超细粉再燃低NO_x燃烧技术的数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电厂煤炭直接燃烧产生的NO_x不仅危害环境,也直接威胁着人类的健康,因此控制电站锅炉NO_x排放的技术应运而生,燃料再燃是其中比较有效的方法之一,针对可能需要增加第二种燃料及燃尽率差的缺点,提出了以超细化煤粉作为再燃燃料,本论文在863项目“超细化煤粉再燃低NO_x燃烧技术研究”的资助下对超细粉再燃进行了数值模拟和试验研究。
    论文以超细粉再燃低NO_x燃烧技术的三段燃烧综合体为研究对象,在中试试验的基础上对中试试验CRF炉、600MW示范机组四角切圆锅炉和330MW旋流燃烧器墙式锅炉进行超细粉再燃的数值模拟研究。
    首先对CRF炉进行常规燃烧与超细粉再燃NO_x生成的数值模拟与中试试验,试验结果超细粉再燃的NO_x脱除率为52.3~65.4%,数值模拟NO_x脱除率为58.20~75.06%。超细粉再燃与常规燃烧相比NO_x脱除率与再燃区NO_x还原率不成正比,它是由NO_x还原率与燃尽区NO_x新的生成综合决定的。
    其次600MW机组四角切圆燃煤锅炉的数值模拟所得NO_x脱除率为42.36~62.8%。对于大容量四角切圆锅炉的数值模拟,本文给出了一个可以有效减小伪扩散、流体流动方向与网格线方向一致、数目较少、计算精度较高的结构网格,该网格的数值计算结果清晰得捕捉到了四个角向火侧和背火侧靠近壁面处的小回流,而且计算温度与炉膛温度实测值较好的吻合。
    对NO_x的数值模拟,计算简单、耗时较少的耦合求解及软件自带常规模型的后处理求解均可以满足工程定性分析,但定量分析结果不理想,因此本文通过所用软件的用户自定义接口接入了一个NO_x的改进模型,该模型对NO_x的生成和还原在不同的氛围内采用不同的反应速率,且充分考虑了燃料再燃对NO_x的中间产物HCN的影响,因此计算结果比原软件自带常规模型更清晰的反映出NO_x生成和还原的变化,更适用于超细粉再燃技术。
    最后330MW机组旋流燃烧器墙式锅炉的数值模拟NO_x脱除率为50.57%。针对该锅炉可燃物损失大的问题,通过热解实验分析原因,提出改造方案,对原旋流燃烧器及改造方案的气固两相流进行了实验和数值模拟的验证,结果表明改造方案可以有效解决存在的问题,而且不会造成NO_x排放的增加。
    上述试验与数值模拟结果均表明,超细粉再燃较小的出口烟气温升对炉膛出口后受热面安全方面的影响较小,超细粉再燃对煤粉燃尽程度的影响较小。从超细粉再燃NO_x脱除率和其对锅炉安全及燃烧效率方面的影响来看,其工业应用是切实可行的。
Pollutant NO_x emission by coal combustion in power plant is an increasing threatto environment and human health. Low-NO_x strategies have emerged as the timesrequire, and one of them is fuel reburning technique. For second fuel maybe beneeded and combustible efficiency maybe be minished, micronized coal is broughtforward as reburning fuel. In this paper, experiments and numerical simulations ofmicronized coal reburning technique have being studied supported by 863 project ofStudy on Low-NO_x Technique by Micronized Coal Reburning.
    In the paper three combustion zones of micronized coal reburning as a whole isresearch object. Based on laboratory-scale experimentation, numerical simulations ofmicronized coal reburning have been studied on bench-scale combustion researchfacility、full-scale 600MWe coal fired tangential utility boiler and full-scale330MWe swirling burner wall utility boiler.
    First NO_x of experiment and numerical simulation about general combustion andmicronized coal reburning in combustion research facility has been processed. NO_xdecreasing ratios are 52.3~65.4% in experiments and 58.20~75.06% in numericalsimulations. NO_x decreasing ratio of micronized coal reburning comparing withgeneral combustion is not proportionable to NO_x reduction ratio in reduction zone,which depends on both NO_x reduction ratio and NO_x increment in burnout zone.
    Numerical simulation of full-scale 600MWe coal fired tangential utilityboiler showed NO_x decreasing ratios are 42.36~62.8%. A structured grid partitionfor full scale coal fired tangential utility boiler has been given in this paper. It hasa small amount of grids and can decrease false diffusion effectively as it is inagreement with fluid flow direction. Accurate simulating results can be gainedwith the grid partition. Inverse flows are captured near the wall at four corners incombustion simulating through the above grid and temperatures simulating agreewell with them measured.
    NO_x numerical Simulation by coupled with combustion and post processinggeneral model provided by FLUENT can be satisfied by qualitative analysis, butcan't meet quantitative requirement. So an improved NO_x model was connectedto software by user defined function. The model has the different NO_x formationand reduction rates in oxidizing and reducing atmosphere, and the effect ofreburning fuel on intermedia HCN of NO has been considered. Simulating results
    given by improved NO_x model reflect NO_x formation and reduction moredistinctly than by the former NO_x model. It is more applicable to micronized coalreburning technique.At last numerical simulation of full-scale 330MWe swirling burner wallutility boiler showed NO_x decreasing ratio is 50.57%. The combustible loss isbiggish in this boiler. Modifying cases have been suggested after analysis ofpyrolysis experiments. Experimental and numerical simulating data of gas-solidflow all predict the modifying cases can solve the existing problem effectivelyand NO_x emission can't be increased.Above experiments and numerical studies argued that temperature rising at outcaused by micronized coal reburning technique has a little effect on heating surfacesafter furnace, and micronized coal ruburning has nearly same combustion efficiencyas general combustion. NO_x decreasing ratio and effects on boiler safety andcombustible efficiency all showed micronized coal reburning technique is practicable.
引文
[1] 中电联.2004 全国电力生产主要指标. ttp://www.ncpe.com.cn/tjzyw/tjgcscd/cd050102.htm,2005-03-21.
    [2] 深圳市万瑞信息咨询有限公司.2005-2006 年中国火力发电行业分析及投资咨询报告.2005
    [3] 中华报告网.2005 中国煤炭行业投资与发展分析报告. http://www.ccmnet.com/B7/200507/B70201200507011456210000.asp
    [4] 田贺忠.中国氮氧化物排放现状、趋势及综合控制对策研究:[博士学位论文].北京:清华大学,2003
    [5] 郑守忠.煤粉再燃烧技术中煤焦异相还原高温烟气中 NO 的实验和理论研究:[博士学位论文].南京:东南大学,1999
    [6] 岑可法,姚强,骆仲泱,等编著.燃烧理论与污染控制.北京:机械工业出版社,2004
    [7] Sloss L L.NO_x emission from coal combustion.IEA Coal Research/36, 1991
    [8] Anderson C, Br?nnstr?m-Norberg B M, Hanell B.Nitrous oxide emissions from different combustion sources.
    [9] Kildsig F, Morsig P.N2O-Emission aus Kesselanlagen.In: VGB Kraftwerkstechnik 1991, 71(6):592~593
    [10] 欧洲经济委员会.氮氧化物排放控制技术经验总结(,徐志勇,朱浩林,朱静芳等译).北京:电力部环境保护办公室,西安:电力部西安热工研究所,1994
    [11] 李俊,裘立春.省内电站燃煤锅炉降低氮氧化物排放的措施.浙江电力,2000, 6:35~42
    [12] 闫志勇,张慧娟,邱广明等.锅炉分级燃烧降低 NO_x 排放的技术改造及分析.动力工程,2000, 20(4):764~769
    [13] 王春昌,周虹光.锅炉结构参数对 NO_x 排放量的影响.热力发电,2002, 1:11~13
    [14] 唐必光,曹红加,刘勇等.锅炉运行对 NO_x 生成影响的试验研究.电站系统工程,2001, 17(6):350~352
    [15] 尹光华.扬州二电厂 200t/h 锅炉燃烧系统的分析.江苏电机工程,2002, 21(1):33~37
    [16] 杨金良.石门电厂 2×300MW 机组锅炉运行情况分析.湖南电力,1999,19(3):14~17
    [17] 赵向前,李文学.DG-1000/17.6-Ⅱb 型锅炉 NO 排放特性试验研究.热能动力工程,2001, 16:233~238
    [18] 张良.300MW 直流锅炉采用燃烧技术措施降低 NO 排放量试验研究.中国电力,1998, 31(4):12~14
    [19] 左志雄,向军,叶永松,等.大型锅炉氮氧排放特性试验研究.华中电力,2001, 14(5):9~11
    [20] 文军,王春昌,周江河,等.100MW 燃煤机组低 NO 燃烧器改造示范项目.热力 发电,2000,6:4~8
    [21] 李德金,王栩,孔令君,等.HBC-SSA 浓淡风燃烧器在表岛电厂的应用.山东电力技术,2001, 1:42~45
    [22] 周昊,童汇源,胡伟峰,等.600MW 锅炉偏转二次风系统级降低 NO_x排放的试验研究.锅炉技术,2000,9:13~16
    [23] 邱广明,张慧娟,阎志勇,等.燃煤锅炉低 NO 燃烧技术研究.环境保护,2000, 4:10~12
    [24] 秦裕琨,孙锐,李争起,等.径向浓淡旋流煤粉燃烧器流动特性研究与应用.中国电机工程学报,2000,20(9):72~76
    [25] 向军,邱纪华,熊友辉,等.锅炉氮氧化物排放特性试验研究.中国电机工程学报,2000, 20(9):80~83
    [26] 徐宪斌,冷杰,吴景兴,等.华能丹东电厂 350MW 锅炉低 NO 分级燃烧系统特点分析.中国电力,2000, 33(8):23~24
    [27] 周昊,茅建波,池作和,等.燃煤锅炉低氮氧化物燃烧特性的神经网络预报.环境科学,2002, 2:18~22
    [28] 张泽,秦裕琨,吴少华,等.水平浓淡风煤粉燃烧技术在 1025t/h 贫煤锅炉上的应用.中国电机工程学报,2001, 21(10):110~115
    [29] 翁卫国,周俊虎,黄镇宇等.北京国华热电厂 410t/h 低 NO 燃烧系统机理及试验分析.电站系统工程,2001,71(2):115~128
    [30] 曾德勇.华能北京热电厂锅炉烟气中氮氧化物控制技术.环境工程,2001, 19(4):40~42
    [31] 孙平,梁明文,潘晶,等.华能大连电厂低 NO 旋流燃烧器及燃烧优化.发电设备,2001, 4:1~4
    [32] 华峰,孙旭光,胡伟,等.低 NO 燃烧技术在山东电网的应用.山东电力技术,2000, 4:33~36
    [33] 潘效军,王钢,刘铁雷,等.水平双通道自稳燃型浓淡燃烧器的高效低 NO 燃烧特性分析.沈阳电力高等专科学报,2002, 4(3):6~8
    [34] 聂其红,孙绍增,吴少华,等.新型水平浓淡风低 NO 煤粉燃烧器在贫煤锅炉的应用研究.中国电机工程学报,2002, 22(7):155~159
    [35] 国家环境保护总局,国家质量监督检验检疫总局.GB13223-2003.中华人民共和国国家标准-火电厂大气污染物排放标准.北京:中国环境科学出版社,2003-12-30
    [36] Kotler.日本火电厂降低氮氧化物排放量的措施.国际电力,1999,3:57~61
    [37] 徐璋.超细粉再燃降低 NO_x 排放的热态试验研究与数值模拟:[博士学位论文].浙江:浙江大学,2003
    [38] Takahashi Y,Sakai M,Kunimoto T,et al.Proceedings of the 1982 Joint Symposium on Stationary NO_x Control,EPRI Report No.CS-3182,1983
    [39] Energy and Environmental Research Corporation.Evaluation of gas reburning and low-NO_x burners on a wall-fired boiler.Comprehensive Report to Congress Clean Technology Program,Iravine,CA,1990
    [40] Burch T E,Tiliman F R,Chen W Y,et al.Partitioning of nitrogenous species in the fuel-rich stage of reburning.Energy and fuel,1991,(5):231~237
    [41] Chen W Y,Ma L.Effect of heterogeneous mechanisms during reburning of nitrogen oxide. AIChe Journal,1996,42(7):1968~1975
    [42] Party M,Engle G.Formation of HCN by the action of nitric oxide on methane at atmosphere pressure, 1.General conditions of formation.Compt,Rend.,1950,1302~1304
    [43] Drummond L J.Shock induced reactions of methane with nitrous and nitric oxides,Bull. Chem.Soc.,Japan,1969,42,285
    [44] Wendt J O L,Sternling C V,Matovich M A.Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection . In: Fourteenth Symposium(international)on Combustion.The Combustion Institute,Pittsburgh,PA,1973,897~904
    [45] Myerson A L.The reduction of nitric oxide in simulated combustion effluents by hydrocarbon-oxygen mixtures . In: Fifteenth Symposium (international) on Combustion.The Combustion Institute,Pittsburgh,PA,1974,1085~1092
    [46] Babock & Wilcox Company.Demonstration of coal reburning for cyclone boiler NO_x control.Comprehensive Report to Congress Clean Coal Technology Program,DOE/FE-0157,1990
    [47] Folsom B A,Sommer T M,Payne R.Demonstration of combined NO_x and SO2 emission control technologies involving gas reburning.In: AFRE-JFRC Intemational Conference on Environmental Control of Combustion Processes,Honolulu,HI,1991
    [48] Power Generation Tech Update. A publication of GRI on the use of natural gas in utility electric power generation.1994,2(l)
    [49] Smart J P,Morgen D J.The effectiveness of multi-fuel reburning in an internally fuel staged burner for NO_x reduction.Fuel,1994,73(9):437~1442
    [50] Kicherer A,Splieechoff H,et al.The effect of Different reburning fuels on NO_x reduction.Fuel,1994,73(9):1443~1446
    [51] Nakamura M,Takashi K,Kuwahara M,et al.Demonstration test and practical studies on combustion technologies of micro-pulverized coal.In: International Conference on Power Engineering-97. Tokyo, 1997, 2(2): 453~458
    [52] CONSOL Inc.Researeh and Development Micronized Coal Reburning Demonstration for NO_x Control Final Report.1999
    [53] Chen S L,Cole J A,Heap M P,Kreamlich J C,McCarthy J M and Pershing D W.Advanced NO reduction processes using –NH and –CN compounds in conjunction with staged air addition . In: Twenty-Second Symposium(International) on combustion.The Combustion Institute,Pittsburgh,PA,1988,1135~1145
    [54] Folsom B A,Payne R,Moyeda D,Vladimir Zamansky and Golden J,Advanced reburning with new process enhancements.In: EPRI/EPA 1995 Joint Symposium on Stationary Combustion NO_x Control.Kansas City,1995
    [55] Maly P M,et al.Proc. Int. Tech. Conf. Coal Util.Fuel Sym..1997,22,815~826
    [56] H Xu,L D Smoot.A reduction model for NO_x reduction by advanced reburning.Energy & fuels,1998,12:1278~1289
    [57] D T Tree,A W Clark.Advanced reburning measurements of temperature and species in a pulverized coal flame.Fuel,2000,79:1687~1695
    [58] E Hampartsoumian,O O Folayan,W Nimmo,B M Gibbs.Optimisation of NO_x reduction in advanced coal reburning systems and the effect of coal type.Fuel,2003,82(4):373~384
    [59] 钟北京,傅维标.气体燃料再燃对 NO_x还原的影响.热能动力工程,1999,14(6):419~423
    [60] 李友荣,吴双应,卢啸风,等.喷气再燃降低 NO_x 排放炉内混合状况冷态模拟实验.重庆大学学报,2001,24(3):117~119
    [61] 卢啸风,郑先国,刘汉周,等.天然气再燃低 NO 技术的冷模试验分析.重庆大学学报,2003,26(5):40~45
    [62] 苏胜,向军,胡松,孙学信,张忠孝,朱基木.气体再燃降低 NO_x 排放的实验研究.动力工程,2004,24(6):884~888
    [63] 苏胜,向军,李敏,等.先进再燃烧技术影响因素分析.电力环境保护,2004,20(1):37~41
    [64] 沈伯雄,孙幸福.影响先进再燃脱硝效率的因素分析.煤炭转化,2004,27(4):47~50
    [65] 沈伯雄,孙幸福.天然气先进再燃区脱硝效率影响因素的实验与模拟研究.中国电机工程学报,2005,25(5):146~149
    [66] 曾东,巢江辉,郑守忠,蔡崧.携带流反应器中煤粉再燃烧 NO 还原特性.环境科学,1999,20(4):67~70
    [67] 钟北京,施卫伟,傅维标.煤和煤焦还原 NO 的实验研究.工程热物理学报,2000,21(3):383~387
    [68] 李戈,师东波,池作和,潘维,岑可法.煤粉再燃还原NO 的实验研究.电站系统工程,2004,20(1):44~46
    [69] 张强,李彦鹏,徐益谦.再燃烧还原 NO_x 机理及其技术发展.环保技术,2001,(2):17~19
    [70] 徐华东,罗永浩,王恩禄,陆方.再燃技术及其在我国的应用前景.动力工程,2001,21(4):1320~1323
    [71] Chow O K. In: Proceedings of the 21st International Technical Conference on Coal Utilization and Fuel Systems. USA, Floricda Clearwater, 1996, 325~337
    [72] M Nakamura. Demonstration test and practical studies on combustion technologies of Micro-Pulverized coal. In: International Conference on Power Engineering-97. Tokyo, 1997, 2:453~458
    [73] Abbas T, Costen P, Lockwood F C, and Romo-Millares C A. Combust. And Flame, 1993, 93:316~326
    [74] Niksa S, Cho S. Conversion of fuel nitrogen in the primary zones of pulverized coal flames. Energy and Fuels, 1996, 10(2):463~473
    [75] 沈毅敏,还博文,何磊.炉内再燃烧还原 NO_x 的数值模拟.动力工程,2000,21(1):515~518
    [76] 翁卫国,周俊虎,岑可法,等.北京国华热电厂 410t/h 低 NO_x 燃烧系统机理及试验分析.电站系统工程,2001,17(2):115~117
    [77] 高正阳,阎维平,刘忠.低挥发分烟煤再燃还原NO 的实验研究.华北电力大学学报,2003,30(1):41~44
    [78] 刘忠,阎维平,高正阳,赵莉,王小敏.超细煤粉的细度对再燃还原 NO 的影响.中国电机工程学报,2003,23(10):204~208
    [79] 阎维平,高正阳,刘忠,等.煤粉细度对再燃还原烟气氮氧化物影响的实验研究.电力科学与工程,2003,2:1~4
    [80] 刘忠,阎维平,高正阳.停留时间对微细煤粉再燃还原NO 效率的影响.燃烧科学与技术,2004,10(4):354~358
    [81] 高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料N 释放规律的试验研究.中国电机工程学报,2004,24(8):238~242
    [82] 高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料 C 释放特性的试验研究.中国电机工程学报,2004,24(10):244~248
    [83] 徐璋,李戈,潘维,等.利用三次风细粉再燃降低NO 排放的凡个关键问题分析.热力发电,2003(9):42~46
    [84] 徐璋,邓涛,李戈,等.超细煤粉再燃降低NO_x 排放的试验研究.热力发电,2004,(2):34~37
    [85] 金晶,张忠孝,钟海卿,李瑞阳.超细煤粉分级燃烧降低 NO_x 排放的试验.山东大学学报(工学版),2004,34(5):26~29
    [86] 金晶,张忠孝,李瑞阳.超细煤粉再燃的模拟计算与试验研究.中国电机工程学报,2004,24(10):215~218
    [87] 文军,齐春松,王月明,等.细煤粉再燃技术在我国燃煤锅炉上的首次工程应用.热力发电,2004(08):29~31
    [88] 国家电站燃烧工程技术研究中心.元宝山发电厂#3 锅炉超细化煤粉再燃低 NO_x 燃烧技术模化试验研究报告.2003
    [1] Zeldovich Y B. The oxidation of nitrogen in combustion and explosions. Acta Physicochim, URSS, 1946, 21: 577~583
    [2] Bowman C T. Kinetics of nitric oxide formation in combustion processes. In: Proceedings of the Fourteenth Symposium (International) on combustion. Pittsburgh, PA, The Combustion Institute, 1973, 270
    [3] R K Hanson and S Salimian. Survey of Rate Constants in H/N/O Systems. In: W C Gardiner, editor, Combustion Chemistry, 1984, 361
    [4] A A Westenberg. Comb. Sci. Tech. 1971, 4, 59
    [5] J Warnatz. NO_x Formation in High Temperature Processes. University of Stuttgart, Germany
    [6] 岑可法,姚强,骆仲泱,等著.高等燃烧学.浙江:浙江大学出版社,2002
    [7] 赵坚行.热动力装置的排气污染与噪声.北京:科学出版社,1995
    [8] Fenimore C P . Formation of nitric oxide from fuel nitrogen in ethylent flames.Combustion and Flames,1972,19:289~302
    [9] C P Fenimore.Formation of Nitric Oxide in Premixed Hydrocarbon Flames.In: 13th Symp. (Int'l.) on Combustion. The Combustion Institute, 1971, 373
    [10] Fenimore C P.Reactions of fuel-nitrogen in rich flame gases.Combustion and Flames, 1976, 26:249~256
    [11] Morely C. The mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence. In: Proceedings of the Eighteenth Symposium (International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1981, 23
    [12] R W Schefer, M Namazian and J Kelly. In: Combustion Research Facility News. Sandia,1991, 3(4)
    [13] G G DeSoete. Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen. In: 15th Symp. (Int'l.) on Combustion. The Combustion Institute,1975, 1093
    [14] V Dupont, M orkashanian, A Williams, and R Woolley. Reduction of NO_x formation in natural gas burner flames. Fuel, 1993, 72(4): 497~503
    [15] C T Bowman. Chemistry of Gaseous Pollutant Formation and Destruction. In: W Bartok and A F Saroflrn, eds. Fossil Fuel Combustion. J Wiley and Sons, Canada, 1991
    [16] 赵坚行.热动力装置的排气污染与噪声.北京:科学出版社,1995
    [17] 钟北京.傅维标.燃烧过程中快速型氮氧化物排形成机理及其影响因素.燃烧科学与技术,1997,3(4):388~393
    [18] 毛健雄,毛健全,赵树民.煤的清洁燃烧.北京:科学出版社,1998
    [19] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci., 1989, 15: 287~338
    [20] A Molina,E G Eddings,D W Pershing.Progress in Energy and Combust. Sci., 2000, 26, 507~531
    [21] 赵惠富.污染气体 NO_x 的形成和控制.北京:科学出版社,1993
    [22] L D Smoot and P J Smith. NO_x Pollutant Formation in a Turbulent Coal System. Coal Combustion and Gasification, Plenum, NY, 1985, 373
    [23] F C Lockwood and C A Romo-Millanes. Mathematical Modelling of Fuel-NO Emissions From PF Burners. J. Int. Energy, 1992, 65:144~152
    [24] Smoot L D. Fundamentals of Coal Combustion. Amsterdam, Elsevier, 1993
    [25] Leschziner M A. Practical Evaluation of Three Finite Difference Schemes for the Computation of Steady-State Recirculating Flow. Comput. Methods Appl. Mech. Engrg., 1980, 23: 293~312
    [26] 徐璋.超细粉再燃降低 NO_x 排放的热态试验研究与数值模拟:[博士学位论文].浙江:浙江大学,2003
    [27] 傅维标著.煤燃烧理论及其宏观通用规律.北京:清华大学出版社,2003 年
    [28] Seeker W R. The thermal decomposition of pulverized coal particles. In: 18th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1981
    [29] J M Levy, L K Chen, A F Sarofim, and J M Beer. NO/Char Reactions at Pulverized Coal Flame Conditions. In: 18th Symp.(Int'l.) on Combustion. The Combustion Institute, 1981.
    [30] Fluent Inc. Fluent User's Guide. 1999
    [31] Jones W P. The effect of Temporal Fluctuations in Temperature on Nitric Oxide Formation. Combustion Science and Technology, 1975, 10, 93
    [32] Careto L S. Mathematical Modeling of Pollutant Formation. Prog. Energy Combust. Sci., 1975, 1, 47
    [1] 陈汉平.计算流体力学.北京:水利电力出版社,1995
    [2] 帕坦卡 SV 著.传热与流体流动的数值计算(,张政).北京:科学出版社,1983
    [3] B E Launder, D B Spalding. Lectures in Mathematical Models of Turbulence. London, England: Academic Press, 1972
    [4] M M Gibson and B E Launder. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. J. Fluid Mech., 1978, 86:491~511
    [5] B E Launder, G J Reece, and W Rodi. Progress in the Development of a Reynolds-Stress Turbulence Closure. J. Fluid Mech., 1975, 68(3):537~566
    [6] 周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991
    [7] Kuo K K Y. Principles of combustion. New York, Wiley, 1986
    [8] Fluent Inc. Fluent user's guide. 1999
    [9] Y R Sivathanu and G M Faeth. Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames. Combust. Flame, 1990, 82:211~230
    [10] W P Jones and J H Whitelaw. Calculation Methods for Reacting Turbulent Flows: A Review. Combust. Flame, 1982, 48:1~26
    [11] R Siegel and J R Howell. Thermal Radiation Heat Transfer. Washington D C: Hemisphere Publishing Corporation, 1992
    [12] P Cheng. Two-Dimensional Radiating Gas Flow by a Moment Method. AIAA Journal, 1964, 2:1662~1664
    [13] Pillai K K. The Influence of Coal Type on Devolatilization and Combustion in Fluidized Beds. J. Inst. Energy, 1981, 142
    [14] Badzioch S, Hawksley P G W. Kinetics of Thermal Decomposition of Pulverized Coal Particles. Ind. Eng. Chem. Process Design and Development, 1970, 9:521~530
    [15] Kobayashi H, Howard J B, Sarofim A F. Coal devolatilization at high temperature. In: 18th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1976
    [16] Ubhayakar S K, Stickler D B, Von Rosenberg C W, et al. Rapid devolatilization of pulverized coal in hot combustion gases. In: 16th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh. PA, 1976
    [17] Jost M. In: 20th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh. PA, 1984
    [18] 傅维标著.煤燃烧理论及其宏观通用规律.北京:清华大学出版社,2003
    [19] Solomon P R, Colket M B. Coal devolatilization. In: 17th Symposium(International) on Combustion. The Combustion Institute, Pittsburgh. PA, 1979
    [20] Solomon P R. Characterization of coal and coal thermal decomposition. Charpter Ⅲ report, Advanced Fuel Research, Inc., East Hartford, CN, 1980
    [21] Solomon P R, et al. Model of coal devolatilization. Energy & Fuels, 1988, 2:405~410
    [22] M M Baum and P J Street. Predicting the Combustion Behavior of Coal Particles. Combust. Sci. Tech., 1971, 3(5):231~243
    [23] M A Field. Rate of Combustion of Size-Graded Fractions of Char from a Low Rank Coal between 1200 K-2000 K. Combust. Flame, 1969, 13:237~252
    [24] Scheefer R W. Lean Premixed Recirculating Flow Combustion for Control of Oxides of Nitrogen. In: 16th Symposium(Int.) on combustion, 1977, 119
    [25] Sturgess G J, Modification of Combustor Stoichiometry Distribution for Reduced NO_x Emission form Aircraft Engines. J. of Engineering for Gas Turbine and Power, 1993, 115, 579
    [26] Zhao J X. An Analytical Design Methodology for An Annular Combustor. Comp, Fluid Dyn., 1994, 4, 13
    [27] Martino P D, Binque G. Numerical Study of Swirling Reaction Flow in a Can-Type Combustor. 1994, AIAA paper 94-0344
    [28] Smoot L D, Smith P J. Coal Combustion and Gasfication, New York: Plenum Press, 1985
    [29] Hampartsoumian E, Nimmo W. The prediction of NO_x Emissions from Spray Combustor. Combust. Sci. and Tech. 1993, 93, 153
    [30] Jones W P. The effect of Temporal Fluctuations in Temperature on Nitric Oxide Formation. Combustion Science and Technology, 1975, 10, 93
    [31] Careto L S. Mathematical Modeling of Pollutant Formation. Prog. Energy Combust. Sci., 1975, 1, 47
    [32] Liao C, Liu Z, Zheng X. NO_x Prediction in 3-D Turbulent Diffusion Flames by Using Implicit Multgrid Methods. Combust. Sci. and Tech. 1996, 119:219~260
    [33] Guo Y C, Chan C K. A Multi-Fluid Model for Simulating Turbulent Gas-Particle Flow and Pulverized Coal Combustion, Fuel, 2000, 79, 1467
    [34] Zhou L X, Guo Y C, Lin W Y. A Pure Two-Fluid Model and Its Comparison with a Two-Fluid Trajectory Model for Simulating Turbulent Reacting Gas-Particle Flow with Coal Combustion and NO_x Formation. In: 4th Int. Conference on Technologies and Combustion. For a Clean Environment, Lisbon-Portugal, 1997, 105
    [35] Zhou L X, Qiao X L, Chen X L, et al. AUSM Turbulence-Chemistry Model for Simulating NO_x Formation in Turbulent Combustion. Fuel, 2002, 81(13):1703~1709
    [36] 张宇.旋流煤粉燃烧器 NO 生成的数值模拟和两相流动的实验研究:[博士学位论文].北京:清华大学,2004
    [37] 韩才元,徐明厚,周怀春,等著.煤粉燃烧.北京:科学出版社,2001
    [38] 岑可法,姚强,骆仲泱,等著.高等燃烧学.浙江:浙江大学出版社,2002
    [39] 郭永红,孙保民,刘海波.对煤的元素分析和工业分析对应关系的一点质疑.现代电力,2005,22(3):55~57
    [1] 国家电站燃烧工程技术研究中心.元宝山发电厂#3 锅炉超细化煤粉再燃低 NO_x 燃烧技术模化试验研究报告.2003
    [2] Fluent Inc.Fluent User's Guide.1999
    [3] 赵坚行.热动力装置的排气污染与噪声.北京:科学出版社,1995
    [4] 钟北京,傅维标.再燃燃料中 HCN 对 NO_x还原反应的影响.热能动力工程,2000,15(85):4~8
    [5] 钟北京,施卫伟,傅维标.煤和煤焦还原 NO_x的实验研究.工程热物理学报,2000,21(3):383~387
    [6] Fortsch Dieter, Kluger Frank,Schnell W E, et al. A kinetic model for the Prediction of NO emission from staged combustion of Pulverized coal. In: 27th Symp.(Int'l)on Combustion. Japan,Tokyo,1998,3037~3044
    [7] Leschziner M A. Practical Evaluation of Three Finite Difference Schemes for the Computation of Steady-State Recirculating Flow. Comput. Methods Appl. Mech. Engrg., 1980, 23:293~312
    [8] F C Lockwood and C A. Romo-Millanes. Mathematical Modelling of Fuel-NO Emissions From PF Burners. J. Int. Energy, 1992, 65:144~152
    [9] 韩才元,徐明厚,周怀春,等著.煤粉燃烧.北京:科学出版社,2001
    [10] 徐璋.超细粉再燃降低 NO_x 排放的热态试验研究与数值模拟:[博士学位论文].浙江:浙江大学,2003
    [11] 傅维标著.煤燃烧理论及其宏观通用规律.北京:清华大学出版社,2003 年
    [12] Seeker W R. The thermal decomposition of pulverized coal particles. In: 18th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1981
    [13] GUO Yonghong,SUN Baomin,Liu Tong.NO_x Emission Numerical Simulation of Reburning Technology of Superfine Pulverized Coal.FREPS-3,2nd International Energy Conversion Engineering Conference,New York,AIAA 2004 5568,450~455
    [14] 郭永红,孙保民,康志忠.超细粉再燃低 NO_x 燃烧技术的数值模拟.动力工程,2005,25(3):422~426
    [15] 郭永红,孙保民,刘彤,等.褐煤的超细粉再燃中 NO_x 的生成与还原的数值模拟.中国电机工程学报,2005,25(9):94~98
    [1] 国家电站燃烧工程技术研究中心.元宝山发电厂#3 锅炉超细化煤粉再燃低 NO_x 燃烧技术模化试验研究报告.2003
    [2] De Vahl Davis G, Mallinson G D. An evaluation of Upwind and Central Difference Approximation by a Study of Recirculating Flow. Comput. Fluids, 1976, 4:29~43
    [3] 陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2004
    [4] Leonard B P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput Meth Appl Mech Eng, 1979, 29:59~98
    [5] 韩才元,徐明厚,周怀春,等著.煤粉燃烧.北京:科学出版社,2001
    [6] 陈汉平.计算流体力学.北京:水利电力出版社,1995
    [1] 武汉锅炉股份有限公司设计处.WGZ1004/18.40-2 型锅炉燃烧器设备说明书SS362-14.2001
    [2] 李群益.煤粉热解燃烧热天平模型及结渣快速测定方法的研究:[博士学位论文].哈 尔滨:哈尔滨工业大学,1996
    [3] L D Smoot, D T Pratt, et al. 煤粉燃烧与气化(,傅维标).北京:清华大学出版社,1983
    [4] 孙保民,郭永红,董永胜,等.双调风燃烧器稳燃齿对两相流动的影响.中国工程热物理学会第十一届年会论文集燃烧学,北京,2005,054046:272~275
    [5] 盛森芝,徐月亭,袁辉靖.热线热膜流速计.北京:中国科学技术出版社,2003
    [6] 徐宝山,刘晓东.盘山600MW机组锅炉冷态模化试验研究.锅炉制造,1999,(3):54~56
    [7] 徐宝山,刘晓东,温丽华,等.大型电站锅炉冷态模化试验研究.黑龙江电力,1999,(12):5~10
    [8] 刘晓东,何黎滨,关春香.大容量锅炉旋流式煤粉燃烧器冷态模化试验研究.电站系统工程,2002,18(3):25~26
    [9] 马春元.径向浓淡旋流煤粉燃烧器的冷态试验研究.动力工程,1997,(1):10~15
    [10] 刘忠楼.600MW 亚临界控制循环锅炉冷态模化试验研究.锅炉技术,1996,(6):43~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700