基于频域滤波法的调制脉冲激光雷达水下探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用激光雷达实现水下目标探测,抑制海水的后向散射是核心问题。本文通过研究海水的光传输特性,解决了后向散射率的求取以及对后向散射体分布随机性的表述等问题,构建了以后向散射模型和目标反射模型为主的激光雷达系统的海水信道模型。该模型不论从时域还是从频域的角度分析,都与海水实际的光学特性相似,成为本文理论研究的工具。
     分析信道特性可知,目标反射信号可以保持探测信号的频率特性,而海水后向散射来自随机分布的散射体的反射,大量随机反射的叠加导致后向散射信号呈现出低频特性。基于该频域特性,本文提出了引入频域滤波法抑制后向散射,即在发射端将探测信号调制到高频、在接收端进行频域检测、利用带通滤波器滤除低频信号的方法。根据这一思想,设计了调制脉冲激光雷达系统的实现方案,并利用理论推导和仿真计算,详细分析了海水信道的信号传输过程和系统的信号处理方法,通过比较频域滤波前后的目标对比度,论证了方案的有效性。
     为使调制脉冲激光雷达系统达到最优设计,研究了系统参数与性能之间的关系,提出了发射脉冲能量、调制频率范围、调制指数、滤波带宽、飞行高度等系统参数的设计原则,设计过程中既考虑到参数对系统性能的影响,又要结合当前的技术水平或技术发展趋势,提出切合实际的设计参数,为实物研制或技术发展方向提供了参考性意见。另外研究了环境参数与系统性能之间的关系,归纳出调制脉冲激光雷达系统适用于在常见海水水质条件下进行浅水域探测。
     本文针对调制脉冲激光雷达系统区别于以往机载激光雷达的器件和技术,如对光脉冲的调制方法、具有快速响应时间和高灵敏度的光探测器、微波信号滤波和处理模块等,提供了一些可用于系统实现的器件、技术和设计方案,论证了方案的可实现性。
     经仿真论证,该系统对后向散射信号有18dB的抑制能力,在浅水域可以提高目标对比度10dB以上,验证了系统在常见水质的浅水域具有优于一般方法的探测效果。因此,该系统除了应用于水下探测外,还可以用于水下成像。其他各种后向散射和多次散射严重的信道,也可利用频域滤波法进行系统设计,实现目标识别。
The principal task of the lidar system design for ocean exploration is to restrain the backscattering. By investigating the light transmission character in seawater, the backscattering rate and the expression of random distribution sources of backscattering are acquired, and the seawater channel model of the lidar system based on backscattering model and target reflection model is formed. This model is similar to the actual optic characters no matter on time domain or frequency domain. It is an important tool of theoretical research in this paper.
     As known from the analysis of the channel characters, reflection signal from the target can retain the frequency character of the detection signal. Due to the fact that the seawater backscattering comes from the reflection of the random distributed scattering sources, a large amount of random reflection signals overlap to each other so that the backscattering signal shows a low frequency character. Based on such frequency character, a method of using frequency filtering to restrain the backscattering signal is introduced in this paper. This is a method to modulate the detection signal to a high frequency at the transmitter, do frequency detection at the receiver, and use bandpass filter to cease the low frequency signal. Based on this algorithm, the fulfilling scheme of the modulated-pulse lidar system is proposed. Furthermore, by using theoretical deduction and simulating calculation, the signal transmission process in seawater channel and the signal processing ways of the system are fully analyzed. In the end, the validity of this method is illustrated by comparing the target contrast before and after the frequency filtering.
     In order to optimize the design of the modulated-pulse lidar system, the relation between system parameters and the performance are investigated, and the principle of system parameter design is introduced. System parameters such as transmitting pulse power, range of modulating frequency, modulation index, bandwidth of filter and height of fight are included. In the designing process, the influence of parameters to the system performance must be taken into consideration, and also practical designing parameters will be raised according to nowadays technique level or the developing trend, so that it can give reference opinions to the entity research or the technique developing direction. Besides, a conclusion that the modulated-pulse lidar system is suitable for shallow water exploration in ordinary seawater condition is made based on study of the relation between environment and system performance.
     Instruments and techniques of modulated-pulse lidar system such as modulation methods of laser pulse, laser detector with fast response time and high sensitivity, filtering and processing module of microwave signal are different compared with previous lidar system. In this paper several suitable instruments, techniques and design scheme for modulated-pulse lidar system are proposed according to these differences and the feasibility of this scheme is validated.
     The modulated-pulse lidar system has reduced backscattering signals by 18dB and enhanced the target contrast over 10dB in the shallow water in computer simulation, which shows that this system has better detection effect than ordinary algorithms in shallow water with common water quality parameters. The simulation result shows that this system can be applied in underwater imaging other than underwater detection. The frequency filtering method can also be applied to the system design for target identify in other channels with serious backscattering and multi-scattering.
引文
[1]徐啟阳,杨坤涛,王新兵等.蓝绿激光雷达海洋探测[M].北京:国防工业出版社, 2002
    [2] M.E. Charlton, A.R.G.Large, I.C. Fuller. Application of airborne lidar in river environments:the River Coquet, Northumberland, UK[J]. Earth Surface Processes and Landforms. 2003, 28: 299-306
    [3] E.P. Zege, I.L. Katsev, A.S. Prikhach. Recent advancement in computer simulating performance of the sounding and detecting ocean lidars in very shallow waters[C]. T. T. S. Michael James DeWeert, Harry L. Guthmuller, Photonics for Port and Harbor Security II. SPIE, 2006. 62040D-1-62040D-1
    [4] Gordon, G. A. Maul and H. R. Remote Sensing Environment[C]. 1975. 95
    [5] Strand, M.P. Underwater electro-optical system for mine identification[C]. Dectection Technologies for Mines and Minelike Targets. SPIE, 1995. 487-497
    [6] Steinvall, O., Koppari, K., Lejdebrink, U., Winell, J., Nilsson, M., Ellsén, R., Gjellan, E. Depth Sounding Lidar-Performance and Models[C]. Laser Radar Technology and Applications. Orlando: SPIE, 1996. 18-38
    [7] Steinvall, O., Koppari, K., and Karlsson, U. Experimental Evaluation of an Airborne Depth-Sounding Lidar[J]. Optical Engineering. 1993, 32(6): 1307-1321
    [8] McLean, J.W. High resolution 3-D underwater imaging[C]. Airborne and In-Water Underwater Imaging. SPIE, 1999. 10-19
    [9] M.P. Strand, B.W, Coles, A.J. Nevis, R.F. Regan. Laser line-scan fluorescence and multispectral imaging of coral reef environments[C]. Ocean Optics XIII. SPIE: 1997. 790-795
    [10] Lillycrop W.J., Parson L.E., Irish J.L. Development and Operation of the SHOALS Airborne Lidar Hydrographic System[C]. Laser Remote Sensing of Natural Waters - From Theory to Practice. SPIE, 1996. 26-37
    [11]陈文革,黄铁侠,卢益民.机载海洋激光雷达发展综述[J].激光技术. 1998, 22 (3): 147-152
    [12] Hickman G D, Hogg J E. Application. of an airborne pulsed laser for near-shore bathymetric measurements[C]. Remote Sensing of the Environment. 1969. 47-58
    [13] Ulich B L, Keelr R N. [P]. U.S, 4964721, 1990.
    [14] Lillycrop W.J., Parson L.E., Estep L.L. Field testing of the U S Army Cops of engineers airborne lidar: Hydrography survey system[C]. Proceedings U S Hydrographic Conference. Norfolk USA: 1994. 144-151
    [15] Wozencraft, J. M. Complete Coastal Mapping with Airborne Lidar[J]. IEEE. 2002: 1194-1198
    [16] http://www.fugro-pelagos.com/
    [17] Guenther G.C., Thomas R.W.L., LaRocque P.E. Design Considerations for Achieving High Accuracy with the SHOALS Bathymetric Lidar System[C]. Laser Remote Sensing of Natural Waters From Theory to Practice. SPIE, 1996. 54-71
    [18] Koppari K, Karlsson U, Steinvall O. Airborne sounding in Sweden[C]. Proceedings U S Hydrographic Conference. Norfolk USA: 1994. 124-133
    [19] Thuresson P. SHOALS-Hawks Eyes[C]. International laser bathymeter seminar. Ronneby,Sweden:1994.
    [20] Setter C, Willis R J. LADS form development to hydrographic operations[C]. Proceedings U S Hydrographic Conference. Norfolk USA: 1994.
    [21]张博,刘智深,丁田夫.水下激光线扫描探测系统的设计及试验[J].中国海洋大学学报. 2004, 34 (4): 655-661
    [22]姚春华,陈卫标,臧华国,汪权东,陆雨田.机载激光测深系统中的精确海表测量[J].激光技术. 2003, 32 (4): 351-355
    [23] B Boulbry, B Le Jeune, F Pellen, J Cariou and J Lotrian. Identification of error parameters and calibration of a double-crystal birefringent wave plate with a broadband spectral light source[J]. JOURNAL OF PHYSICS D: APPLIED PHYSICS. 2002, 35: 2508-2515
    [24] Brett L. Vallé, Gregory B. Pasternack. Field mapping and digital elevation modelling of submerged and unsubmerged hydraulic jump regions in a bedrock step - pool channel[J]. Earth Surface Processes and Landforms. 2006, 31: 646-664
    [25] E.A. McLean, J.R. Burris, M.P. Strand. Short-pulse range-gated optical imaging in turbid water[J]. Applied Optics. 1995, 34: 4343-4351
    [26] Aleksey V. Malinka, Eleonora P. Zege. Retrieving seawater-backscattering profiles from coupling Raman and elastic lidar data[J]. Applied Optics. 2004, 43 (19): 3925-3930
    [27]陈文革,卢益民,黄铁侠等.激光水下目标探测消除后向散射的研究[J].华中理工大学学报. 1995, 23 (4): 55-58
    [28] Zege E.P, Katsev I.L, Polonsky I.N. New approach to calculate the spatial and temporal radiance distribution in atmosphere and ocean from sources and backgrounds[C]. Characterization, Propagation, and Simulation of Sources and Backgrounds III. Orlando, USA: 1993.
    [29] Gordon, H. Interpretation of airborne oceanic lidar: Effects of multiple scattering[J]. Applied Optics. 1982, 21: 2996-3001
    [30] C. Werner, J. Streicher, H. Herrmann, H. Dahn. Multiple-scattering lidar experiments[J]. Optical Engineering. 1992, 31: 1731-1745
    [31] A. Kouzoubov, M.J. Brennan, J.C. Thomas. Treatment of polarization in laser remote sensing of ocean water[J]. Applied Optics. 1998, 37: 3873-3885
    [32] G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, R. Kaiser. Coherence and polarization of light propagating through scattering media and biological tissues[J]. Applied Optics. 1998, 37: 7357-7367
    [33] Reintjes, M. Bashkansky and J. Nonlinear-optical field cross-correlation techniques for medical imaging with lasers[J]. Applied Optics. 1993, 32: 3842-3845
    [34] B Boulbry, B Le Jeune, B Bousquet, F Pellen, J Cariou, J Lotrian. Error analysis and calibration of a spectroscopic Mueller matrix polarimeter using a short-pulse laser source[J]. MEASUREMENT SCIENCE AND TECHNOLOGY. 2002, 13: 1563-1573
    [35]陈文革.机载激光探潜试验系统的信息处理[D]: [博士后研究工作报告学位论文].武汉:华中理工大学, 1997
    [36] S.M. Christie, F. Kvasnik. Contrast enhancement of underwater images with coherent optical image processors[J]. Applied Optics. 1996, 35: 817-825
    [37] J.A. Izatt, M.D. Kulkarni, K. Kobayashi,et al. Optical coherence tomography for biodiagnostics[J]. Optics and Photonics News. 1997, 8: 41-47
    [38] L. Mullen, V.M. Contarino, P.R. Herczfeld. Modulated lidar system[P]. U.S, 1998.
    [39] MULLEN Linda, VIEIRA Amarildo, HERCZFELD Peter. Application of RADAR Technology to Aerial LIDAR System for Enhancement of Shallow Underwater Target Detection[J]. IEEE Transactions on Microwave Theory and Techniques. 1995, 43 (9): 2370-2377
    [40] PELLEN Fabrice, OLIVARD Pascal, GUERN Yves,et al. Radiofrequency modulation on optical carrier for target detection enhancement in sea-water[J]. Ocean Optics: Remote Sensing and Underwater Imaging. 2002, 4488: 13-24
    [41] M.A. O'Leary, D.A. Boas, B. Chance, A.G. Yodh. Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography[J]. Optics Letters. 1995, 20: 426-428
    [42] MULLEN Linda, CONTARINO Vincent. Hybrid Lidar-Radar:Seeing through the Scatter[J]. IEEE Microwave Magazine. 2000, 1 (3): 42-48
    [43] Mullen, L. Application of radar technology to laser mine detection systems[C]. Proc. Fourth International Symposium on Technology and the Mine Problem. 2000.
    [44] Linda J. Mullen, Alan E. Laux, Brandon Cochenour, Eleonora P. Zege. FAMIS (Frequency Agile Modulated Imaging System) Sensor for Imaging in Turbid Water[C]. T. T. S. Michael James DeWeert, Harry L. Guthmuller, Photonics for Port and Harbor Security II. SPIE, 2006. 62040E-1-62040E-13
    [45] L. Mullen, A. Laux, B. Concannon, E. Zege, I. Katsev, A. Prikach. Amplitude-Modulated Laser Imager[J]. Appl.Opt. 2004, 43: 3874-3892
    [46] F. Boulvert, S. Rivet, B. Le Jeune, G. Le Brun, F. Pellen, J. Cariou. OCT system with electro-dynamic shaker driven by a frequency-modulated waveform[C]. W. Drexler, Optical Coherence Tomography and Coherence Techniques II. SPIE, 2005. 58610G-1-58610G-8
    [47] Elterman, L. Visible and IR Attenuation for Altitudes to 50 km[R]. 1968
    [48] R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J.S. Garing. Optical Properties of the Atmosphere[R]. 1972
    [49]陈文革.大气/海水光散射信道特性的研究[D]: [博士学位论文学位论文].武汉:华中理工大学, 1995
    [50]杜竹峰.激光水下目标探测及通信的信道特性研究[D]: [博士学位论文学位论文].武汉:华中理工大学, 1998
    [51] Duo-Min He, Gerald G. L. Seet. Underwater lidar imaging scaled by 22.5 cm/ns with serial targets[J]. Opt. Eng. 2004, 43 (3): 754-766
    [52] Billard B., Abbot R., Penny M. Airborne Estimation of Sea Turbidity Parameters from the WRELADS Laser Airborne Depth Sounder[J]. Applied Optics. 1986, 25 (13): 2080-2088
    [53] X. Intes, B. Le Jeune, F. Pellen, Y. Guern, J. Cariou, J. Lotrian. Localisation of the virtual point source used in the diffusion approximation to model collimated beam source[C]. S. Jose, Optical Tomography and Spectroscopy of Tissue Ill. California: SPIE, 1999. 183-199
    [54] Mahoney, Kevin Leo. Backscattering of light by Karenia brevis and implications for optical detection and monitoring[D]: [Doctor of Philosophy]. The University of Southern Mississippi,2003
    [55] Lin Hong, Dong Tianlin, Ma Yong. The Study on Infrared Scattering of Red Tide[J]. International Journal of Infrared and Millimeter Waves. 2007, 28 (4): 305-314
    [56]袁易君,任德明,胡孝勇. Mie理论递推公式计算散射相位函数[J].光散射学报. 2006, 17 (4): 366-371
    [57]张杰.具有复折射率微粒的Mie散射光学特性研究[J].光散射学报. 2006, 17 (4): 359-365
    [58] Gordon H R, Brown O B, Jacobs M M. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean[J]. Applied Optics. 1975, 19: 417-427
    [59] Poole L.R, Venable D.D, Campbell J.W. Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems[J]. Applied Optics. 1981, 20 (20): 3653-3656
    [60] L I. Chaikovskaya, I. L Katsev, A. S. Prikhach, E P. Zege. Fast Code to Compute Polarized Radiation Transfer in the Atmosphere - Ocean and Atmosphere - Earth Systems[J]. IEEE. 1999: 1398-1400
    [61] JI Hang, MA Yong, LIANG Kun, WANG Hongyuan. Backscattering light model of seawater for modulated lidar based on stationarity of light field[J]. Journal of Beijing Institute of Technology. (Accepted)
    [62] E.P. Zege, I.L. Katsev, A.S. Prikhach, G.D. Ludbrook, P. Bruscaglioni. Analytical and computer modeling of the ocean lidar performance[C]. T. Rother, 12th International Workshop on Lidar Multiple Scattering Experiments. SPIE, 2003. 189-199
    [63] I.L, Katsev. About integral characteristics at unstationary light scattering[J]. Dokl.AN BSSR. 1969, 13 (2): 118-121
    [64] Vitalii S. Shamanaev, Grigorii P. Kokhanenko, Margarita M. Krekova, Ioganes E. Penner. Influence of multiscattering on the results of airborne hydro-optical sensing[J]. Optical Engineering. 2005, 44 (7): 071212-1-071212-6
    [65]管致中,夏恭恪.信号与线性系统[M].北京:高等教育出版社, 1979
    [66] Eleonora P. Zege, losif L. Katsev, Alexander S. Prikhach, R. Norris Keeler. Comparison of airborne ocean lidar performance when operating in the obscuration and reflection modes[C]. Part of the SPIE Conference on Airborne and In-Water Underwater Imaging. Denver, Colorado: SPIE, 1999. 142-153
    [67] Busck, Jens. Underwater 3-D optical imaging with a gated viewing laser radar[J]. Optical Engineering. 2005, 44 (11): 116001-1-116001-7
    [68]华中理工大学机载激光探潜组.机载激光探潜实验报告[R]. 1996
    [69]冀航,马泳,杨克成.载波调制激光雷达水下目标探测的仿真分析[J].光学技术. 2007, 33 (5): 648-650
    [70] Iosif L. Katsev, Eleonora P. Zege, Alexander S. Prikhach, et al. Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems[J]. Optical Society of America. 1997, 14 (6): 1338-1346
    [71]赵铭军,胡永钊,李忠建,曾晓东.激光探测回波识别技术研究[J].激光与红外. 2005, 35 (7): 473-475
    [72] L. Mullen, P.R. Herczfeld, and V.M. Contarino. Progress in hybrid lidar-radar for oceanexploration[J]. Sea Technology. 1996, 37: 45-52
    [73]马泳,冀航,林宏等.载波调制脉冲激光雷达技术研究[R]. 2004
    [74] Gary C. Guenther, Robert W.L. Thomas. System Design And Performance Factors For Airborne Laser Hydrography[J]. IEEE. 1983: 425-430
    [75]马泳,冀航,林宏.基于临近空间平台隐形飞机的侦测技术研究[R]. 2007
    [76] PowerliteTM Precision II 9000. http://www.continuumlasers.com/
    [77] C.Wayne Wright, Frank E.Hoge, Robert N.Swift, et al. Next-generation NASA airborne oceanographic lidar system[J]. Applied Optics. 2001, 40 (3): 336-342
    [78] Shunpike, Paul F. Phenomenological Model of Beam priding in Ocean Water[C]. Ocean Optics X. SPIE, 1990.
    [79]叶嘉雄,常大定,陈汝钧.光电系统与信号处理[M].北京:科学出版社, 1997
    [80]冀航,马泳,梁琨,王宏远.频域滤波抑制海水后向散射的带宽研究[J].激光技术. (已录用)
    [81] Svenson S, Ekstrom C, Erisson B, et al. Attenuation and scattering meters designed for estimating laser system performance[C]. Ocean OpticsⅨ. SPIE, 1988.
    [82] B.C. Lam, A.L. Keliner, D.C. Analysis and Measurement of the External Modulation of Modelocked Laser Diodes[C]. SPIE. 1990. 37-47
    [83] Joannes M. Costa, Benson C. Lam, Albert L. Keilner. Hybrid optical transmitter for microwave communication systems[C]. SPIE. 1997. 74-81
    [84] F. Smyth, L.P. Barry. Effects of Laser Diode Nonlinearities in Hybrid Fiber/Radio Systems[C]. SPIE. 2003. 169-175
    [85] Yifei Li, Amarildo J. C. Vieira. Rapidly Tunable Millimeter-Wave Optical Transmitter for Lidar-Radar[J]. IEEE TRANSACTIONS. 2001, 49 (10): 2048-2055
    [86] T.Suzuki, J.M.Marx, V.P.Swenson, et al. Optical waveguide Fabry-Perot modulators in LiNbO3[J]. Applied Optics. 1994, 33 (6): 1044
    [87] W. Li, R. R?nkk?, M. Peltola, A. Rydefalk, M. Pessa, H. Sch?ll, S. Garidel, K.A. Williams. Characterization of 1550 nm Fabry-Perot Laser Structures for Applications as Mode-Locked Pulse Sources[C]. Lasers and Applications. SPIE, 2004. 130-137
    [88] D. J. Fitzmartin, E. J. Balboni, R. G. Gels. Wide-band Analog Frequency Modulation of Optic Signals Using Indirect Techniques[C]. SPIE. 1990. 78-87
    [89] I.P. Kaminow, E.H.Turner. Electrooptic Light Modulators[J]. Applied Optics. 1966, (5): 1612
    [90] LiNbO3 Crystal Series. http://www.lasercomponents.com/
    [91] G.Hernandez. Fabry-Perot Interferometers[M]. New York: Cambrige University Press, 1986
    [92] Jean-Pierre Vilcot, Sophie Garidel, Gwenn Ulliac. Novel device concepts for microwave photonics functionalities[C]. P. Mathieu, Photonics North. SPIE, 2006. 63432E-1--63432E-6
    [93] L. Mullen, A.Vieira, P.R.Herczfeld, et al. Microwave-Modulated Transmitter Design For Hybrid Lidar-Radar[J]. IEEE MTT-S Digest. 1995: 1495-1498
    [94] L. Mullen, P.R.Herczfeld. Full Scale Hybrid Lidar-Radar System[J]. IEEE. 1996: 1559-1562
    [95] Fran?ois Duport, Chi Thanh Nguyên, Rolland Hierle. Optical to microwave conversion in a traveling wave electro-optic polymer based device[C]. Organic Photonic Materials and Devices VIII. SPIE, 2006. 130-140
    [96]董小伟.有机聚合物电光调制器[J].光子技术. 2003: 11-15
    [97]董小伟.新型高速电光调制器[J].光通信研究. 2003, (118): 67-71
    [98]彭强,黄艳,谢明贵.有机极化聚合物材料及电光调制器件[J].材料导报. 2002, 16 (8): 53-55
    [99]高福斌,杜国同,张平. M_Z型极化DANS聚合物电光波导强度调制器研究[J].光子学报. 2005, 35 (5): 646-648
    [100] L. Mullen, V.M. Contarino, A. Laux, B. Concannon, J. Davis, M.Strand, B. Coles. Modulated Laser Line Scanner for Enhanced Underwater Imaging[J]. Airborne and In-Water Underwater Imaging. 1999, 3761: 2-9
    [101]江月松,阎平,刘振玉.光电技术与实验[M].北京:北京理工大学出版社, 2000
    [102] Photomultipliers for Scintillation and High Energy Physics. http://www.burle.com
    [103] Nairn, R.R. Royal Australian Navy Laser Airborne Depth Sounder, The First Year of Operations[C]. The International Hydrographic Review. 1994. 109-119
    [104]郭冠军,邵芸.激光散斑效应对激光雷达探测性能的影响[J].物理学报. 2004, 53 (7): 2089-2093
    [105] Ross A. La Rue, John P. Edgecumbe, Gary A. Davis, Steve Gospe, Verle Aebi. High quantum efficiency photomultiplier with fast time response[C]. Photodetectors and Power Meters. SPIE, 1993. 64-73
    [106]段智勇,林家齐,雷清泉.单光子计数器光电转换与倍增器件的研制[J].哈尔滨理工大学学报. 2002, 7 (1): 40-46
    [107] Photodiodes. http://www.optoelectronics.perkinelmer.com
    [108] B.C. Lam, A.L. Keliner, D.C. Campion, J.M. Costa, P.K.L. Yu. Analysis and Measurement of the External Modulation of Modelocked Laser Diodes[C]. High-Frequency Analog Fiber Optic Systems. SPIE, 1990. 36-45
    [109] S.M. Cameron, D.E. Bliss, R.A. Hamil, and R.B. Asher. Remote Optical Imagery of Obscured Objects in Low-Visibility Environments using Parametric Amplification[C]. Proc. IRIS Active Syst. 1998. 63-82
    [110] Qingchong Liu, Qi Lu. Subcarrier PSK Intensity Modulation for Optical Wireless Communications through Turbulent Atmospheric Channel[J]. IEEE. 2005: 1761-1765
    [111] Schottky Barrier Diode. http://www.rohm.com/
    [112] Eleonora P. Zege, losif L. Katsev, Alexander S. Prikhach, R. Norris Keeler. Simulating the performance of airborne and in-water laser imaging systems[C]. R. J. F. Gary D. Gilbert, Ocean Optics: Remote Sensing and Underwater Imaging. SPIE, 2002. 94-105
    [113] F Pellen, Y Guern, P Olivard, J Cariou and J Lotrian. Loss of radio frequency modulation on optical carrier in high scattering medium:effects of multiple scattering and field of view selection[J]. JOURNAL OF PHYSICS D: APPLIED PHYSICS. 2001, 34: L49-L51
    [114] D.J. Hall, J.C. Hebden, D.T. Delpy. Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method[J]. Applied Optics. 1997, 36: 7270-7276
    [115] Berrocal E, Meglinski I.V, Greenhalgh D.A. Image transfer through the complex scattering turbid media[J]. Laser Physics. 2006, 3 (9): 464-467
    [116] Robert W.Pope, LCDR Peter Johnson, Ulf Lejdebrink, et al. Airborne Lidar Hydrography: Visionfor Tomorrow[C]. Proceedings of U.S. Hydrography Conference. 2001.
    [117] B.B. Das, D.M. Yoo, R.R. Alfano. Ultrafast time-gated imaging in thick tissues: A step toward optical mammography[J]. Optics Letters. 1993, 18: 1092-1094
    [118] F. Liu, K.M. Yoo, R.R. Alfano. Ultrafast laser-pulse transmission and imaging through biological tissues[J]. Applied Optics. 1993, 32: 554-558

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700