基于MMC的多端直流输电系统控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多端直流输电(Multi-Terminal Direct Current, MTDC)系统,能够实现多电源供电以及多落点受电,相比于两端高压直流输电(High Voltage Direct Current, HVDC)系统运行更为经济灵活,在电网互联及新能源并网等方面优势明显。早期的MTDC系统都是采用电网换相换流器(Line Commutated Convertert, LCC),而LCC需要一定强度的交流系统支撑实现换相,还要消耗大量的无功功率,当MTDC系统用于连接可再生能源以及供电偏远地区或海岛等场合时,会存在诸如需配备大量无功补偿、容易发生换相失败、无法供电无源网络等问题,在一定程度上限制了MTDC的应用及优势发挥。
     20世纪90年代以后,以全控型开关器件为基础的电压源换流器型高压直流输电(Voltage Source Converter Based HVDC, VSC-HVDC,也称为柔性直流输电)由于具有有功无功独立调节,可向无源网络供电等优势而受到人们的重视并得到快速发展。而模块化多电平换流器(Modular Multilevel Converter, MMC)作为最新一代的电压源换流器拓扑,因其开关损耗小,不依赖器件串联技术等优势,已成为VSC-HVDC工程的建设趋势。
     基于MMC的多端直流输电(Multi-Terminal Direct Current Based on MMC, MMC-MTDC)系统,既能够充分发挥MMC的技术优势,又兼顾了MTDC系统的经济性、灵活性和可靠性特点。相对于两端系统,MMC-MTDC系统在仿真建模和系统控制保护策略等方面更为复杂,许多关键问题也尚未得到合理解决。因此,论文针对MMC-MTDC系统的参数设计、仿真建模及多端协调控制保护策略进行了研究,能够为MMC-MTDC工程的实施提供一定的理论依据。
     (1) MMC-MTDC模型及基本控制策略
     为了研究基于MMC的多端直流输电系统,有必要先对MMC本身的运行原理及控制特性进行研究。基于MMC的运行工作原理,推导了适用于暂态分析的MMC的开关函数数学模型以及适用于控制分析的三端MMC-MTDC系统dq坐标下的数学模型。并基于dq解耦控制策略思想,分别设计了供电有源系统和供电无源系统的MMC的基本控制器,以及MMC调制策略和电容电压平衡控制策略,并通过仿真测试了控制器的稳态和动态响应特性。
     针对MMC中的关键器件之一桥臂电抗器,在MMC取整函数模型基础上,提出一种以抑制MMC交流侧电流大幅波动为目的的桥臂电抗器参数设计方法,为工程中桥臂电抗器的设计提供了一定的理论依据。仿真分析表明,PSCAD/EMTDC下的桥臂电抗仿真值与理论计算值非常吻合,桥臂电抗优化设计后的交流侧电流波动以及相间环流均有明显改善。
     (2)适用于MMC-MTDC系统的精确电压裕度控制策略研究
     多端站间协调控制是MTDC系统的核心。首先研究了主从控制、电压下降特性控制和电压裕度控制三种多端协调控制方法的控制原理,并针对MMC-MTDC系统分别设计了三种方法的控制器。其次,为避免直流输电线路较长时电压降落与线路损耗对电压裕度控制产生的影响,提出了一种精确电压裕度控制方法,并给出了精确电压裕度值选取公式,同时设计了精确电压裕度控制器。最后,在PSCAD/EMTDC环境中建立了基于MMC的三端系统仿真模型,在该模型下分别进行了一般电压裕度控制方法的运行特性分析和精确电压裕度控制法的仿真验证;并对MMC-MTDC系统发生直流电缆单极短路和双极短路故障后的故障特性进行仿真,提出了相应的控制保护策略。
     (3)含大规模风电接入的MMC-MTDC系统
     针对MMC-MTDC系统在大规模风电并网方面的应用,重点研究了含风电接入的MMC-MTDC系统的多端控制方法。首先,针对双馈感应发电机组(Double Fed Induction Generators, DFIG)建立了发电机数学模型以及风速及空气动力模型,并对双馈机组变流器的控制器进行了设计。然后,针对风电场功率波动幅度较大的特点,同时考虑到多端系统的电压控制效果,提出了一种阶段式电压下降控制方法,将电压下降控制同电压裕度控制有机结合,在风机出力的不同阶段采用不同的控制方式。最后,在PSCAD/EMTDC环境下,建立了与风电场连接的MMC-MTDC系统模型,对提出的阶段式电压下降控制方法的有效性进行了仿真分析。仿真结果表明,当风电场出力较大时,多端系统采用电压下降控制,能够较为灵活的平衡风机出力波动,当风电出力大幅跌落时,阶段性电压下降控制能够将换流站自动转换为直流电压控制,保证整个多端系统的直流电压不会出现较大偏离。
     (4)换流站通用集成控制保护平台体系结构
     MTDC系统中可基于LCC.两电平VSC、MMC或其他换流器拓扑,也可能同时含有多种换流器拓扑组成混合多端直流输电系统(Hybrid MTDC)。文中提出开发一种新型的适用于多种直流输电工程的换流站通用集成控制保护平台框架,可用于常规高压直流输电、VSC-HVDC以及混合直流输电等复杂输电形式的场合。首先提出了通用集成平台的整体功能需求和平台的设计原则,并从功能和设备两个角度出发,提出了该平台的两种体系结构方案,并阐述了平台每部分的控制保护设备、控制保护系统的功能和范围及各部分之间的隶属和通信关系。该体系框架可将不同种类直流输电的控制保护功能有效集成,为通用控制保护平台的开发奠定了基础。
Multi-Terminal Direct Current (MTDC) can achieve the function of multi power sources or multi receiving ends, and placement by electricity. And compared with the2-terminal High Voltage Direct Current (HVDC) system, it is more economical and flexible, and it has obvious advantages in grid interconnection and new energy connecting to the grid. Early MTDC system is based on Line Commutated Converter (LCC), which requires an AC system which has certain strength to realize the commutation exchange, and it also consumes a large amount of reactive power. When MTDC system is used for connecting renewable energy source and supplying power to romote area or islands, it may has problems as reactive power compensation, commutation failure and unable to supply the passive network, which to some extent limits the application and advantages of MTDC.
     After the1990s, full-controlled switching device based Voltage Source Converter Based HVDC (VSC-HVDC) is taken seriously by many people and rapidly developed for the advantages of adjusting active and reactive power independently and supplying power to the passive network. As the latest generation of the voltage sourced converter topology, Modular Multilevel Converter (MMC) has become the trend of the VSC-HVDC projects for its advantages of less switching losses and independent of thechnology of devices in series.
     Modular Multilevel Converter Based Multi-Terminal Direct Current (MMC-MTDC) system is able to fully show the technical advantages of the MMC, and it can also make a full use of to the advantages of MTDC system such as the well economy, flexibility and reliability. Compared with the2-terminal HVDC system, the MMC-MTDC system is more complex on simulation modeling and system control and protection strategy. And many of the key issues are yet remained to be solved. Therefore, the paper focuses on the design of MMC-MTDC parameters, simulation modeling, and coordination control and protection strategy to provide some theoretical basis for the implementation of the MMC-MTDC engineering.
     (1) MMC-MTDC model and control strategy
     In order to study a MMC-MTDC system, it is necessary to study on the operating principle and control characteristics of MMC. Based on the operating principle of MMC, a mathematical switching model applied to the transient analysis of MMC and a mathematical model under dq coordinates of the three-terminal MMC-MTDC system which is suitable for control analysis are derived. And based on the dq decoupling control strategy, the paper designed the basic controller respectively for the active sourced side of the MMC and passive sourced side of the MMC, and it also designed the MMC modulation strategy and capacitor voltage balance control strategy, and it tested the controller on the steady-state and dynamic response through the simulation.
     For one of the key components, the bridge arm, based on the MMC model using the integer function, the paper proposed a designing method for bridge arm reactor parameters to suppress the current volatility on the AC side of MMC, so as to provide a theoretical basis for the bridge arm reactor in engineering. Simulation analysis shows that PSCAD/EMTDC simulation results are very consistent with the theoretical calculation results and the current fluctuations of AC side as well as phase circulation of current are both improved greatly through the optimizing design of the bridge arm reactor.
     (2) Precision voltage margin control method applied to the MMC-MTDC system
     Coordinated control among stations is the key of MTDC system. First, the control principles of master-slave control method, DC voltage droop control and voltage margin control method are researched and the corresponding controllers are designed based on MTDC system. Second, a kind of precise voltage margin control method is proposed to avoid the influence cause by voltage drop and line loss of long DC transmission lines on the margin control, the formula to calculate the margin value of precise margin control is deduced and the corresponding precise margin controller is designed. At last, a3-terminal MMC-MTDC simulation model is established in PSCAD/EMTDC. Based on the simulation model, the operation performance of the general margin control is analyzed, the precise margin controller is validated and the fault characteristic when pole-to-ground fault and pole-to-pole fault occur to MMC-MTDC system is simulated. The corresponding control and protection scheme are given.
     (3)MMC-MTDC system with large-scale wind farm connected
     The control method of MMC-MTDC system with wind farm connected to is researched. First, the mathematical model of the generator and the model of wind speed and aerodynamic are established and the controller for double-fed wind turbine converter is designed. Considering the control performance of DC voltage control of MMC-MTDC system, a stage-style DC voltage droop control is proposed based on the large power fluctuation of wind farm. The control combines the DC voltage droop control and voltage margin control, different control modes are adapted at different stages of the wind farm operating. At last, the MMC-MTDC system model with wind farm connected to is established in PSCAD/EMTDC and the proposed stage-style DC voltage droop control is validated and analyzed. The simulation results show that when the power of wind farm is large, the MTDC system adapts DC voltage droop control and the fluctuation can be balanced flexibly, when the power of wind farm drops sharply, the stage-style DC voltage droop control can make the master station DC voltage control so that the DC voltage of MMC-MTDC system will not have a significant deviation.
     (4) System Architecture of a Universal Integrated Control and Protection Platform for Converter Stations
     MTDC system can be based on LCC, two-level VSC, MMC or other converter types; also it may contain some types of the converters simultaneously, composing hybrid MTDC system. In this dissertation, a novel universal integrated platform of control and protection for converter stations of various HVDC projects was proposed, which can be used for conventional HVDC, VSC-HVDC, and more complex hybrid HVDC systems, etc. The integral function demands and design principles for the universal integrated platform were presented. Then from the function and equipment points of view, two different system architecture schemes were proposed. In each part, the control and protection devices, functions and control areas, and interrelationship of subordination and communication were elaborated. The architecture can make the integration of control and protection functions for different HVDC projects, which lays the foundation for future development of the universal platform.
引文
[1]浙江大学发电教研组直流输电科研组.直流输电[M].北京:电力工业出版社,1982.
    [2]徐政.交直流电力系统的动态行为分析[M].北京:机械工业出版社,2004.
    [3]刘振亚,舒印彪,张文亮,等.直流输电系统电压等级序列研究[J].中国电机工程学报,2008,28(10):1-8.
    [4]刘振亚.特高压直流输电技术研究成果专辑(2008年)[M].北京:中国电力出版社,2009:3-6.
    [5]中国南方电网超高压输电公司.高压直流输电现场实用技术问答[M].北京:中国电力出版社,2008:3-5.
    [6]P. Kundur. Power System Stability and Control[M]. New York:McGraw Hill, 1994.
    [7]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [8]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998.
    [9]张文亮,汤涌,曾南超.多端高压直流输电技术及应用前景[J]. 电网技术,2010,34(09):1-6.
    [10]屠卿瑞,徐政.多端直流系统关键技术概述[J].华东电力,2009,37(02):267-271.
    [11]袁旭峰,程时杰.多端直流输电技术及其发展[J].继电器,2006,34(19):61-67.
    [12]张欢,刘天琪,李兴源,等.新型多端直流输电技术研究[J].四川电力技术,2007,30(6):1-5.
    [13]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010.
    [14]汤广福,贺之渊,滕乐天,等.电压源换流器高压直流输电技术最新研究进展[J].电网技术,2010,32(22):39-44,89.
    [15]J. Dorn, H.Huang, D. Retzmann. A new Multilevel Voltage-Sourced Converter Topology for HVDC Applications[C]. CIGRE session, Paris, France,2008: 1-8.
    [16]X. Wang, B.T. Ooi. High Voltage Direct Current Transmission System Based on Voltage Source Converters[C]. Power Electronics Specialists Conference, San Antonio, USA,1990:325-332.
    [17]B.T. Ooi, X.Wang. Voltage Angle Lock Loop Control of the Boost Type PWM Converter for HVDC Application[J]. IEEE Transactions on Power Electronics, 1990,5(2):229-235.
    [18]张桂斌,徐政,王广柱.基于VSC的直流输电系统的稳态建模及其非线性控制[J].中国电机工程学报,2002,22(1):17-22.
    [19]胡兆庆,毛承雄,陆继明.一种优化控制策略在基于电压源换流器的HVDC系统中的应用[J].电网技术,2004,28(10):38-41.
    [20]郑超,周孝信,李若梅,等.VSC-HVDC稳态模型与潮流算法的研究[J].中国电机工程学报,2005,25(6):1-5.
    [21]赵成勇,李金丰,李广凯.基于有功功率和无功功率独立调节的VSC-HVDC控制策略[J].电力系统自动化,2005,29(9):20-24.
    [22]G.B. Zhang, Z. Xu, G. Wang. A Linear and Decoupled Control Strategy for VSC Based HVDC System[C]. IEEE/PES Transmission and Distribution Conference and Exposition, Atlanta, USA,2001:14-19.
    [23]李金丰,李广凯,赵成勇.三相电压不对称时VSC-HVDC的控制策略[J].电网技术,2005,29(16):16-20.
    [24]郑超,汤涌,马世英,等.基于等效仿真模型的VSC-HVDC次同步振荡阻尼特性分析[J].中国电机工程学报,2007,27(31):33-39.
    [25]M. Yin, G.Y. Li, G.K. Li, et al. Modeling of VSC-HVDC and Its Active Power Control Scheme[C].2004 International Conference on Power System Technology, Singapore,2004:1351-1355.
    [26]W.X. Lu, B.T. Ooi. Simultaneous Inter-Area Decoupling and Local Area Damping by Voltage Source Converter HVDC[C]. IEEE Power Engineering Society Winter Meeting, Columbus, USA,2001:1079-1084.
    [27]H.F. Latorre, M. Ghandhari. Improvement of Voltage Stability by Using VSC-HVdc[C].2009 IEEE Transmission & Distribution Conference & Exposition:Asia and Pacific, Seoul, Korea,2009:1-4.
    [28]S.G.Johansson, G. Asplund, E. Jansson, et al. Power System Stability Benefits with VSC DC-Transmission Systems[C]. CIGRE Session 2004, Paris, France, 2004:1-8.
    [29]陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计[J].中国电机工程学报,2006,26(23):42-48.
    [30]王久和,黄立培,杨秀媛.三相电压型PWM整流器的无源性功率控制[J].中国电机工程学报,2008,28(21):20-25.
    [31]潘武略,徐政,张静.基于电压源换流器的高压直流输电系统混合调制方式[J].电力系统自动化,2008,32(5):54-58.
    [32]阮思烨,孙元章,李国杰.用电压源型高压直流输电解决高压电网中工业系统引起的电能质量问题[J].电网技术,2007,31(19):13-17.
    [33]梁海峰,李庚银,周明,等.电压源换流器高压直流输电的动态等效电路及其特性分析[J].中国电机工程学报,2010,30(13):53-60.
    [34]B.T. Ooi, X. Wang. Boost Type PWM HVDC Transmission System[J]. IEEE Transactions on Power Delivery,1991,6(4):1557-1563.
    [35]W.X. Lu. Control and Application of Multi-Terminal HVDC Based on Voltage-Source Converter[D]. Montreal, Quebec, Canada:McGill University, 2003.
    [36]徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术,2007,33(1):1-10.
    [37]姚伟,程时杰,文劲宇.直流输电技术在海上风电场并网中的应用[J].中国电力,2007,40(10):70-74.
    [38]李响,王志新,刘文晋.海上风电柔性直流输电变流器的研究与开发[J].电力自动化设备,2009,29(2):10-14,20.
    [39]K.H. Chan. J.A. Parle, N. Johnson, et al. Real-time Implementation of a HVDC-VSC Model for Application in a Scaled-Down Wind Energy Conversion System(WECS)[C]. Seventh International Conference on AC-DC Power Transmission, London, UK,2001:169-174.
    [40]M.P. Bahrman, J.G. Johansson, B.A. Nilsson. Voltage Source Converter Transmission Technologies:the Right Fit for the Application[C]. IEEE Power Engineering Society General Meeting, Toronto, Canada,2003:1840-1847.
    [41]W.X. Lu, B.T. Ooi. Multiterminal LVDC System for Optimal Acquisition of Power in Wind-Farm Using Induction Generators[J]. IEEE Trans on Power Electronics,2002,17(4):558-563.
    [42]A.S. Pilottol, A. Bianco, E.H. Watanabe, et al. Back-to-back VSC Devices:a New Solution for the Interconnection of Asynchronous AC Systems[C]. CIGRE Session, Paris, France,2000:1-6.
    [43]G. Asplund, K. Eriksson, K. Svensson. DC Transmission Based on Voltage Source Converters[C]. CIGRE SC14 Colloquium, South Africa,1997:1-8.
    [44]U. Axelsson, A. Holm, C. Liljegren. The Gotland HVDC Light Project-Experiences from Trial and Commercial Operation[C]. CIRED Conference 2000, Amsterdam, Netherlands,2001:1-5.
    [45]U. Axelsson, A. Holm, C. Liljegren, et al. Gotland HVDC Light Transmission-World's First Commercial Small Scale DC Transmission [C]. CIRED Conference 1999, Nice, France,1999:1-5.
    [46]B. Jacobson, Y. Jiang-hafner, P. Rey, et al. HVDC with voltage source converters and extruded cables for up to ±300kV and 1000MW[C]. CIGRE Session, Paris, France,2006:1-8.
    [47]《现代风能》杂志.上海南汇风电场柔性直流输电工程正式投入运行[EB/OL]. (2011-07-27)[2011-10-18]. http://we.es168.cn/news/news46916036. html.
    [48]ABB Group. Skagerrak HVDC Interconnections[EB/OL]. (2011-02-11) [2011-03-01]. http://www.abb.com/industries/ap/db0003db004333/448A5ECA0 D6E15D3C12578310031E3A7.aspx.
    [49]SIEMENS. Ready for the future:Siemens erects power converter stations for HVDC link between France and Spain as part of the Trans-European Network[EB/OL]. (2011-01-12)[2011-10-18]. http://www.siemens.com/press/e n/pressrelease/?press=/en/pressrelease/2011/power_transmission/ept201101032.ht m.
    [50]潘武略,徐政,张静,等.电压源换流器型直流输电换流器损耗分析[J].中国电机工程学报,2008,28(21):7-14.
    [51]汤广福.2004年国际大电网会议系列报道——高压直流输电和电力电子技术发展及展望[J].电力系统自动化,2005,29(7):1-5.
    [52]A. Lesnicar, R. Marquardt. An Innovative Modular Multilevel Converter Topology Suitable for a Wide Power Range[C].2003 IEEE Bologna Power Tech Conference, Bologna, Italy,2003:1-6.
    [53]A. Lesnicar, R. Marquardt. A New Modular Voltage Source Inverter Topology[C].10th European Conference on Power Electronics and Applications, Toulouse, France,2003:1-10.
    [54]R. Marquardt, A. Lesnicar. New Concept for High Voltage-Modular Multilevel Converter[C]. PESC 2004 conference, Aachen, Germany,2004:1-5.
    [55]M. Glinka. Prototype of Multiphase Modular Multilevel-Converter with 2 MW Power Rating and 17-Level-Output-Voltage[C].2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany,2004:2572-2576.
    [56]J. Dorn, D. Ettrich, J Lang, et al. Benefits of Multilevel VSC Technologies for Power Transmission and System Enhancement[C]. International Exhibition and Seminar of Electrical Networks of Russia-LEP, Moscow, Russia,2007:1-23.
    [57]G.J. Ding, G.F. Tang, Z.Y. He, et al. New Technologies of Voltage Source Converter(VSC) for HVDC Transmission System Based on VSC[C].2008 IEEE Power and Energy Society General Meeting, Pittsburgh, USA,2008:1-8.
    [58]B. Gemmell, J. Dorn, D. Retzmann, et al. Prospects of Multilevel VSC Technologies for Power Transmission[C]. IEEE PES Transmission and Distribution Conference and Exposition, Chicago, USA,2008:1-16.
    [59]C.C. Davidson, D.R. Trainer. Innovative Concepts for Hybrid Multi-Level Converters for HVDC Power Transmission[C].9th IET International Conference on AC and DC Power Transmission, London, UK,2010:1-5.
    [60]丁冠军,丁明,汤广福,等.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报,2009,29(30):1-6.
    [61]M. Hagiwara, H. Akagi. Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics, 2009,24(7):1737-1746.
    [62]A. Antonopoulos, L. Angquist, H.P. Nee. On Dynamics and Voltage Control of the Modular Multilevel Converter[C].13 th European Conference on Power Electronics and Applications, Barcelona, Spain,2009:1-10.
    [63]汤广福,刘泽洪.2010年国际大电网会议系列报道——高压直流输电和电力电子技术[J].电力系统自动化,2011,35(5):1-4.
    [64]L. Yang, C.Y. Zhao, X.D. Yang. Loss Calculation Method of Modular Multilevel HVDC Converters [C]. IEEE Electrical Power and Energy Conference, Winnipeg, Canada,2011:97-101.
    [65]R. Foerst, G. Heyner, K.W. Kanngeisser, et al. Multiterminal Operation of HVDC Converter Stations[J]. IEEE Transactions on Power Apparatus and Systems, 1969,88(7):1042-1052.
    [66]T. Nakajima, S. Irokawa. A Control System for HVDC Transmission by Voltage Sourced Converters[C]. Power Engineering Society Summer Meeting, Edmonton, Canada,1999:1113-1119.
    [67]T. Nakajima. Operating Experiences of STATCOMs and a Three-terminal HVDC System Using Voltage Sourced Converters in Japan[C]. IEEE Transmission and Distribution Conference and Exhibition 2002:Asia Pacific, Piscataway, USA, 2002:1387-1392.
    [68]《国家电网报》杂志.国家电网公司评审多端柔性直流可研报告[EB/OL]. (2012-07-05)[2012-07-20]. http://www.sgcc.com.cn/ztzl/newzndw/z ndwzx/gnzndwzx/2012/07/275919.shtml.
    [69]中国电力网. 国内首个柔性多端直流输电工程落地汕头[EB/OL]. (2012-05-28)[2012-11-27]. http://www.chinapower.com.cn/newsarti cle/1159/new1159528.asp.
    [70]Tres Amigas LLC. The Tres Amigas Superstation Project Discussion Metarials[R]. Clovis:Tres Amigas LLC,2009.
    [71]N.M. Macleod, C.D. Barker, R.S. Whitehouse, et al. VSC HVDC Converter Design with DC Fault Blocking Capability for Overhead Line Applications[R]. Palo Alto:EPRI HVDC/FACTS Conference,2011.
    [72]R. Marquardt. Modular Multilevel Converter Topologies with DC-Short Circuit Current Limitation[C].8th International Conference on Power Electronics-ECCE Asia, Shilla Jeju, Korea,2011:1425-1431.
    [73]孙浩.模块组合多电平变换器(MMC)的控制策略研究[D].北京:北京交通大学,2010.
    [74]赵听,赵成勇,李广凯,等.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2011,31(21):48-55.
    [75]M. Saeedifard, R. Iravani. Dynamic Performance of a Modular Multilevel Back-to-Back HVDC System[J]. IEEE Transactions on Power Delivery,2010, 25(4):2903-2912.
    [76]K. Li, C.Y. Zhao. New Technologies of Modular Multilevel Converter for VSC-HVDC Application[C]. Power and Energy Engineering Conference (APPEEC), Chengdu, China,2010:1-4.
    [77]管敏渊,徐政,屠卿瑞,等.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化.2010,34(2):48-52.
    [78]M.Perez, J.Rodriguez, J. Pontt, et al. Power Distribution in Hybrid Multi-Cell Converter with Nearest Level Modulation[C]. IEEE International Symposium on Industrial Electronics, Vigo, Spain,2007:736-741.
    [79]S. Kouro, R. Bernal, H. Miranda, et al. High-Performance Torque and Flux Control for Multilevel Inverter Fed Induction Motors[J]. IEEE Transactions on Power Electronics,2007,22(6):2116-2123.
    [80]屠卿瑞,徐政,郑翔,等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36(2):547-552.
    [81]管敏渊,徐政.MMC型VSC-HVDC系统电容电压的优化平衡控制[J].中国电机工程学报,2011,31(12):9-14.
    [82]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [83]R. Wu, S.B. Dewan, G.R. Slemon. Analysis of an AC-to-DC Voltage Source Converter Using PWM with Phase and Amplitude Control[J]. IEEE Transactions on Industry Applications,1991,27(2):355-364.
    [84]A.W. Green, J.T. Boys, G.F. Gates.3-phase Voltage Sourced Reversible Rectifier[J]. IEE Proceedings Electric Power Applications,1988,135(6): 362-370.
    [85]张桂斌.新型直流输电及其相关技术研究[D].杭州:浙江大学,2001.
    [86]周国梁.基于电压源换流器的高压直流输电系统控制策略研究[D].北京:华北电力大学,2009.
    [87]S.P. Teeuwsen. Simplified Dynamic Model of a Voltage-Sourced Converter with Modular Multilevel Converter Design[C]. Power Systems Conference and Exposition, Seattle, USA,2009:1-6.
    [88]王姗姗,周孝信,汤广福,等.模块化多电平电压源换流器的数学模型[J].中国电机工程学报,2011,31(24),1-8.
    [89]陈谦.新型多端直流输电系统的运行与控制[D].南京:东南大学,2004.
    [90]H.B.Jiang, A. Ekstrom. Multiterminal HVDC Systems in Urban Areas of Large Cities[J]. IEEE Transactions on Power Delivery,1998,13(4):1278-1284.
    [91]V. Shyam, H.S. Chandrasekharraiah, L.L. Lai. Application of Intelligent Systems to Monitoring and Control of MTDC-AC Systems[C]. IEEE 1999 International Conference on Power Electronics and Drive Systems, Hong Kong, China,1999: 855-858.
    [92]吴俊宏,艾芊,章健,等.基于多代理技术的VSC-MTDC控制系统[J].电力系统自动化,2009,33(19),85-89.
    [93]W.X. Lu, B.T. Ooi. Optimal Acquisition and Aggregation of Offshore Wind Power by Multi-Terminal Voltage-Source HVDC[J]. IEEE Transactions on Power Delivery,2001,3(1):1079-1084.
    [94]L. Xu, B.W.Williams, L.Z. Yao. Muti-Terminal DC Transmission System for Connecting Large Offshore Wind Farm[C].2008 IEEE Power and Energy Society General Meeting, Pittsburgh, USA,2008:1-7.
    [95]E. Prieto-Araujo, F.D. Bianchi, A. Junyent-Ferre, et al. Methodology for Droop Control Dynamic Analysis of Multi-Terminal VSC-HVDC Grids for Offshore[J]. IEEE Transactions on Power Delivery,2011,26(4):2476-2485.
    [96]陈谦,唐国庆,潘诗锋.采用多点直流电压控制方式的VSC多端直流输电系统[J].电力自动化设备,2004,24(5):10-14.
    [97]N. Seki. Field Testing of 53MVA Three-Terminal DC Link between Power Systems Using GTO Converters[C]. Power Engineering Society Winter Meeting, Las Vegas, USA,2000:2504-2508.
    [98]陈海荣,徐政.适用于VSC-MTDC系统的直流电压控制策略[J].电力系统自动化,2006,30(19):28-33.
    [99]T.M. Haileselassie, M. Molinas, T. Undeland. Multi-terminal VSC-HVDC System for Integration of Offshore Wind Farms and Green Electrification of Platforms in the North Sea[C]. Nordic Workshop on Power and Industrial Electronics, Espoo, Finland,2008:1-8.
    [100]阮思烨,李国杰,孙元章.多端电压源型直流输电系统的控制策略[J].电力系统自动化,2009,33(12):57-60,96.
    [101]袁旭峰,程时杰,文劲宇.基于CSC和VSC的混合多端直流输电系统及其仿真[J].电力系统自动化,2006,30(20):32-36,76.
    [102]G.P. Adam, O. Anaya-Lara, G. Burt. Multi-Terminal DC Transmission System Based on Modular Multilevel Converter[C].44th International Universities Power Engineering Conference(UPEC), Glasgow, United Kingdom,2009:1-5.
    [103]T. Hayashi, N. Seki, M. Sampei, et al. Development and Field Test of a Multi-Terminal DC Link Using Voltage Sourced Converters and New Control and Protection Sshemes[C]. CIGRE Session 2000, Paris, France,2000:1-14.
    [104]L.X. Tang. Control and Protection of Multi-Terminal DC Transmission Systems Based on Voltage-Source Converters[D]. Montreal:McGill University,2003.
    [105]L.X. Tang, B.T. Ooi. Locating and Isolating DC Faults in Multi-Terminal DC Systems[J]. IEEE Transactions on Power Delivery,2007,22(3):1877-1884.
    [106]赵成勇,陈晓芳,曹春刚,等.模块化多电平换流器HVDC直流侧故障控制保护策略[J].电力系统自动化,2011,35(23):82-87.
    [107]尹明.基于VSC-HVDC的风电场联网技术研究[D].北京:华北电力大学,2007.
    [108]袁旭峰.新型混合多端直流输电系统理论及其若干关键问题研究[D].武汉:华中科技大学,2007.
    [109]A. Reidy, R. Watson. Comparison of VSC Based HVDC and HVAC Interconnections to a Large Offshore Wind Farm[C].2005 IEEE Power Engineering Society General Meeting, San Francisco, USA,2005:1-8.
    [110]吴俊宏,艾芋.多端柔性直流输电系统在风电场中的应用[J].电网技术,2009,33(4):22-27.
    [111]S.Zhou, J.Liang, J.B. Ekanayake, et al. Control of Multiterminal VSC-HVDC Transmission System for Offshore Wind Power Generation[C].44th International Universities Power Engineering Conference(UPEC), Glasgow, United Kingdom, 2009:1-5.
    [112]D. Jovcie. Interconnecting Offshore Wind Farm Using Multiterminal VSC-Based HVDC[C]. Power Engineering Society General Meeting, Montreal, Canada, 2006:1-7.
    [113]J. Liang, O. Gomis-Bellmunt, J. Ekanayake, et al. A Multi-Terminal HVDC Transmission System for Offshore Wind Farms with Induction Generators[J]. International Journal of Electrical Power and Energy Systems, 2012,43(1):54-62.
    [114]T. Haileselassie, K. Uhlen, T. Undeland. Control of Multiterminal HVDC Transmission for Offshore Wind Energy[C]. Nordic Wind Power Conference, Bornholm, Danmark,2009:1-7.
    [115]赵岩,郑斌毅,贺之渊.南汇柔性直流输电示范工程的控制方式和运行性能[J].南方电网技术,2012,6(6):6-10.
    [116]L. Bertoni, M.F. Araujo, W.A. Silva, et al. MACH2-Modular Advanced Control 2nd Edition[C].2004 IEEE/PES Transmission & Distribution Conference & Exposition, Osasco, Brazil,2004:884-889.
    [117]ABB. It's Time to Connect-Technical Description of HVDC Light Technology[R]. Sweden:ABB Power Technologies AB,2008.
    [118]G. Asplund, L. Carlsson, O. Tolllerz.50 Years HVDC Part Ⅱ:The Semiconductor 'Takeover'[J]. ABB Review,2003(4):10-13.
    [119]王徭.特高压直流输电控制与保护技术的研究[J].电力系统保护与控制,2009,37(15):53-58,64.
    [120]梁海峰,李庚银,王松,等.VSC-HVDC系统控制体系框架[J].电工技术学报,2009,24(5):141-147.
    [121]刘钟淇,宋强,刘文华.基于模块化多电平换流器的轻型直流输电系统[J].电力系统自动化,2010,34(2):53-58.
    [122]汤广福,贺之渊,徐政,等.电压源型换流器直流输电基础理论研究[R].北京:中国电力科学研究院,2008.
    [123]王姗姗,周孝信,汤广福,等.模块化多电平换流器HVDC直流双极短路子模块过电流分析[J].中国电机工程学报,2011,31(1):1-7.
    [124]尹明,李庚银,牛同义,等.VSC-HVDC连续时间状态空间模型及其控制策略研究[J].中国电机工程学报,2005,25(18):34-39.
    [125]丁冠军,汤广福,丁明,等.新型多电平电压源型换流器模块的拓扑机制与调制策略[J].中国电机工程学报,2009,29(36):1-8.
    [126]赵岩,胡学浩,汤广福,等.基于MMC的VSC-HVDC控制策略研究[J].中国电机工程学报,2010,31(25):35-42.
    [127]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[D].杭州:浙江大学,2007.
    [128]许建中,赵成勇.模块化多电平换流器电容电压优化平衡控制算法[J].电网技术,2012,36(6):256-261.
    [129]屠卿瑞,徐政,管敏渊,等.模块化多电平换流器环流抑制控制器设计[J].电力系统自动化,2010,34(18):57-61.
    [130]殷自力,李庚银,李广凯,等.柔性直流输电系统运行机理分析及主回路相关参数设计[J].电网技术,2007,31(21):16-26.
    [131]T.M. Haileselassie, K. Uhlen. Impact of DC Line Voltage Drops on Power Flow of MTDC Using Droop Control[J]. IEEE Transactions on Power Systems,2012, 27(3):1441-1449.
    [132]叶杭冶.风力发电系统的设计、运行与维护[M].北京:电子工业出版社,2010.
    [133]刘其辉.变速恒频风电系统运行与控制研究[D].杭州:浙江大学,2005.
    [134]R. Pena, J.C. Clare, G.M. Asher. Doubly Fed Induction Generator Using Back to Back PWM Converters and Its Application to Variable Speed Wind Energy Generation[J]. IEE Proceedings-Electric Power Applications,1996,143(3): 231-241.
    [135]L. Xu, L. Yao. DC Voltage Control and Power Dispatch of a Multi-terminal HVDC System for Integrating Large Offshore Wind Farms[J]. IET Renewable Power Generation,2011,5(3):223-233.
    [136]杨勇波,江波,杨华云,等.风电场动态等值及其在暂态稳定分析中的应用[J].中国电力,2011,44(7):66-70.
    [137]P.M. Anderson, A. Bose. Stability Simulation of Wind Turbine Systems[J]. IEEE Transactions on Power Apparatus and Systems,1983,102(12):3791-3795.
    [138]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700