徐先勇.影响输电网可靠性的气候条件模拟[J].电力系统自动化, 1997, 21(1): 18-20.
    [20]刘洋,周家启.计及气候因素的大电力系统可靠性评估[J].电力自动化设备, 2003, 23(9): 60-62.
    [21]丁明,李生虎,洪梅.电力系统概率分析中的K均值聚类负荷模型[J].电力系统自动化, 1999, 23(19): 51-54.
    [22]洪梅,丁明,戴仁昶.保护系统的概率模型及其对组合系统可靠性的影响[J].电网技术, 1997, 21(8): 45-48.
    [23]丁明,戴仁昶,刘亚成,等.概率稳定性的蒙特卡罗仿真[J].清华大学学报, 1997, 39(3): 79-83.
    [24] B. Retterath, S. S. Venkata, A. A. Chowdhury. Impact of time-varying failure rates on distribution reliability[J]. Electrical Power and Energy Systems, 2005, 27: 682-688.
    [25] R. E. Brown, G. Frimpong, H. L. Willis. Failure rate modeling using equipment inspection data [J]. IEEE Transactions on Power System, 2004, 19(2): 782-787.
    [26] D. T. Radmer, P. A. Kuntz, R. D. Christie, et al. Predicting vegetation-related failure rates for overhead distribution feeders[J]. IEEE Trans on Power Delivery. 2002, 7(4): 1170-1175.
    [27]刘海涛,程林,孙元章,等.基于实时运行条件的元件停运因素分析与停运率建模[J].电力系统自动化, 2007, 31(7): 6-12.
    [28] Y. Zhou, A. Pahwa, S. Yang. Modeling weather-related failures of overhead distribution lines [J]. IEEE Transactions on Power System, 2006, 21(4): 1683-1690.
    [29]陈永进,任震,黄雯莹.考虑天气变化的可靠性评估模型与分析[J].电力系统自动化, 2004, 28(21): 17-21.
    [30] G. Calabreses. Generating reserve capacity determined by the probability method[J]. AIEE Transactions, 1947, 66(1): 1439-1450.
    [31] R. Billinton, W. L. Hybrid approach for reliability evaluation of composite generation and transmission systems using monte-carlo simulation and enumeration technique[J]. IEE Proceedings-C, 1991, 138(3): 233-241.
    [32]丁明,李生虎,刘盛松.发输电组合系统故障频率和持续时间指标的新算法[J].电力系统自动化, 2000, 23(22): 12-15.
    [33] R. Billinton, Y. Gao, R. Karki. Composite system adequacy assessment incorporating large-scale wind energy conmersion systems considering wind speed correlation[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1375-1382.
    [34]陈华,周家启.网络K度薄弱最小割集及其快速搜索算法[J].重庆大学学报(自然科学版), 1989, 12(6): 51-58.
    [35]周家启,陈华.发输电组合系统可靠性研究及其在广西电力系统中的应用[R].重庆大学电力系统研究所. 1988.
    [36]陈华,周家启.大型网络可靠性评估的增流减流交叉网流法[J].重庆大学学报(自然科学版). 1990, 13(4): 2-6.
    [37]陈万铭,周家启.发输电组合系统可靠性评估的交流潮流分析法[J].重庆大学学报(自然科学版), 1992, 15(3): 37-42.
    [38]谢开贵.基于交流潮流的电力系统可靠性评估模型与算法研究[D].重庆大学博士学位论文, 2001.
    [39] R. N. Allan, J. Roman. Reliability assessment of hydrothermal generation systems containing pumped storage plant[J]. IEE Proceedings-C, 1991, 138(6): 471-478.
    [40] J. R. Ubeda, R. N. Allan. Reliability assessment of composite hydrothermal generation and transmission systems using sequential simulation[J]. IEE Proceedings-C, 1994, 141(4): 257-262.
    [41] R. Billinton, Y. Gao, R. Karki. Composite system adequacy assessment incorporating large-scale wind energy conmersion systems considering wind speed correlation[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1375-1382.
    [42]任震,梁振升,黄雯莹.交直流混合输电系统可靠性指标的灵敏度分析[J].电力系统自动化, 2004, 28(14): 33-36.
    [43]刘海涛,程林,孙元章.交直流系统可靠性评估[J].电网技术. 2004, 28(23): 27-31.
    [44]丁明,李生虎,吴红斌,等.基于充分性和安全性的电力系统运行状态分析和量化评价[J].中国电机工程学报, 2004, 24(4): 43-49.
    [45]丁明,李生虎,吴红斌.电力系统概率充分性和概率稳定性的综合评估[J].中国电机工程学报, 2003, 23(3): 20-25.
    [46]李文沅,卢继平.暂态稳定概率评估的蒙特卡罗方法[J].中国电机工程学报, 2005, 25(10): 18-23.
    [47]李生虎,丁明,王敏.考虑故障不确定性和保护动作性能的电网连锁故障模式搜索[J].电网技术, 2004, 28(13): 27-31, 44.
    [48]孙可,韩祯祥,曹一家.复杂电网连锁故障模型评述[J].电网技术, 2005, 29(13): 1-9.
    [49]陈为化,江全元,曹一家.考虑继电保护隐性故障的电力系统连锁故障风险评估[J].电网技术, 2006, 30(13): 14-19, 25.
    [50] Z. Yu, G. Nderitu, F. Smardo. A proposed LOSBE as a generation reliability index for deregulated electricity markets[C]. IEEE Power Engineering Society Winter Meeting. Ohio, America: 2000, 3: 1820-1824.
    [51] V. A. Van, J. McCalley, V. Vittal. Risk-based transient instability[C]. Proceedings of the 30th North American Power Symposium. Cleveland: 1998, 206-211.
    [52]陆波,唐国庆.基于风险的安全评估方法在电力系统中的应用[J].电力系统自动化, 2000, 24(22): 61-64.
    [53]易武.发输电组合系统充裕度等值模型研究[D].重庆大学硕士学位论文, 2007.
    [54]王超.电力系统可靠性评估中的几个重要问题研究[D].浙江大学博士学位论文, 2007.
    [55] N. Samaan, C. Singh. A new method for composite system annualized reliability indices based on genetic algorithms[C]. Power Engineering Society Summer Meeting, Chicago, USA, 2002 IEEE: 850-855.
    [56]谢开贵,周家启.基于ANN削减负荷的发输电组合系统可靠性评估[J].电力系统自动化, 2002, 11(22): 31-34.
    [57]周小佳,周家启,张安邦.神经网络热量平衡法在电网可靠性计算中的应用[J].系统工程学报, 1997, 12(4): 71-77.
    [58]周小佳,周家启,张安邦.运用神经网络方法进行电网最小割集搜索的硬件实现研究[J].电机工程学报, 1997, 17(6): 369-372.
    [59]王韶,周家启.基于函数型连接神经网络的发输电系统可靠性评估研究[J].中国电机工程学报, 2004, 24(9): 142-146.
    [60]钟波,周家启,赵渊.大电力系统可靠性评估的软计算模型[J].电工技术学报, 2005, 20(6): 46-51.
    [61]吴开贵,吴中福.基于敏感度分析的电网可靠性算法[J].中国电机工程学报, 2003, 23(4): 53-56.
    [62]宋晓通,谭震宇.改进的重要抽样法在电力系统可靠性评估中的应用[J].电网技术, 2005, 29(13): 56-59.
    [63]宋晓通,谭震宇.大型发输电组合系统可靠性评估方法[J].高电压技术, 2007, 33(7): 191-194.
    [64]赵渊,周家启,周念成.发输电系统可靠性评估的启发式就近负荷削减模型[J].电网技术, 2005, 29(23): 34-39.
    [65] H. Maghraby, R.N. Allan. Application of DC equivalents to the reliability evaluation of composite power systems[J]. IEEE Transactions on Power Systems, 1999, 14(1): 355-361.
    [66] W. Li, Risk assessment of power systems: Models, Methods, and Applications[M]. IEEE Pressand John Wiley & Sons, USA and Canada, 2005.
    [67]孙洪波,秦翼鸿,徐国禹.计及数据不确定性的发输电组合系统可靠性评估方法[J].电力系统自动化, 1996, 20(11): 32-35.
    [68]丁明.发输电系统可靠性分析软件综述[J].电网技术, 2002, 26(1): 51-54.
    [69]牟道槐,林莉.电力系统工程基础[M].北京:机械工业出版社, 2007.
    [70] J. Endrenyi. Three state models in power system reliability evaluation[J]. IEEE Trans on Power Apparatus and System, 1971, 90(4): 1909-1916.
    [71] R. Billinton, H. Chen, J. Zhou. Generalized n+2 state system Markov model for station- oriented reliability evaluation[J]. IEEE Trans on Power Systems, 1977, 12(4): 1511-1517.
    [72]董百强,谢开贵,周家启.电站3/2接线和4/3接线的可靠性比较分析[J].重庆大学学报(自然科学版), 2006, 29(10): 10-15.
    [73]周志超,张焰,王伟,等.变电站供电可靠性的定量评估[J].电力系统自动化, 2004, 28(9): 66-70.
    [74]谢开贵,董百强,赵霞,等.大型(变)电站电气主接线可靠性综合分析系统[J].电力系统自动化, 2006, 30(15): 89-92.
    [75]周志超,张焰,房鑫炎,等.变电站供电可靠性定量评估软件包的开发应用[J].中国电力, 2004, 37(6): 33-36.
    [76] R. Billinton, G. Lian. Station reliability evaluation using a Monte Carlo approach[J]. IEEE Trans on Power Delivery, 1993, 8(3): 1239-1245.
    [77] R. Nighot, R. Billinton. Reliability evaluation of the IEEE-RTS incorporating station related outages[C], in Proc. IEEE Gen. Meeting, Denver, CO, Jun. 6–10, 2004, PESGM2004–00 205.
    [78]陈云峰,张焰.计及变电站主接线影响的输电网可靠性评估系统[J].现代电力, 2007, 24(3): 44-47.
    [79] W. Li, J. Lu. Risk evaluation of combinative transmission network and substation configurations and its application in substation planning[J]. IEEE Trans on Power system, 2005, 20(2): 1144-1150.
    [80]王锡凡.水电厂电气主接线可靠性研究报告[J].水电电气设计, 1991, 1: 1-28.
    [81]鲁宗相.发电厂可靠性预测及事故分析[M].北京:中国电力出版社, 2007.
    [82]张劲松,任震,何建军.基于FD法的变电站主接线可靠性评估[J].广东电力, 2000, 13(2):1-5.
    [83]鲁宗相,郭永基.水电站电气主接线可靠性评估[J].电力系统自动化, 2001, 25(18): 16-19, 27.
    [84]张鹏,郭永基.电气主接线可靠性评估的区间方法[J].电力系统自动化, 2004, 28(19): 48-52.
    [85]邹符波.基于故障扩散220kV变电站主接线评估方法研究[J].沿海企业与科技, 2009, 12: 146-148.
    [86]李哲,鲁宗相,刘井泉.基于GO法的核电厂电气主接线系统可靠性分析[J].核动力工程, 2010, 31(3): 69-74.
    [87] R. Podmore. Identification of coherent generators for dynamic equivalent[J]. IEEE Trans. on Power Apparatus Systems, 1978, 97(7): 1344-1354.
    [88]许剑冰,薛禹胜,等.电力系统同调动态等值的述评[J].电力系统自动化, 2005, 29(14): 91-95.
    [89] R.Billinton, W. Li. Reliability assessment of electric power systems using monte carlo methods[M], Plenum Press, New York, 1994.
    [90] R. Billinton, R. N. Allan. Reliability evaluation of power system[M]. Plenum Press, New York and London, 1996.
    [91] S. Jonnavithula, R. Billinton. Topological analysis in bulk power system reliability evaluation[J]. IEEE Transactions on Power Systems. 1991, 12(1): 456-463.
    [92] A. Laviron. ESCAF for MTBF, time evolution, sensitivity coefficients, cut-set importance, and non-coherence of large systems[J]. IEEE Transactions on Reliability, 1986, 35(2): 139-144.
    [93]郭永基.电力系统可靠性分析[M].北京:清华大学出版社, 2003.
    [94]周家启,蒋锦峰,孙渝江,等.“电力可靠性基本名词术语”, DL/T861-2004(中华人民共和国电力行业标准),中国电力出版社, 2004.
    [95]陈珩.电力系统稳态分析(第三版)[M].北京:中国电力出版社, 2007.
    [96] W. Li, J. Zhou, K. Xie, et al. Non-coherence in transmission line arrangements[C]. 2006 International Conference on Power System Technology. POWERCON 2006.
    [97] W. Wangdee, R. Billinton. Reliability performance index probability distribution analysis of bulk electricity systems[J]. Canadian Journal of Electrical and Computer engineering, 2005, 30(4): 189-193.
    [98] A. D. Patton, N. H. Tram. Sensitivity of generation reliability indices to generator parameter variations[J]. IEEE Trans on Power Apparatus and System, 1978, 97(4): 678-683.
    [99]赵渊,周念成,谢开贵,等.大电力系统可靠性评估的灵敏度分析[J].电网技术, 2005, 29(24): 25-31.
    [100] M. Lu, Z. Kieloch. Accuracy of transmission line modeling based on aerial LiDAR survey[J]. IEEE Transactions on Power Delivery, 2008, 23(3): 1655-1663.
    [101] T. Weekes, T. Molinski, G Swift. Transient transformer overload ratings and protection[J]. IEEE Electrical Insulation Magazine, 2004, 20(2): 32-35.
    [102] Y. Zhou, A. Pahwa, S. Yang. Modeling weather-related failures of overhead distributionlines[J]. IEEE Transactions on Power System, 2006, 21(4): 1683-1690.
    [103] D. T. Tadmer, P. A. Kuntz, R. D. Christie, et al. Predicting vegetation-related failure rates for overhead distribution feeders[J]. IEEE Trans on Power Delivery, 2002, 7(4): 1170-1175.
    [104] K. Alvehag, L. Soder. A reliability model for distribution systems incorporating seasonal variation in severe weather[J]. IEEE Transcations on Power Delivery, 2011, 26(2): 910-919.
    [105] B. Retterath, S. S. Venkata, A. A. Chowdhury. Impact of time-varying failure rates on distribution reliability[J]. Internatinal Journal of Electrical Power & Energy Systems, 2005, 27(9): 682-688.
    [106]林智敏,林韩,温步瀛.基于分离模型的双回平行输电线路可靠性评估[J].华东电力, 2008, 36(7): 34-37.
    [107]任震,梁振升,黄雯莹.考虑相关故障的双回输电线路可靠性评估[J].电力自动化设备, 2005, 25(6): 14-17.
    [108] IEEE Committee Report. IEEE reliability test system[J]. IEEE Transactions on Power Apparatus and System, 1979, 98(6): 2047-2054.
    [109] F. Fatehi, M. Rashidinejad, A. Gharaveisi. Contingency ranking based on a voltage stability criteria index[C]. Power Engineering, 2007 Large Engineering Systems Conference on 10-12 Oct. 2007: 142–147.
    [110] K George, Stefopoulos, Y. Fang, J. George. Advanced contingency selection methodology. Power symposium[C], 2005. Proceedings of the 37th Annual North American 23-25. 2005: 67-73.
    [111]吴际舜.电力系统静态安全分析[M].上海:上海交通大学出版社, 1985. 5: 75-86.
    [112] H. Song, M. Kezunovic. Static security analysis based on Vulnerability Index(VI) and Network Contribution Factor(NCF) method[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2005: 1-7.
    [113] N. H. Sohtaoglu. Evaluation of transmission losses in power system contingency analysis[C]. 1998 Electrical Conference. MELECON 98, 9th Mediterranean, 936-940.
    [114] A. Ozdemir, R. Caqiar, C. Singh.Transmission lossed based MW contingency ranking[J]. Electrical Engineering, 2006, 88(4): 275-280.
    [115]易俊,周孝信.基于连锁故障搜索模型的降低电网发生连锁故障风险的方法[J].电网技术. 2007, 31(6): 19-22.
    [116] Y. Chang, R. Chang, T. Hsiao, et al. Transmission system loadability enhancement study by ordinal optimization method[J]. IEEE Transactions on Power Systems, 2011, 26(1): 451-459.
    [117]万官泉,任震,汪穗峰.基于支路断开安全裕度状态空间截断的电力系统可靠性算法[J].电网技术, 2007, 31(16): 60-67.
    [118]曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识[J].电力自动化设备, 2006, 26(12): 1-6.
    [119]曹一家,刘美君,丁理杰,等.大电网安全性评估的系统复杂性理论研究[J].电力系统及其自动化学报, 2007, 19(1): 1-8.
    [120]杨虎,刘琼荪,钟波.数理统计[M].北京:高等教育出版社, 2004.
    [121]孙允午.统计学—数据的搜集整理和分析[M].上海:上海财经大学出版社, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700