盾构机刀盘同步驱动系统自适应均载控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构机是用于基础设施建设及资源开发的重大技术装备,目前其核心技术主要由少数发达国家垄断。由于核心技术的缺失,我国进口的几百台盾构机已经花费200多亿元资金,一台进口盾构机的价格高达几千万元,而且使用寿命有限。因此,开展盾构机的理论研究,掌握其核心技术意义重大,体现了我国装备制造业的发展需求。盾构机掘进过程中,复杂多变的地质环境及多场耦合作用所引起的掘进界面载荷剧烈波动,极易造成主驱动系统中的驱动扭矩失衡,甚至导致驱动轴等关键部件非正常损坏。因此,主驱动系统的同步控制是关系到盾构机安全可靠运行的核心技术之一。本课题就盾构机主驱动同步控制这一科学问题,为解决现有控制方法同步性能较差的问题,以提出顺应掘进环境变化,保证切削过程安全,实现驱动扭矩快速均衡的主驱动系统同步控制策略为目标开展研究。
     盾构机掘进过程中,影响驱动扭矩分布均衡的主要因素包括掘进界面的载荷波动、传动机构的非线性因素及控制系统的同步性能等几个方面。本文研究工作即围绕上述影响因素开展。
     分析复杂地质条件下刀盘负载波动特性,研究地质情况、盾构埋深、掘进速度及刀盘转速对载荷波动的影响,可以为进一步确定载荷波动大小对主驱动系统均载性能的影响程度提供基础。现有的针对盾构机主驱动系统均载特性的研究中,对外部激励如载荷波动及驱动同步性能的影响关注较少,不能更好地反映整个系统的均载特性,因此需要分析弯扭耦合作用下的主驱动系统载荷传递规律,建立考虑齿轮传动机构非线性因素、驱动源及变载荷影响的齿轮传动系统动力学模型,并在此基础上分析系统均载特性。
     盾构机主驱动系统中机械传动机构非线性与驱动电机同步性能的交互作用,最终影响了主驱动系统驱动扭矩的均衡性能,因此有必要将齿轮传动系统与多电机同步控制系统作为一个有机整体,建立盾构机主驱动系统的机电耦合数学模型,解决由于系统多变量、强耦合特性为研究载荷波动、齿轮传动非线性及驱动同步性能对系统均载性能影响中所带来的困难。
     分析盾构机主驱动系统现有控制方法的同步性能,提出一种实现系统闭环控制的环形耦合控制结构;并且针对实际运行中驱动电机输出转矩值偏离给定值的现象,利用历史数据通过对有限时段电机电流的期望估计预测各电机电流值偏移趋势,调整各电机转矩给定值,从而改善系统同步性能,达到自适应均载的目的。通过以工程实例为基础的仿真分析,及以模拟实验平台为基础的实验研究,验证所提出理论和方法的正确性和有效性。
     通过机理分析和仿真分析可知,盾构在软土混合地质中掘进时,刀盘扭矩随着泥质粘土含量的增大而降低;除了地质参数以外,刀盘扭矩波动程度随埋深的增加呈线性增长,随掘进速度的增大呈近似线性增长,随刀盘转速的增大呈幂指数形式降低。从载荷波动及冗余驱动同步性能影响的角度分析了系统均载特性,研究发现刀盘载荷波动率、传动系统非线性因素等影响了各齿轮均载系数曲线的幅值,而各齿轮均载系数曲线的分散程度则主要受齿轮驱动转矩同步性能影响,这表明驱动电机的同步性能是影响系统均载的关键性因素。
     将齿轮传动系统与冗余电机同步控制系统作为一个有机整体,提出了盾构机主驱动系统的机电耦合模型,并以工程实测数据为基础的仿真验证了模型的有效性。通过仿真分析揭示了断轴事故原因:现有的主驱动系统同步控制策略不能实时补偿系统同步误差,顺应载荷突变的能力较差,刀盘载荷剧变会导致驱动轴扭矩瞬间失衡,进而造成断轴事故的发生。在此基础上,提出一种自适应均载控制策略,并通过机理分析和与现有控制方法的对比仿真,证明了所提出控制策略的有效性。仿真结果表明,载荷突变时系统同步误差瞬时增大,且随着载荷变化率的增加呈上升趋势;相对于现有的控制策略,本文提出的自适应均载控制策略使系统同步误差大幅降低,因而可以有效地顺应载荷突变,减少断轴事故的发生。
     刀盘模拟驱动实验可以更真实地反映在现场因素作用下,不同的控制策略对驱动扭矩同步性能的影响,进一步验证通过数字仿真得到的结论。基于转矩主从控制策略的实验结果与仿真结果相符,验证了仿真模型的有效性及实验研究的可行性。采用本文提出的自适应均载控制策略时,驱动扭矩同步性能明显优于转矩主从控制策略,即本文所提出控制策略是有效的。
Shield machine is the Major technical equipment badly in need in national infrastructure construction, resource development and national defense construction. At present, the core technology of shield machine is mainly monopolized by a few developed countries. Due to the lack of core technology, China's imports of hundreds of shield machine with limited service life has spent more than200billion yuan of funds. Therefore, it is of great significance to carry out theoretical studies of the shield machine and master its core technology, which reflects the development needs of China's equipment manufacturing industry.The service conditions of shield machine is extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field, temperature field, seepage field in operation process, may lead into imbalance of redundant drive motors output torque in main driving system, even leading to the abnormal damage of drive shaft and other key components. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This article is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing, in order to adapt to the boring environment changes and improve the driving safety and efficiency.
     The main factors to affect the equilibrium distribution of drive torque include load fluctuations, the nonlinear factors of the transmission mechanism and the synchronization performance of the control system. The study is carried out around the above factors.
     Analyze the cutter torque ripple characteristics in complex geological conditions, study the impact of geology, shield depth, the driving speed and the cutter speed on load fluctuations, which can further determine its impact on the main drive system load sharing performance. Establish the load transfer model of main driving system with the multi-structural constraints of cutter structure, main bearings, supports, and the coupling of bending and torsion. Gear transmission system dynamics model is established considering the nonlinear factors of gear transmission, drive source and variable load effect.
     Establish the mathematical model of main driving system considering the nonlinear factors of gear transmission and the multi-motor parameter dispersion, based on multi-motor control system model and gear transmission system model. The validity of the model is verified through the simulation analysis method.
     Research the system synchronization performance using the existing main drive system control method, and a new ring-coupled synchronous control structure is proposed, which is closed-loop to the synchronization index, and can effectively improve the synchronization performance. A control parameter adaptive method is proposed which make motors have good dynamic and static performance. Put forward an algorithm to predict the current value trend of offset using historical data, and adjust the motor torque given value according to the predictive value, further improving the synchronization performance. Based on the actual engineering data simulation, verify the validity of the proposed control method. Design and set up the experiment platform with the gear transmission system and multi-motor drive system. The comparison of the synchronous performance of the two kinds of control strategies under the same load case is given to verify the proposed control strategy is effective.
     The research results show that the cutterhead torque decreases as the the muddy clay content increases, the degree of the cutterhead torque fluctuations increases linearly with the shield, increases nearly linear with the driving speed growth, and reduces in exponential form with the cutterhead speed growth. The oscillation amplitude of Gear load sharing coefficient suffer a big effect from load fluctuation rate, gear nonlinear factors and rotation speed of cutterhead, and the dispersion degree of gear load sharing coefficient curves is impacted by synchronous performance of driving torque, that is the load sharing coefficient of gear transmission in shield machine is influenced mainly by multi-driving synchronous performance.
     Put forward the electromechanical coupling model of shield machine main driving system based on a gear transmission system with a multi-motor synchronous control system as an organic whole. The validity of the model is verified through the simulation analysis based on real engineering data. The cause of the broken shaft accident is revealed that the existing synchronous control methods of cutterhead motor-drive system are open-loop control for the synchronization control targets without real-time synchronization error compensation, which have led to the synchronization performance of the existing main driving system is not ideal. When overloaded and load fluctuations, the drive shaft torque is not balanced, and even could lead to the safety shaft fracture or drive components of non-normal damage.The validity of the new control strategy is proved through mechanism analysis, and the simulation based on the actual engineering data verifies the superiority of the proposed control method. The simulation results show that system synchronization error transiently increases in load mutation, and increases with the increase of it. The new strategy can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.
     The experimental table for main driving system can realize the comparison experiment of different synchronous control strategies, with monitoring of motor speed, torque and current data. The experimental results coincide with the simulation results, which can prove the validity of the the model and the experimental method, and the effectiveness of the new control strategy.
引文
[1]杨华勇,龚国芳.盾构掘进机发展战略研究.上海国际隧道工程研讨会论文集[C].上海:[同济大学出版社],2003.
    [2]日本地盘工学会著.牛清山,陈凤英,徐华译.盾构法的调查、设计、施工[M].北京:中国建筑工业出版社,2008.
    [3]BENARDOS A G, KALIAMPAKOS D C. Modeling TBM performance with artificial neural networks[J]. Tunnelling and Underground Space Technology,2004(19):52-59.
    [4]张凯之,余海东,来新民.复合地层中掘进的盾构机刀盘动态驱动转矩研究[J].中国机械工程,2010,21(06):643-647.
    [5]王胜勇,王瑾,高伟贤,刘书兵,张欣,王文斌.盾构机刀盘驱动控制系统的设计与应用[J].中国新技术新产品,2011(18):164.
    [6]田华军,司海燕,魏凯华,寇晓林.盾构电机减速器与刀盘主轴承连接轴断裂分析[J].工程机械,2009(9):71-73.
    [7]寇晓林.泥水盾构保险轴断裂原因浅析[J].建筑机械化,2009(4):58-60.
    [8]刘宣宇,邵诚.盾构机自动控制技术现状与展望[J].机械工程学报,2010(20):152-160.
    [9]邢彤.盾构刀盘液压驱动与控制系统研究[D].浙江:浙江大学机械与能源工程学院,2008.
    [10]石元奇,庄欠伟,吕建中.大直径盾构机刀盘驱动系统[J].筑路机械与施工机械化,2008(9):18-21.
    [11]Fang Y S, Lin S J, Lin J S. Time and settlement in EPB shield tunnelling[J]. Tunnels and Tunnelling,1993(11):9-10.
    [12]蔡启仲,汤尧,吴玉鹏.盾构机刀盘变频驱动控制研究[J].广西工学院学报,2011(01):44-47.
    [13]李驰,朱岩.盾构机刀盘的变频控制[J].计算机光盘软件与应用,2012(04):65-66.
    [14]史步海,李伟青.盾构机刀盘驱动系统同步控制技术的研究[J].计算机测量与控制,2012,20(5):1258-1260.
    [15]朱岩,李驰.盾构机刀盘的控制特点[J].科技传播,2012(08):104-105
    [16]肖权.PLC在盾构机刀盘电机控制中的应用[J].建材与装饰,2012(08):307-309.
    [17]王建宇.隧道工程的技术进步[J].中国铁道科学,1999(12):30-36.
    [18]朱伟,陈仁俊.盾构隧道施工技术现状及展望(第1讲)[J].岩土工程界,2000(11):19-23.
    [19]刘国琦,杜文库.我国地铁施工技术的发展与展望[J].施工技术,1996(1):6-8.
    [20]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [21]陈馈,洪荣开,吴学松主编.盾构施工技术[M].北京:人民交通出版社,2009.
    [22]Zhang Xu-Dong. Construction technology of earth pressure balance shield in watery sandy stratum[J]. Yantu Gongcheng Xuebao,2009,31(9):1445-1449.
    [23]廖少明,徐意智,陈立生,沈成明.穿越不同建(构)筑物的地铁盾构选型与控制[J].上海交通大学学报,2012,46(01):47-52.
    [24]杨华勇,邢彤,龚国芳.变转速泵控模拟盾构刀盘驱动系统研究[J].浙江大学学报(工学版),2010,44(02):373-378.
    [25]A AL-SHYYAB, K ALWIDYAN,A JAWARNEH. Non-linear dynamic behavior of compound planetary gear trains:model formulation and semi-analytical solution[J]. Journal of Chongqing University,2009,32 (4):402-407.
    [26]张海.混合式盾构与地铁工程建设[J].地下工程与隧道,1993(4):107-111.
    [27]洪代玲译.隧道掘进机的发展[J].世界隧道,1996(1):32-35.
    [28]郭宗彦,韩模宁,郭野,刘静妍.隧洞掘进机和盾构的发展[J].水利发电,1996(11):50-53.
    [29]陈丹,袁大军,张弥.盾构技术的发展与应用[J].现代城市轨道交通,2005(12):25-30.
    [30]Shield Method[EBIOL]. http:www. shield-method. gr. jP/english/index2. htm.
    [31]Albert Feibt. Optimisation of the hydraulic control of adrive with 12,OOOkW driving power[C].5th International Fluid Power Conferenee,2006, Group 1.
    [32]Martin HerrenkNecht. EPB or slurry machine:the choice[J]. Tunnels & Tunnelling,1994(6):35-36.
    [33]国际盾构掘进机设备现状与发展趋势[EB/OL]. http://www. istis. sh. cn/list/list_n. asp.
    [34]Aoki K, Yamamoto T, Shirasagi S. Geostatistical evaluation of the mechanical properties of rock mass for TBM tunneling by seismic reflection method[J]. Rock Mechanics and Rock Engineering,2007,40 (6):591-602.
    [35]Gong Q M, Zhao J, Jiang Y S. In situ TBM penetration tests and rock mass bore ability analysis in hard rock tunnels[J]. Tunneling and Underground Space Technology,2007,22 (3):303-316.
    [36]全球盾构机主要制造企业简介[EB/OL].http://cm. newmaker. com/disp art/1070007/17472, html.
    [37]吴生富,孙敏,金萍.三菱重工的盾构隧道掘进机[J].一重技术,1999(2):9-11.
    [38]王丽红,母淑洁.日本盾构式掘进机的发展现状[J].一重技术,2000(3):23-25.
    [39]Atsushi Koizumi. Shield-Driven Tunneling in Japan[J]. Journal of Chongqing Jiaotong University(Natural Science),2011,30(s2):1093-1098.
    [40]吴启谊.海瑞克盾构机刀盘电液控制系统分析[J].流体传动与控制,2009(04):44-16.
    [41]Tadao Yoshikawa. Soft ground tunnel shields in Japan[J]. Tunnels & Tunnelling, 1985(7):45-47.
    [42]Challenges and changes:Japan's tunnelling activities in 1988-Partl[J]. Tunnelling and Underground Space Technology,1989(2):215 — 224.
    [43]李国英.盾构技术及其在日本的应用与发展[J].水利水电施工,1996(3):38-41.
    [44]白杉,周洁.我国隧道盾构掘进机的发展和应用[J].工程机械,2004(05):26-28.
    [45]安国明.地下隧洞工程盾构施工法技术发展简介[J].凿岩机械气动工具,2010(01):7-11.
    [46]白杉,周洁.我国隧道盾构掘进机的发展和应用[J].工程机械,2004(5):26-29.
    [47]傅德明.我国隧道盾构掘进机技术的发展历程(上)[J].建设科技,2002(8):80-83.
    [48]傅德明.我国隧道盾构掘进机技术的发展历程(下)[J].建设科技,2002(9):79-50.
    [49]周馥隆,张雯.国产盾构机如何借势破局[J].工程机械与维修,2010,(03):42-59.
    [50]中国工程院院士王梦恕.盾构机国产化迫在眉睫[N].中国工业报,2006,11,28(A01).
    [51]隧道股份国家863“先行号”国内首台地铁盾构的技术特点[EB/0L].http://tranbbs. cn/Html/TechArticleTransit/223302780. htm
    [52]沈重维尔特首台盾构机下线联手分羹盾构市场[J].中国机电工业,2006(5):22-24.
    [53]Wang Juan, Kang Yilan, Qin Qinghua, Fu Donghui. Identification of time-dependent interfacial mechanical properties of adhesive by hybrid/inverse method[J]. Computational Materials Science,2008,43:1160-1164.
    [54]Cui YH, Wang X, Zhang YX, Wu YF, Xu JF. Poroelastic properties of anisotropic cylind composite materials[J]. Philosophical Magazine Letters,2008,88:804-820.
    [55]Xin-Jun Liu, Li-Ping Wang, Fugui Xieet al. Design of a three-axis articulated tool head with parallel kinematics achieving desired motion/force transmission characteristics[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME,2010(2):0210091-0210098.
    [56]Deng Kongshu, Tang Xiaoqiang, Wang Liping and Chen Xu. Research on Characteristics of Deformation in Thrust System for EPB Shield Machines[J]. Tunnelling and Underground Space Technology,2011(1):15-21.
    [57]Wei Sun, Junzhou Huo, Jing Chen. Disc Cutters Layout Design of the Full-Face Rock Tunnel Boring Machine[J]. Journal of Mechanical Science and Technology,2010(5):26-29.
    [58]霍军周,孙伟,郭莉,李震,张旭.多滚刀顺次作用下岩石破碎模拟及刀间距分析[J].哈尔滨工程大学学报,2012,33(01):96-99.
    [59]Shouju Li, Yuefang Wang, Yingxi Liu, Wei Sun. Estimation of thermal conductivity of porous material with FEM and fractal geometry[J]. International Journal of Modern Physics C,2009(4):513-526.
    [60]李守巨,刘迎曦,于贺.多孔材料等效导热系数与分形维数关系的数值模拟研究[J].岩土力学,2009(5):1465-1470.
    [61]R. P. Chen. Ground Movement Induced by Parallel EPB Tunnels in Silty Soils[J]. Tunnelling and Underground Space Technology,2011(1):163-171.
    [62]夏毅敏,罗德志,周喜温.盾构地质适应性配刀规律研究[J].工程机械,煤炭学报.2011,7(36):1232-1236.
    [63]W. Z. Guo, F. Gao, S. Mekid. A New Analysis of Workspace Performances and Orientation Capability for 3-DOF Planar Manipulators[J]. International Journal of Robotics and Automation,2010(2):89-101.
    [64]刘振宇,傅云,谭建荣.基于异构网格耦合的产品多物理场有限元数据集成与可视化仿真[J].机械工程学报,2010(7):114-121.
    [65]Li xiuliang, Su hongye, Chu jian. Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee Machine[J]. Chinese Journal of Chemical Engineering,2009(1):95-99.
    [66]Yue Ming, Sun Wei, Hu Ping. Sliding mode robust control for two-wheeled mobile robot with lower center of gravity[J]. International Journal of Innovative Computing, Information and Control,2009(5):26-29.
    [67]WU Li,QU Fu-zheng. Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling [J]. Journal of Central South University of Technology,2009(6):1028-1033.
    [68]武力,屈福政,李守巨.土压平衡盾构改性砂土离散元模型参数反演方法研究[J].大连理工大学学报,2009(5):26-29.
    [69]谢群,杨佳庆,高伟贤.盾构机刀盘驱动液压系统设计[J].液压与气动,2003(4):92-94.
    [70]Xing T, Gong G F and Yang H Y. Torque calculation model of cutting head in shield machine and experimental study[J]. Journal of Zhejiang University (Engineering science).2009,43 (10):1794-1800.
    [71]Xing T, Gong G F, Hu G L, etc. design and experiment of electro-hydraulic proportional system for the cutter-head drive of the shield tunneling machine[J]. Journal of the china coal society.2006,31 (4):520-524.
    [72]杨华勇,邢彤,龚国芳.变转速泵控模拟盾构刀盘驱动系统研究[J].浙江大学学报(工学版),2010(2):373-378.
    [73]谢群,杨佳庆,高伟贤.盾构机刀盘驱动液压系统设计[J].液压与气动,2009(4):74-76.
    [74]郁陈华.ATV71变频器在盾构机刀盘驱动中的应用[J].电气传动,2009(5):61-64.
    [75]王瑾,高伟贤,刘书兵,张欣,王文斌.盾构机刀盘驱动控制系统的设计与应用[J].中国新技术新产品,2011(18):164.
    [76]W. A. Tuplin. Gear-tooth stressess at high speed[J]. Proceedings of the Institute of Mechcnical Engineers,1950,163:162.
    [77]J. Zeman. Dynamische Zusatzkraefte in zahnradetrieben[J]. Zeitschrift des Vereines Deutscheringenieure,1957,99:244-254.
    [78]Johnson, D. C. Modes and frequencies of shafts coupled by straight spur gears [J]. Journal of Mechanical Engineering Science.1962,4:241-250.
    [79]Fukuma, H., Furukawa T. Fundamental research on gear noise and vibration[J]. Bulletin of JSME.1973,16:1094-1107.
    [80]H. K. Kohler, A. Pratt, A. M. Thompson. Dynamics and noise of parallel-axis gearing[J]. Proceedings of the Institute of Mechanical Engineers,1969,184(30):111-121.
    [81]M. Benton, A. Seireg. simulation of resonances and instability conditions in pinion-gear systems[J]. ASME Journal of Mechanical Design,1978,100(1):26-31.
    [82]M. Benton, A. Seireg. Factor influencing instability and resonances in geared systems[J]. ASME Journal of Mechanical Design,1981,103(4):372-378.
    [83]L. D.Mitchell, J. W. Daws. Proposed solution methodology for the dynamically coupled nonlinear gear rotor mechanics equation[J]. ASME Journal of Vib. Acous. Stress Reliab. Des.,1985,107(1):112-116.
    [84]C. C. Wang. On analytical evaluation of gear dynamic factors based on rigid body dynamics[J]. ASME Journal of Mechanisms,1985,107(6):301-311.
    [85]D. C. H. Yang, Z. S. Sun. A rotary model for spur gear dynamics[J]. ASME Journal of Mechanisms,1985,107(12):529-535.
    [86]M. S. Tavakoli, D. R. Houser. Optimum profile modifications for the minimization of static transmission errors of spur gears[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design,1986,108(3):86-94.
    [87]A. Kahraman, H. N. Ozguven, D. R. Houser, et al. Dynamic analysis of geared rotors by finite elements[J].ASME Journal of Mechanical Design,1992,114(3):507-514.
    [88]A. Kahraman, G. W. Blankenship. Effect of involute tip relief on dynamic response of spur gear pairs [J]. ASME Journal of Mechanical Design,1999,121(2):313-315.
    [89]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [90]王建军,李润方.齿轮系统动力学的理论体系[J].中国机械工程,1998,9(12):55-58.
    [91]刘文,林腾蛟,李润方,廖勇军.冲击谱激励下齿轮系统的动力学性能[J].重庆大学学报,2010,33(01):7-11.
    [92]陈思雨,唐进元.间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响[J].机械工程学报,2009,45(08):119-124.
    [93]刘梦军,沈允文,董海军.单级齿轮非线性系统吸引子的数值特性研究[J].机械工程学报,2003,39(10):111-116.
    [94]Wang Jianjun, Li Runfang, Peng Xianghe. Survey of nonlinear vibration ofgear transmission systems[J]. Journal of Applied Mechanics,2003,56(03):309-329.
    [95]林长洪,朱家诚.齿轮传递误差计算的分析[J].机械,2011,38(08):10-13.
    [96]卢剑伟,曾凡灵,杨汉生.随机装配侧隙对齿轮系统动力学特性的影响分析[J].机械工程学报,2010,46(21):82-87.
    [97]日高照晃,山本信行,石田武.行星齿轮装置均载机构中的各种误差和载荷分配的关系[J].日本机械学会论文集,1986(480):2200-2206.
    [98]F. Cunliffe,J. D. Smith, D. B. Welbourn.Dynamic tooth loads in epicyclic gears[J]. ASME Journal of Engineering for Industry,1974,96(2):578-584.
    [99]M. Botman. Epicyclic gear vibrations[J]. ASME Journal of Engineering for Industry,1976,98(3):811-815.
    [100]T. Hidaka, Y. Terauchi. Dynamic behaviour of planetary gear(1st report:load distribution in planetary gear[J]. Bulletin of the JSME,1976,19(132):690-698.
    [101]Lin J, Parker R G. Analytical characterization of the unique properties of planetary gear free vibration[J]. Journal of Vibration and Acoustics,1999,121(3):316-321.
    [102]Lin J, Parker R G. Planetary gear parametric instability caused by mesh stiffness variation[J]. Journal of Sound and Vibration,2002,249(1):129-145.
    [103]Hbaieb R, Chaari F, Pakhfakh T, et al. Dynamic stability of a planetary gear train under the influence of variable meshing stiffnesses[J]. Automobile Engineering,2006,220: 1711-1725.
    [104]Ambarisha V K, Parker R G. Suppression of planet mode response in planetary gear dynamics through mesh phasing[J]. Journal of Vibration and Acoustics, ASME,2006, 128(4):133-142.
    [105]Ambarisha V K, Parker R G. Nonlinear dynamics of planetary gears using analytical and finite element models[J]. Journal of Sound and Vibration,2007,302:577-595.
    [106]王世宇,王建,曹树谦,张策,刘建平,朱雷威.锥齿行星齿轮传动模态特性分析[J].振动工程学报,2011,24(04):376-384.
    [107]张俊,宋轶民.NW型直齿行星传动的动力学建模与固有特性分析[J].天津大学学报,2011,44(08):677-682.
    [108]孙涛,沈允文,孙智民等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报,2002,38(3):11-15.
    [109]韩林山,武兰英,沈允文.2K-V型减速机传动精度的灵敏度分析[J].机械科学与技术,2010,29(10):1366-1375.
    [110]刘爱敏,王含英.2K-H型行星齿轮传动的固有特性研究[J].矿山机械,2012,40(05):114-118.
    [111]张富强.TB880E型掘进机刀盘驱动力传递装置综合分析[J].隧道建设,2009(6):678-682.
    [112]秦大同,赵勇.盾构机刀盘驱动多级行星齿轮传动系统的多目标优化[J].中国机械工程,2012(1):12-17.
    [113]赵勇,秦大同,武文辉.考虑失效相关的盾构机刀盘驱动多级行星传动系统的可靠性模型[J].中国机械工程,2011(5):522-527.
    [114]陈沛.盾构机刀盘驱动大轴承设计研究[D].成都:西南交通大学机械设计及理论专业,2010.
    [115]张凯之.盾构机冗余驱动回转系统动态特性研究[D].上海:上海交通大学车辆工程学院,2011.
    [116]丁晟.盾构机回转系统弯扭耦合及偏载效应研究[D].上海:上海交通大学车辆工程学院,2010.
    [117]Francisco J. Pkrez-Pinal':, Ciro NGez', Ricardo Alvarez. Comparison of Multi-motor Synchronization Techniques [C]. Korea:The 30th Annual Conference of the IEEE Industrial Electronics Society,2004.
    [118]Perez-Pinal, F. J.. Improvement of the electronic line-shafting [J]. Power Electronics Specialists Conference,2004(5):3260-3265.
    [119]W. Deng, K. S. Low. Cross-Coupled Contouring Control of a Rotary Based Biaxial Motion System[C].9th International Conference on Control, Automation, Robotics and Vision. 2006.
    [120]Xiao, Y. Zhu, K. Y.. Optimal Synchronization Control of High-Precision Motion Systems [J]. Industrial Electronics, IEEE Transactions,2006(4):1160-1169.
    [121]Cao, L.-z. Li, C.-w. Chen, H.-y. Cui, G.-z.. Backstepping control of position synchronization system in crane lifter [C]. Conference on Automation and Logistics, 2008.
    [122]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报,2007(15):59-63.
    [123]曹玲芝,李春文,牛超,赵德宗,魏尚北.基于相邻交叉耦合的多感应电机滑模同步控制[J].电机与控制学报,2008(05):586-592.
    [124]Chuang H. Y, LinC. H. Amodel-referenced adaptive control strategy for improving contour accuracy of multi axis machine tools[J]. IEEE Transactions on Industry Application, 1992(1):221-227.
    [125]孙宜标,李萌萌,郭庆鼎.基于QFT的双直线电机鲁棒同步控制[J].沈阳工业大学学报,2008,30(3):249-252.
    [126]叶自清,陈敏,蒋峰.基于滑模变结构的压机同步控制系统研究[J].机床与液压,2010,38(23):59-61.
    [127]Kulkarni P. K, Srinivasan K. Optimal contouring control of multi-axial feed drive servo mechanisms[J]. ASME Journal of Engineering for Industry,1989(2):140-180,
    [128]Yeh, S,-S. H su, Pau-Lo. Analysis and design ofthe integrated con trollerfor precise motion systems [J]. IEEE Transactions on Control Systems Technology,1999(6):706-717.
    [129]Wen J. Y, Wu Q. H, Turner D. R. Optimal coordinated voltage control for power system voltage stability[J].IEEE Transactions on Power Systems,2004(2):1115-1122
    [130]Iftime S. D., Egsgaard L. L., Zepponi M. Acoordination model based control of functional arm manipulation by RBF neural networks[C]. New York:IEEE Press,2004.
    [131]Li S.Y., Liu H. B., Cai W. J. A new coordinated control strategy for boiler-turbine system of coal-fired power plant [J]. IEEE Transactions on Control Systems Technology, 2005 (6):943-954.
    [132]LanH., ZhangL. K., Xu D. G. Robust nonlinear coordinated control of TCSC and generator excitation[C].New York:IEEE Press,2007.
    [133]Lian K.Y.,Liou J. J., Huang C. Y. LMI-based integral fuzzy control of DC-DC converters[J]. IEEE Transactions on Fuzzy Systems,2006(1):71-80.
    [134]Zhang J.M., Wang N., Wang S. Q. Fuzzy-neuron intelligent coordination control for a unit power plant[J], Asian Journal of Control,2001 (1):57-63.
    [135]Ueki S., Kawasaki H., Mouri T. Adaptive coordinated control of multi-fingered hands with sliding contact[C]. New Jersey:IEEEPress,2007.
    [136]Liu H. B., LiS. Y., Chai T. Y. Intelligent coordinated control of power-plant main steam pressure and power outPut[J]. Journal of Systems Engineering and Electronics,2004(3):350-358.
    [137]Li R., Chen W. M., Liu D. K. Fuzzy intelligent control of automotive vibration via magneto-rheological damper[C]. New Jersey:IEEEPress,2005.
    [138]刘福才,张学莲,全胜起.多级电机同步驱动系统的内模控制[J].基础自动化,2002(01):16-18.
    [139]张承慧,石庆升,程金.一种多电机同步传动模糊神经网络控制器的设计[J].控制与决策,2007(1):30-34.
    [140]祝淑萍,刘德君.单神经元PID双直线电机同步控制[J].微计算机信息,2007(6-1):84-85.
    [141]张昌凡,王耀南.基于智能协调控制的滑模系统[J].电子测量与仪器学报,2000(3):1-3.
    [142]Skoczowski S., Domek S., Pietrusewicz K. Robust PID model following control[J]. Control and Intelligent Systems,2006(3):186-193.
    [143]Saeki M. Fixed structure PID controller design for standard H_∞ control problem [J]. Automatica,2006(1):93-100
    [144]Zhang W., Xu X. H PID controller design for runaway processes with time delay[J].ISATransactions,2002(3):317-322.
    [145]Zhang W. Design PID controllers for desired time-domain or frequency-domain response[J]. ISA Transactions,2002(4):511-520.
    [146]Lu J., Chen G., Ying H. Predictive fuzzy PID control:Theory, design and simulation[J]. Information Seiences,2001(1-4):157-187.
    [147]Huang G.S., Uang H. J. Robust adaptive PID tracking control design for uncertain spacecraft systems:A fuzzy approaeh[J]. IEEE Transactions on Aerospace and Electronie Systems,2006(4):1506-1514.
    [148]Mansour S. E., Kember G. C., Dubay R. Online optimization of fuzzy-PID control of a thermal process[J]. ISA Transactions,2005(2):305-314.
    [149]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [150]Cheng Y P, Lim T C. Dynamics of hypoid gear transmission with nonlinear time-varying mesh characteristics[J]. Journal of Mechanical Design, Transactions of the ASME, 2003,125(2):373-382
    [151]董锡君.电动转台伺服系统控制问题研究[D].哈尔滨:哈尔滨工业大学博士论文,1999.
    [152]Jung-Hua Yang, Li-Chen Fu. Nonlinear adaptive control for manipulator system with gear backlash[J]. Decision and Control,1996,4(7):4369-4374.
    [153]Nordin M, Gutman P 0. Nonlinear speed control of elastic systems with backlash[C]. Sydney, Australia:In Proceedings of the 39th IEEE Conference on Decision and Control,2000.
    [154]左伟臣.高性能多电机同步联动控制系统[D].南京:南京理工大学,2004.
    [155]王建侠.多电机同步联动系统的动力学建模及消隙控制算法研究[D].南京:南京理工大学,2004.
    [156]Ling Y., Tao G. Numerical design and analysis of backlash compensation for a multivariable noliear tracking system[C]. SanDiego, California, U. S. A:Proceeding of the American Control Conferenee,1999.
    [157]Canudas-de-Wit C. A New Model for Control of systems with Friction[J]. IEEE Transactions on Automatic Control,1998,43(8):1189-1190.
    [158]Armstrong-Helouvry Brian. Stick Slip and Control in Low-Speed Motion[J], IEEE Transactions on Automatic Control,1993,38(10):1483-1496.
    [159]Campos J., Lewis F.L., Selmic R. Backlash compensation in discrete time nonlinear systems using dynamic inversion by neutral networks[C]. San Francisco:IEEE International Conference on Robotics and Automation,2000.
    [160]陈庆伟,郭毓,杨静忠.提高齿隙非线性系统精度的应用研究[J].南京理工大学学报,2000(6):486-489.
    [161]Gawronski W., Beech-Brandt J. J., Ahlstrom Jr., H. G., Maneri E. Torque-bias profile for improved tracking of the deep space network antennas[J]. IEEE Antennas and Propagation Magazine,2000(6):35-45.
    [162]汤杰,李志勇.变频调速在双电机同步传动中的应用[J].电气传动,2008(11):8-11.
    [163]Jau-Woei Perng, Bing-Fei Wu, Hung-Chin, Tsu-Tian Lee. Gain-phase margin analysis of dynamic fuzzy control systems[J]. Systems, Man and Cyberneties,2004,34 (5):2133-2139
    [164]卜忠红,刘更,吴立言.行星齿轮传动动力学研究进展[J].振动与冲击,2010(09):161-166.
    [165]石照耀,康焱,林家春.基于齿轮副整体误差的齿轮动力学模型及其动态特性[J].机械工程学报,2010(17):55-61.
    [166]肖正明,秦大同,王建宏,武文辉,陈立锋.盾构机主减速器三级行星传动系统扭转动力学[J].中国机械工程,2010(18):2176-2186.
    [167]秦大同,赵勇.盾构机刀盘驱动多级行星齿轮传动系统的多目标优化[J].中国机械工程,2012(01):12-17.
    [168]魏静,孙清超,孙伟,赵飞,李永,郭爱贵.大型风电齿轮箱系统耦合动态特性研究[J].振动与冲击,2012(08):16-23.
    [169]陈涛,孙伟,张旭,魏静.变风速条件下风电齿轮随机可靠性优化[J].沈阳工业大学学报,2011(05):496-500.
    [170]孙建忠,刘凤春主编.电机与拖动[M].北京:机械工程出版社,2007.
    [171]陈伯时.电力拖动自动控制系统(第3版)[M].北京:机械工业出版社,2004.
    [172]南余荣.多电机传动系统协调控制及其在直进式拉丝机中的应用[D].浙江:浙江工业大学信息工程学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700