电力数据网传输模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力调度数据网是电力生产实时信息传输的网络,其传输的主要信息是电力调度实时数据、生产管理数据、通信监测数据等,是电力指挥安全生产和调度自动化的重要基础,在协调电力系统发电、送电、变电、配电、用电等组成部分的联合运转及保证电网安全、经济、稳定、可靠的运行方面发挥着关键的作用。电力调度数据网传输系统正是完成这一任务的专门系统,一套良好的传输系统将为上述目标的实现提供极大的帮助。在电力系统的其他系统(比如GIS系统、MIS系统、配网自动化系统、实时报警短信系统)或上一级调度系统中,需要用到调度自动化系统中这些实时的或历史的数据,为了保证SCADA系统的安全,则需要由SCADA系统提供各种安全的接口(数据传输模式),向其他系统传输需要的数据。
     从上面可以看出数据传输在电力系统的安全运行中的重要性,而数据传输的模式又决定了数据传输系统的性能,只有选择了正确的数据传输模式,才能极大地提高数据传输系统的性能(数据传输的容量、实时性、安全性、方便快捷性等)。
     本文对四种数据传输模式—远动通讯规约、动态链接库、共享内存以及WebServices,进行了介绍,分析了各自的特点(优点、缺陷等),提出了改进的措施,并给出了在具体应用中的实例。
     远动通讯规约规定了数据通信的帧格式和传输规则口,影响到远动通信的质量。在实际的数据传输中,要根据要传输数据的容量、种类以及传输所用通道的通讯性质等多种因素的综合考虑来选择不同的规约,可提高数据的实时性、准确性以及数据类型的可扩展性。动态链接库在不同操作系统中的调用方式以及程序编制方式不尽相同,这是其优点也是其缺点。动态库接口函数提供的数据一般不能放置在栈中,否则使用接口的程序不能得到正确的数据;接口函数提供给接口调用程序的数据大小一般是动态的,需要本着谁申请谁释放的原则来正确释放这些动态内存,以防造成内存的泄露;动态库接口函数的编写也要注意其状态返回,以防造成在接口函数内部堵塞。共享内存是系统中最快、最有用的IPC方法。使用共享内存可以以较小的开销获取较高的性能,是进行大数据量数据快速交换的最佳方案。有多个方向同时更新共享内存中的数据时,则需要某种安全机制以及数据写入顺序的安排,确保数据的准确性、安全性。Web Services是实现系统之间的集成和互操作性的最简单的机制,可以使数据的传输跨越防火墙,并且把数据转换为XML格式,便于不同软件厂商利用不同编程语言编写的软件进行相应处理。对每一种模式的改进,都在许多实际的工程当中进行了验证。
     本文中的四种数据传输模式已成功应用到某地区电力系统数据传输系统中,并且取得了较好的效果:在综合自动化系统内部,采用了IEC103规约,保证了基本电力数据的传输,也保证了保护信息的传输;不同变电站/综合自动化系统向控制中心传输数据,选择了不同的规约,保证了数据的传输。在各个控制中心之间,建有数据平台,向各个控制中心传输需要的数据,采用了共享内存和动态链接库的数据传输模式:各个SCADA/DMS/EMS系统的软件厂商根据统一的动态链接库接口函数,访问各自系统的共享内存,保证了数据格式的一致性和提高了数据的传输效率。在某几个控制中心EMS系统中,利用WebService模式在电力系统发生故障时(包括开关变位、保护动作信息等)把这些信息通过短信网站发送到指定工作人员的手机;也定时把电力系统中的某些重要数据(如系统的负荷总加、各个变电站的负荷等)通过短信网站发送到指定工作人员的手机中。这样不管相关的工作人员身在何方,都能及时掌握系统的运行情况,保证了电力系统的安全运行。
Power dispatching data network is the transmission network of electricity production real-time information. The main transmitted message includes power transmission scheduling real-time data, production management data, communication monitoring data and so on. It is the basis of power safety production and automation and plays a key role in the coordination of power production, transmission, substation, distribution, electricity and other components and ensures secure, economic, stable and reliable operation of electric network. Power dispatching data network transmission system is a special system to complete this task, a good transport system will provide a great help to achieve these goals. In the other power systems (such as GIS systems, MIS systems, distribution automation systems, real-time alarm messaging system) or a higher level dispatching automation system, real-time or historical data from the dispatching automation system are needed. In order to ensure the SCADA system security, SCADA system need to supply various kinds of secure interface (data transfer mode) to transmit the required data to other systems.
     It can be seen that data transmission is very important in power system to ensure the safety operation according to the above analysis. While the data transmission mode in turn determines the performance of data transmission system, so only the correct data transfer mode is selected, the performance of data transmission system can greatly improved (data transmission capacity, real-time, safety, convenience, etc.).
     In this paper, four kinds of data transfer modes-RTU communication protocol, dynamic link libraries, shared memory, as well as Web Services, were introduced and their characteristics were analyzed (strengths, defects, etc.), and improvement measures were proposed. At the same time, Specific application examples were given.
     Tele-control communication protocol provides frame format and transmission rules interface for data communication, which affects the quality of tele-communications. In the actual data transmission, protocol is selected according to the capacity and type of transmitted data, the nature of transmission channels, which can improve the real-time, accuracy, expansibility of data types. Dynamic Link Library are called in different ways and programming changes in different operating system, which is its advantages and also its shortcomings. The data provided by dynamic library interface functions can not be placed on the stack generally. Otherwise, the programs that use the interface can not get the correct data. Data size in general is dynamic provided by interface function to the interface called by the program. The principle is that dynamic memory is released by the program who applies it to prevent memory leaks. Dynamic library interface functions should be paid attention to its state back to avoid internal blockage in the interface functions. Share memory is the fastest, the most useful IPC method of system. The use of shared memory can be a smaller overhead for higher performances; it is the best solution to carry out rapid exchange of large amounts of data. When multiple directions update shared memory data at the same time, you need various security mechanisms, and you must arrange the order of data writing to ensure the accuracy and security of data. Web Service is the simplest mechanism to achieve systems integration and interoperability which allows the transmission of data steping over the firewall, and puts data into XML format. XML format data will facilitate the use of different programming languages software from different software vendors. Improvements of each model had been verified in many practical projects.
     The four kinds of data transfer model had been successfully applied to a data transmission system in some regional power system, and the results were very good. Within the integrated automation system, IEC103 protocol was used to ensure the transmission of basic power data and protection of information. Different substation/integrated automation system using different protocol transmitted data to control center to ensure data transmission. Data platform was used to transmit the needed data between the various control centers. We use the data transfer modes of shared memory and dynamic-link library. All SCADA/DMS/EMS system software vendors based on the unified dynamic link library interface functions to access their own shared memory system to ensure consistency of data formats and improve the data transmission efficiency. Web Service model was used in some Control Center EMS systems, the messages were send to the phone when power system generated failure (including the switch changing bits, protection action information, etc.). Also some of the important data (such as the total of system load, load of each substation, etc.) were send by message. So the related staffs could know the operation of the system to ensure the safe operation of power systems no matter where they were.
引文
[1]崔爱国,唐玉民.《电力调度自动化中的信息处理》于《电力自动化产品信息》,2001年第10期.
    [2]赵有钺,赵曼勇,贺春.继电保护故障信息系统建设经验谈[J].继电器,2006,34(6):64—66,70.
    [3]国家电力调度通信中心.电网调度自动化文件汇编(二).北京:电力系统自动化杂志社,1994年5月.
    [4]《循环式远动规约》(CDT DL 451-91)标准.
    [5]中华人民共和国能源部.中华人民共和国电力行业标准DL476—92电力系统实时数据通信应用层协议.
    [6]DL/T 634.5101-2002远动设备及系统第5部分传输规约第101篇IEC60870.5-101 Protocol, Applied Systems Engineering, Inc.
    [7]DL/T 634.5104-2002远动设备及系统第5部分传输规约.
    [8]李劲,陈炳.TASE.2网络通信协议在广西电网能量管理系统中的应用探讨.广西电力,2004,3(40).
    [9]谭文恕(Tan Wenshu).变电站通信网络和系统协议IEC61850介绍(Anintroduction to substation communication network and system-IEC 61850)[J].电网技术(Power System Technology),2001,25(9):8-11.
    [10]谭文恕.远动信息的网络访问[J],电力系统自动化,2001,25(12):10-15
    [11]循环式远动规约(CDT规约)[Z].丹东华通测控有限公司.
    [12]GB/T 18700.1—2002远动设备和系统第6部分与ISO标准和ITU-T建议兼容的远动协议第503篇:TASE.2服务和协议.
    [13]GB/T 18700.2—2002远动设备和系统第6部分与ISO标准和ITU-T建议兼容的远动协议第802篇:TASE.2对象模型.
    [14]全国电力系统控腻及其通信标准化技术委员会.GB/T18657.1 2002远动设备及系统第5部分:传输规约第Ⅰ篇传输祯格式[S].北京:中国标准出版社,2002.
    [15]全国电力系统控制及其通信标准化技术委员会,GB/T18657.2 2002远动设备及 系统第5部分:传输规约第2篇:链路传输规则〔S].北京:中国标准出版社,2002.
    [16]全国电力系统控制及其通信标准化技术委员会.GB/T18657.2 2002远动设备及系统第5部分:传输规约第3篇:应用数据的一般结构[S].北京:中国标准出版社.2002.
    [17]全国电力系统控制及其通信标准化技术委员会.GB/T18657.22002远动设备及系统第5部分:传输规约第4篇:应用信息元素的定义和编码[S]北京:中国标准出版社,2002.
    [18]全国电力系统控制及其通信标准化技术委员会.GB/T1865722002远动设备及系统第5部分:传输规约第5篇:基本应用功能[S].北京:中国标准出版社,2002.
    [19]全国电力系统控制及其通信标准化技术委员会.DL/T634.5101-2002远动设备及系统 第5-101 部分 传输规约 基本远动任务配套标准[S].北京:中国电力出版社,2002.
    [20]王首顶.广东电网DL/T 634.5101-2002实施细则[S],2002.
    [21]李春华,黄伟,葛敏辉.华东电力调度数据网网络设计.华东电力,2006年9月:39~41.
    [22]李斌,崔恒志,白义传.TASE.2协议在调度自动化系统之间信息交换的实现[J].电力系统自动化,2000,8.
    [23]方辉钦,霍宁,陈仲华等.现代水电厂计算机监控技术与试验.北京:中国电力出版社,2004.
    [24]石树平,马运荣.论变电站自动化技术发展现状及要求[J].继电器,2000(10).
    [24]全国电力系统控制及其通信标准化技术委员会.DL/T634.5104-2002远动设备及系统 第5-104部分 传输规约 采用标准传轴协议子集的IEC60870—5—101网络访问[S].北京:中国电力出版社.2002.
    [25]任雁铭,操丰梅,秦立军,杨奇逊.MMS技术及其在电力系统通信协议中的应用研究[J].电力系统自动化,2000,19.
    [26]张健,郭创新,顾立新等.基于TASE.2协议的数据通信转发在上海电网的实现[J].电力系统自动化,2006,30(15):70—73.
    [27]张健,杨建平.基于TASE.2协议的数据转发在上海电网的实现.2006年学术年 会论文集(远动技术专委会).
    [28]彭晖,金午桥,成海彦等.广域网中TASE.2协议的实现及现场应用.电网技术,2003,5(43).
    [29]H. Nielsen, P. Leach, S. Lawrence, "An HTTP Extension Framework", RFC 2774, Microsoft, Microsoft, Agranat Systems.
    [30]R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, T. Berners-Lee, "Hypert ext Transfer Protocol - HTTP/1.1", RFC 2616, U. C. Irvine, DEC W3C/MIT, DEC,W3C/MIT, W3C/MIT, January 1997.
    [31]Microsoft Company. XML technique background introduces. Microsoft Visual Studio.NET Document,2001.
    [32]Microsoft Company. XML technique background introduces. Microsoft Visual Studio.NET Document,2001
    [33]IEEE Standards Department. Draft standard for substation integrated protection, control and data acquisition communications. http://grouper.ieee.org/groups,1999
    [34]Bin Qiu. Next generation information communication infrastructure and case studies for future power sysems[D]. America, Virginia Polytechnic Institute,2002
    [35]Kohonen T. Self-Organization and Associative Memory,2nd Edition, Berlin:Springer-Verlag,1987
    [36]Arts in Education. UWNY, Constructivist Learing Theory[EB/OL]
    [37]Smallworld document online. General Electric Company[P]. copyrignt @1998-2003
    [38]Anthony Jones, Jim Ohlund. Network Programming for Microsoft Windows [M]. Microsoft Press,1999.
    [39]Eric Newcomer. Decide Between J2EE and.NET Web Services[J]. Windows Server System Magazine,2002(10)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700