可重复使用运载器热防护系统性能分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进热防护系统(TPS)的设计是决定可重复使用运载器(RLV)成败的关键技术之一。目前我国在可重复使用运载器的各项研究工作刚刚起步,缺乏热防护系统的理论研究。作为可重复使用热防护系统研究的组成部分及国内系统进行热防护系统研究的起步工作,本文主要进行TPS的传热研究及相关性能分析。
     TPS设计是质量优化的结果,可重复使用运载器外表面所需的TPS质量主要由传热分析确定。本文根据TPS热防护系统设计涉及到多种结构形式、传热机理以及复杂的防热结构/材料的合理选择布置等特点,将TPS热分析研究划分为两个层次,即整个热防护系统的设计与性能分析及典型防热结构的设计与性能分析。通过建立简化程度不同的热分析模型,即一般TPS热分析模型及典型结构热分析模型,用以实现大面积TPS瞬态温度响应分析、TPS质量预测及具体防热结构/材料的传热细观设计。这一分析方法既可完成精细程度不同的分析任务又提高了分析效率。
     按照一般TPS热分析模型在热分析模型组织中的作用,本文依据TPS在再入过程中的传热特点,对TPS真实结构进行了均质化假设,建立了适合于任何TPS的一维瞬态传热分析模型及与之相对应的质量模型。一般TPS热分析模型应用于各部分结构的宏观表征和性能分析,不再体现各部分结构的细观结构特征。针对一般TPS热分析模型的特点,应用有限差分法建立了非线性全隐式格式一维瞬态传热数值分析模型。本文建立的一般TPS热分析模型满足了TPS设计中大面积分析设计的使用要求,使全机范围内TPS瞬态传热分析及TPS质量预测可行。
     本文将完整热防护系统的各层功能及形态各异的结构/材料视作典型结构,对四种具有良好应用前景的典型结构类型,即刚性陶瓷防热瓦/柔性隔热毡、多层隔热结构、金属多层壁结构及蜂窝面板结构的传热机理进行了详细分析,对其结构形态及传热过程进行了一维或二维简化,建立了各典型结构的传热数学分析模型,细致表现了各结构的细观结构特征及传热特点。根据各模型的结构特点,分别采用有限元或有限差分方法建立了各典型结构瞬态、稳态传热数值计算模型,并应用数值计算对影响各典型结构防热、隔热性能及瞬态温度响应特点的主要细观参数进行了详细分析,获得了若干具有指导结构优化设计的参数选取规律。
     本文最后对TPS的总体方案优化设计进行了初步的探讨。应用本文建立的热
The unique function of the thermal protection system(TPS) is to maintain the vehicle structural temperature within allowable limit during re-entry aerodynamic heating, which is critical to a new generation of reusable launch vehicles(RLV). Some countries, such as USA, Russia, France etc, have fruitful research experience and are developing more excellent TPS. But in our country, all aspects of research of RLV are just beginning. For TPS, we have neither engineering experience nor systemic study base. As one part of reusable lunch vehicle TPS researches and the beginning of systemic study in our country, the purpose of this thesis is to present a methodology to predict the transient temperature response and size TPS with high-fidelityFor RLV, the weight of the TPS is typically comparable to the payload weight. Therefore, any improvement of TPS sizing calculations, which leads to an actual reduction in TPS weight, has a significant cost and feasibility impact on RLV design. TPS design involves proper selecting and locating a great number of TPS materials, which have complex configuration and heat transfer mechanism. With these characteristics, a heat transfer methodology is introduced in the thesis. The methodology made the heat transfer analysis of TPS in two different analysis processes, which are bulky thermal protection system sizing and typical structures heat transfer. General TPS thermal model and typical structure thermal models are investigated respectively to realize the TPS sizing and meso-structure parameters design of typical structures.General TPS thermal model is studied in detail. According to general TPS thermal model function in the TPS thermal analysis, an one-dimensional transient heat transfer model is proposed on the assumption that its structure/material in TPS is homogeneous and ignores its meso-structure character. General TPS thermal model only deals with the effective properties of its structure. While, mass model for every TPS is given. Then the numerical analysis is developed using finite-difference method. Through particular formula analysis, an one-dimensional, non-linear, full implicit, transient finite-difference model is proposed. General TPS thermal model meets the requirement of analysis in extensive level and makes overall transient analysis and TPS sizing
    possible.In the thesis, the TPS is described as construction of some typical structures, and TPS properties intensely depend on typical structure properties. Through comparing TPS with each other, which are widely used or have enormous potential, four typical structures are summarized, that is, rigid ceramic tile/flexible ceramic blanket, inner multiplayer insulation, metal mutil-wall structure and metal honeycomb panel. Base on investigating of heat transfer mechanism of each typical structure, heat transfer process is simplified into one or two dimensional analytical model respectively. Finite difference or finite element model is applied to different typical structure from its character. Some important parameters that influence the heat-proof properties of each typical structure are well investigated by using the numerical model, which will be helpful to direct parameter-selection and TPS properties improvement.In the last part, TPS scenario optimal design is discussed. Methodology and numerical procedure developed at this thesis is used to investigate optimum design of an envisaged two-stage-to-orbit launch vehicle thermal protection system. Under the circumference of the aerodynamic heating given by engineering, an optimal TPS material layout is proposed on the vehicle surface. Taking the vehicle as reference, optimal design of aerodynamic heating and inner structural material are examined to reduce TPS mass as possible.
引文
1.韩鸿硕.国外航天系统和材料的应用研究现状.航天防热系统材料情报综述研究报告(六),1993,6
    2.黄晓峨,史冬梅等.国外航天飞机材料的选用.第四届天地往返运输系统学术交流研讨会论文集,1988,10:465-469
    3.韩鸿硕,史冬梅等.国外航天防热系统结构和材料的研究应用现状和分析.航空航天部707研究所,1991,1
    4. David Bashford. A Review of Advanced Metallic and Ceramic Materials Suitable for High Temperature Use in Space Structures. IAF89-315
    5. Chaumette D. Passive Thermal Protection Systems for Hermes. E45831
    6. Delon J P. Hermes: the Thermal Protection System. IAF-90-268
    7. Mauric Delahais, Michel Nerault. The Hermes System Protection Status and Technology Aspects. IAF-89-239
    8. Miihlratzer A, Handrick K, Weber K H. Hermes Thermal Protection System Internal Multilayer Insulation. A91-13928
    9. Yamanaka. Space Plane Research Activities in Japan. AIAA89-5008
    10. Takahashi K, Nagao Y. Influence of Surface Ceramic TPS on Buckling Load of Hope-X Skin Panels. IAF-99-1.1.07
    11.韩鸿硕.史冬梅等.国外航天飞机防热结构和材料的最新进展.航空航天部707研究所.
    12.天地往返运输系统热防护材料综述.703所报告,2001
    13. Grant Palmer. Surface Heating Effects of X-33 Vehicle TPS Panel Bowing, Steps and Gaps. AIAA98-0865
    14.史冬梅等.国内外航天关键应用基础技术的发展研究(八),内部资料.航空航天部707研究所,1991,11
    15.韩鸿硕.国外航天运输系统防热系统、结构和材料的总体分析研究.航天工业总公司科技信息研究所,1996,6
    16.郭正.航天飞机防热系统材料研究方案设想.第四届天地往返运输系统学术交流研讨会论文集,1988,10:540-543
    17.韩鸿硕.国外航天飞机防热结构和材料的研究近况.航空航天部707研究所.
    18. Palmer G E. High Fidelity Thermal Protection System Sizing of Reusable Launch Vehicle. AIAA95-2080
    19. Milos F S. Methodology for Full Body TPS Sizing of Access-to-Space Vehicles. AIAA96-0614
    20. Jones G, Baird C, Williams G. Cryogenic Insulations Systems Performance for a Hot Structures Hypervelocity Vehicle. AIAA 89-1771.
    21. Amanda S, Chiu. Reusable Surface Insulations for Reentry Spacecraft. AIAA91-0695
    22. David R. Olynic. Trajectory Based TPS Sizing for an X-33 Winged Vehicle Concept. AIAA97-0276
    23. Mohan R V. Reentry Nonlinear Thermal Analysis-Flux Based Finite Volume Formulations and Adaptive Time Stepping Strategies for Shuttle Type Thermal Protection Systems. AIAA94-0246
    24. David R. Olynick. Trajectory Based Validation of the Shuttle Heating Environment. AIAA96-1891
    25. Henline W D. Aerothermodynamic Heating Analysis and Heat Shield Design an SSTO Rocket Vehicle for Access-to-Spcae. AIAA95-2079
    26. Lu, I. Tina. TABI the Lightweight Durable Thermal Protection System for Future Reusable Launch Vehicle. AIAA96-1426
    27. David E. Myers. Parametric Weight Comparison of Current and Proposed Thermal Protection System (TPS) Concepts. AIAA99-3459
    28. Hinkle, Karrie A, Staszak, Paul R. Advanced Ceramic Materials Development and Testing. AIAA96-1527
    29. John T. Dorsey, Carl C. Poteet. Metallic Thermal Protection System Technology Development: Concept, Requirements and Assessment Overview. AIAA 2002-0502
    30. Blosser M L, Chen R R. Advanced Metallic Thermal Protection System Development. AIAA 2002-0504
    31. Carl C. Poteet, Hasan Abu-Khajeel. Preliminary Thermal Mechanical Sizing of Metallic TPS: Process Development and Sensitivity Study. AIAA 2002-0505
    32. David E. Myers, Carl J. and Max L. Blosser. Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems. NASA/TM-2000-210289
    33. Kamran Daryabeigi. Effective Thermal Conductivity of High Temperature Insulation for Reusable Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972
    34. Demetrius A. Kourtides. High Temperature Properties of Ceramic Fibers and Insulations for Thermal Protection of Atmospheric and Hypersonic Cruise Vehicle. NASA TM- 100059
    35. Kamran Daryabeigi. Heat Transfer in Adhesively Bonded Honeycomb Core Panels. AIAA 2001-2825
    36. Max L. Blosser. Development of Metallic Thermal Protection System for the Reusable Launch Vehicle. NASA Technical Memorandum 110296
    37.徐兴隆,赵剑钊.航天飞机热防护系统的传热分析及厚度和单位质量的质量估算.第四届天地往返运输系统学术交流研讨会论文集,1988,10:520-535
    38.高温多层隔热材料的研究.中国国防科学技术报告
    39.多层隔热系统的隔热性能表示方法和改进方向.GF48039
    40.多层隔热材料的性能研究.中国国防科学技术报告
    41.李承新,宋林西.国内航天飞机热防护系统材料性能数据.航天科技集团公司703所,2003,2
    42. C. Petiau. Thermal and Structural Analysis of Hermes. ESA SP-289, Jan, 1989
    43.李松年.航空航天器结构热力学问题.北京航空航天大学科学研究报告,1990
    44. Frank Garcia. Thermal Protection System Weight Minimization for the Space Shuttle through Trajectory Optimization. AIAA72-997
    45. KathrynE. Wurster. Lifting Entry Vehicle Mass Reduction through Integrated Thermal/structural/Trajectory Design. AIAA80-0363
    46. Peter K. Shih. Thermal Protection System Optimization for a Hypersonic Aerospace Vechicle. AIAA88-2739
    47. Tim Tam, Dave Olynic. An Investigation of Possible Shuttle Upgrades Using Advanced TPS Concepts. AIAA97-0277
    48. Blosser M L. Investigation of Fundamental Modeling and Thermal Performance Issues for a Metallic Thermal Protection System Design. AIAA 2002-0503
    49. Chen Y K, Milos F S, Solution Strategy for Thermal Response of Nonablating Thermal Protection System at Hypersonic Speeds. AIAA96-0615
    50. James Wayner Sawyer, Jefferson Hampton. Aerothermal Test of Metallic for X-33 Reusable Launch Vehicle.
    51.童秉纲.航天飞机防热瓦缝隙气动加热的讨论.气动试验与测量控制,Vol 4(4):1-7
    52.杨世铭.传热学基础.高等级教育出版社,1991
    53. Daniel, Jean Claude. Hermes Thermal Protection System Overview. A87-15937
    54. Milos F S. Thermal Stress Analysis of X-34 Wing Leading Edge Tile TPS. AIAA96-1821
    55. Ronald T. Materials Challenges for NASP. AIAA89-5010
    56. Milos F S. Thermal Structural Analysis of SIRCA Tile for X-34 Wing Leading Edge TPS. AIAA98-0883
    57. H. Stockfleth. Base TPS Concepts for RLV Application. IAF96-V.4.05
    58. Dean A. Kontinos. Numerical Simulation of Metallic TPS Panel Bowing. AIAA 98-0866.
    59.沈遐龄.航天飞机气动加热.北京航空航天大学学报,1998,Vol24(2):189-192
    60.航天飞机的气动热.GF-A0016268G
    61.耿为群,杨茂昭,黄振中.航天飞机防热结构温度场的数值计算研究.1992,Vol 10(3):367-371
    62. Cunnington G R, Zierman.C A. Performance of Multi-layer Insulation Systems for Temperatures to 700K. NASA CR-907.
    63. DeWitt, W D, Gibbon R L, Reid R L. Multi-foil Type Thermal Insulation Proceeding Intersociety Energy Conversion Engineering Conference (IECEC), 1968: 263-271.
    64. Keller K, Blumenberg J, Tomsik J. Fiber Orientation and the Conduction of Heat by a Gas Enclosed in Ceramic Layers. Z. Flugwiss. Weltraumforsch, 1988(12): 258-260
    65. Keller K, Hoffmann M, Zorner W. Application of High Temperature Multilayer Insulations. Acta Astronautica, 1992, 26(6): 451-458
    66. Kamran Daryabeigi. Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating. AIAA 2001-2834
    67. Kamran Daryabeigi. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972
    68.王补宣.工程传热传质学(上册).科学出版社,1982
    69. Alan D. Sullins, Kamran Daryabeigi. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam. AIAA 2001-2819
    70. Kamran Daryabeigi. Heat Transfer in High-Temperature Fibrous Insulation. AIAA 2002-3332
    71.E.R,G.埃克特,R.M.德雷克著,航青译.传热与传质分析.科学出版社,1986
    72. Kamran Daryabeigi. Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles. AIAA 99-1044
    73. Derek D. Hass, B. Durga Prasad. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer. NASA Contractor Report 201733
    74.闵桂荣,郭舜著.航天器热控制(第二版).科学出版社,1985
    75.闵桂荣等编.卫星热控技术.宇航出版社,1991
    76.孔祥谦.有限元法在传热学中的应用(第三版).科学出版社,1998
    77.处理区域内导热与辐射联和作用的数值计算方法.中国国防科学技术报告:84-470
    78.赵振南.传热学.高等教育出版社,2002,7
    79. Swann R T, Pittman, C.M. Analysis of Effective Thermal Conductivities of Honeycomb-Core and Corrugated-Core Sandwich Panels. NASA Technical Note D-714, April 1961
    80. Kamran Daryabeigi. Heat Transfer in Adhesively Bonded Honeycomb Core Panels. AIAA 2001-2825
    81. Y. Murer; P. Millan. Two-dimensional Modeling of Heat Transfer through Sandwich Plates with Inhomogeneous Boundary Conditions on the Faces. Journal of Heat Transfer, 1998, Vol 120(3): 606-616
    82. Eftekhar J, Darkazalli G, Haji-Sheikh A. Conduction of Heat across Rectangular Cellular Enclosures. Journal of Heat Transfer, 1981, Vol 103: 591-595
    83. Copenhaver D C, Scott E P, Hanuska A. Thermal Characterization of Honeycomb-Core Sandwich Structures. AIAA 97-2455
    84.马贤荣,马庆芳等.辐射换热角系数手册.国防工业出版社,1982
    85. Stroud C W. Experimental Verification of an Analytical Determination of Overall Thermal Conductivity of Honeycomb-Core Panels. NASA Technical Note D-2866, 1965.
    86.谭真,郭广文.工程合金热物性.冶金工业出版社,1994
    87.黄福详,谭菊芬.航天飞机热防护系统用高温合金的选材分析.第四届天地往返运输系统学术交流研讨会,1988,10:507-514
    88.以火箭为动力的两级重复使用运载器超声速演示验证方案研究.航天科技集 团公司一院一部 ,002,10
    89.两极重复使用运载器气动热工程估算软件文本.航天科技集团公司701所,2003,8
    90. Tauber M E. The Thermal Environment of Trans-atmospheric Vehicles. AIAA87-1514
    91. Grant Panlmer, A Heating Analysis of the Nose Cap and Leading Edges of the X-34 Vehicle. AIAA98-0878
    92. Wiliam L. Kleb. Computational Aeroheating Predictions for X-34. AIAA98-0879
    93. Christopher J. Riley. Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method. AIAA98-0880
    94. Kathryn E. Wurster. Engineering Aerothermal Analysis for X-34 Thermal Protection System Design. AIAA98-0882
    95. Churchill M D. A Method of Defining the Missing Environment for Space Vehicle Orbital Thermal Analyses. AIAA87-1504
    96. Brian R. Hollis. X-33 Computational Aeroheating Predictions and Comparisons with Experimental Data. AIAA99-3559
    97. Grant Palmer. An Aerothermal Analysis and TPS Sizing of the Mars 2001 Lander Vehicle. AIAA99-0225
    98. Mark P, Loomis. Aeroheating and Aerodynamic CFD Validation and Prediction for the X-38 Program. AIAA97-2478
    99. Dinesh K, Prabhu. X-33 Catalytic Heating. AIAA98-2844
    100.H.格拉洛特 R.凯特.用于高超音速飞行器的金属防热方案.译自J'Aircraft vol 28(6):410-416
    101.H.格拉洛特,K.沃尔默.利用先进方法进行桑格尔空天飞机防热系统的方案设计.译自AIAA93-5085
    102. Grallert H, Keller K. Metallic Thermal Protection Concept for Hypersonic Vehicle. J. Aircraft, 1989: 410-416
    103. Dave Olynick. New TPS Design Strategies for Planetry Entry Vehicle Design. AIAA99-0384
    104. Jones G, Diamant K. Aerothermodynamics and Thermal Control Analysis for the Heat Sink Thermal Protection System of Flyback Booster. AIAA89-0075
    105.南英.航天器再入轨迹与控制.西北工业大学博士学位论文,1993,5
    106.刘同仁.用参数优化方法计算最优飞行轨迹.航空学报,1994,15(1):1298-1305
    107.郑本武.航天飞机再入大气层最优轨迹.北京航空航天大学学报,1993,Vol 25(4):431-437
    108. Fu-Kuo Hsu. Optimal Aero-assisted Orbital Plane Change with Heating Rate Constraint. AIAA88-0301.
    109. Kathryn E. Technology and Operational Considerations for Low-Heat-Rate Entry Trajectories. AIAA79-0890
    110. Zhigang Wang, Shilu Chen. Optimization of Reentry Trajectory and Overall Parameters of Manned Spacecraft. IAF-98-A.4.08

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700