多年冻土区路堤填土改良模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从路堤的填土改良——粒径级配改良,以及控制大气降水下渗——水平排水板的共同作用,研究一种应用于多年冻土地区的新型路堤结构形式,即级配改良结构性路堤,设计了原位模型试验,分析其作用机理,研究结果表明级配改良结构性路堤,将是一种低成本有效保护冻土的路堤结构形式。
     1.研究了多年冻土区路基工程的主要冻害类型,成因和有效的防治措施,认为只要合理控制土质、温度、地下水三个因素的作用,就能够有效的控制多年冻土区路基工程的冻害,保护冻土。
     2.土的导热性能内在因素主要受含水量、孔隙度、干密度以及粒径级配的差异控制,其导热系数大小与土含水量、干密度存在一定的数学关系。
     3.查明试验段工程冻土地质类型,确定路基设计原则和填土室内物理力学试验基础上,开展了在青藏高原多年冻土区的级配改良路堤原位模型试验。
     4.成功运用光纤光栅传感技术,对多年冻土路堤的变形进行监测,结果表明,与通风管路堤比较,减少冻胀变形和最大冻胀发生的区域,以及缩短冻胀变形的冻结阶段时间;温度监测结果分析发现,级配改良结构性路堤中,粗颗粒级配砾石层中存在着对流换热,在冷、热条件下具有明显的热开关效应;但碎石中颗粒级配层的导热性能冬夏差异较小,其孔隙率低于粗颗粒层,同时密实度高。
     5.在级配改良路堤中,细粒土级配层能够形成降水下渗的缓冲层,与水平排水板横向排水共同作用,改变大气降水下渗路径,形成水平向迁移,减少了冻土地下冰的水分来源,减少冻胀量的增加;并且水平排水板具有加筋作用,有利于改善路堤的不均匀变形。
     6.根据热力学的基本原理,建立了级配改良结构性路堤的数值计算模型,运用非线性有限元方法,分析年增温率为0.04℃/a条件下,级配改良结构性路堤的温度场的发展规律,认为此种路堤形式能够有效的保护多年冻土,延缓多年冻土的退化。
In the paper, a new embankment structure is studied that is the improved graded structured embankment. In this embankment, the filling soil is improved on particle grade and laid horizontal drain board. An in situ model testing was designed on Beiluhe testing field in the Qinghai-Tibetan railway, and its mechanism is analyzed to heat exchange and moisture migration. The results showed that improved graded structured embankment is a kind of effective structure forms to protect permafrost.
     1. It is studied about the styles and causes of damage of roadbed, effective measures to protect roadbed in the permafrost regions. It is thought that the key is the actions of soil, temperature and water to control the damages of roadbed, if one of the three factors is mended, the damages will be controlled and the measure can protect the permafrost.
     2. The influencing factors are moisture content, porosity, dry density and particle graded of soil to the thermal conductivity, and the value of the thermal conductivity is related the moisture content and dry density of soil.
     3. The engineering geology condition is surveyed in Beiluhe testing field in the Qinghai-Tibetan railway, the design principle is confirmed to the embankment, and on the basis of the results about the physics and mechanical examination of the filling soil in the room, it was built to the test model of improved graded structured embankment for testing in the suit of Beiluhe testing field in the Qinghai-Tibetan railway.
     4. The application is succeeded to the fiber grating strain sensor for monitoring the deformation in the model embankment, and the fiber grating strain sensor would be used the long-term monitoring the deformation in the permafrost. The results of the monitoring deformations indicated that the frost heave deformations and the frost heave area is reduce, and the time of freezing phases during the frost heave is shorten, to compare with the ventilation duct in the roadbed. At the same time, the results of the temperature monitoring confirmed that the gravel coarse granule graded layer has the heat exchange form of the convection, in the diversity conditions to the cold and hot season, and the layer manifests the effect of the on-off to thermal. But to the macadam medium granule graded layer, the thermal conductivity difference doesn’t be in evidence in the cold and hot season, because the porosity in this layer is less than and the dry density is more than the gravel coarse granule graded layer, in this layer, the heat exchange form is conduction.
     5. In the improved graded structured embankment, the pathway of the precipitation seep downward is changed toward the horizontal lateral seep, due to the together effect to the fine granule soil graded layer, the amortize layer can be formed to the precipitation seep downward,
引文
[1]徐学祖,王家澄,张立新著. 冻土物理学. 北京:科学出版社. 2001
    [2]周幼吾,郭东信,邱国庆等著. 中国冻土. 北京:科学出版社. 2000
    [3]李永春,鱼海麟,解宏伟. 青藏铁路多年冻土地段的地质环境和工程地质问题. 水文地质工程地质. 2002,1:45~48
    [4]马巍. 关于青藏铁路建设的若干重大问题. 武汉:21 世纪的岩土力学与岩土工程. 2003:90~101
    [5]程国栋. 青藏铁路工程与多年冻土相互作用及环境效应. 中国科学院院刊. 2002,1:21~25
    [6]王尚国,陶兆祥,金会军等. 从土的导热系数影响因素探讨其可变性. 第五届全国冰川冻土学大会论文集(上册). 兰州:甘肃文化出版社. 1996
    [7]H. A.崔托维奇著. 冻土力学. 张长庆,朱元林译. 北京:科学出版社. 1985
    [8]吴紫汪,程国栋,朱林楠等. 冻土路基工程. 兰州:兰州大学出版社. 1998
    [9]李宁,程国栋,徐学祖等. 冻土力学的研究进展与思考. 力学进展. 2001,31(1):95~102
    [10]Andersland O. B,Akili W. Stress effect on creep rates of a frozen clay soil. Geotechnique. 1967,17(1):27~39
    [11]Ladanyi Brank. An engineering theory of creep of frozen soil. Can. Geotech. J. 1972,9(1):63~80
    [12] 陈湘生. 冻土力学之研究——2l 世纪岩土力学的重要领域之一. 煤炭学报. 1998,23(1):53~57
    [13]Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resource Research. 1973,9:1314~1323
    [14]Sheppard M T,Kay B D,Loch J P G. Development and testing of a computer model for heat and mass flow in freezing soils. Proc. 3rd Int Conf on Permafrost. 1978:76~81
    [15]Jansson P E,Halldin S. Model for the annual Water and energy flow in a layered soil. Halldin S. Comparison of Forest and Energy Exchange Models. Society for Ecological Modeling Copenhagen. 1979:145~163
    [16]Fukuda M. Experimental studies of coupled heat and moisture transfer in soils during freezing. Sapporo:Hollaido University. 1982:35~91
    [17]Fukuda M,Nakagawa S. Numerical analysis of frost heaving based upon the coupled heat and water flow model. 4th Inter Symposium on Groundfreezing. Sappor. 1985:109~117
    [18]Guymon G,Berg R,Hromadka T. A one dimensional frost heaven model based upon simulation of simultaneous heat and water flux. Cold Regions Science and Technology. 1980,3(2~3):253~263
    [19]Guymon G,Berg R,Hromadka T. Mathematical model of frost heave and thaw settlement in pavements. USA Cold Regions Research and Engineering Lab. 1993
    [20]Shen Mu,Ladanyi B. Modeling of coupled heat, moisture and stress field in freezing soil. Cold Regions Science and Technology. 1987,14(3):237-246
    [21]Konrad J M,Morgenstern N R. A mechanistic theory of ice lens formation in fine grained soils. Canadian Geotechnical Journal. 1980,17:476~486
    [22]Gilpin R R. A model for the prediction of ice lensing and frost heave in soils. Water Resources Research. 1980,16:918~930
    [23]O’ Nell K,Miller R D. Exploration of a rigid ice model of frost heave. Water Resources Research. 1985,21:281~296
    [24]Nixon J F. Discrete ice lens theory for frost heave in soils. Canadian Geotechnical Journal. 1991,28:843~859
    [25]Sheng Daichao. Thermo dynamics of freezing soils-theory and application[D]. Sweden:LuleaUniversity of the Technology,1994
    [26]Duquennoi C,Fremond M. Modeling of thermal soil behavior. VTT Symposium94. 1989,2:895~915
    [27]Fremond M,Mikkola M. Thermo mechanical modelling of freezing soil. Proceedings of the Sixth International Symposium on Ground Freezing. Rotterdam:A A Balkema. 1991,17~24
    [28]马巍,吴紫汪. 围压作用下冻结砂土傲结构变化的电境分折. 冰川冻土. 1995,17(2):152~157
    [29]吴紫任,马巍. 冻土强度与蠕变. 兰州:兰州大学出版社. 1994
    [30]Wei Ma,Ziwang Wu,Lixin Zhang. Analyses of process on the strength decrease in frozen soils underhigh confining pressures. Cold Regions Science and Technology. 1999,2(1)9:1~7
    [31]朱元林,何平,张家懿等. 围压对冻结粉土在振动荷裁作用下蠕变性能的影响. 冰川冻土. 1995,17(supp):20~25
    [32]何平,朱元林等. 饱和冻结粉土的动弹模及动强度. 冰川冻土. 1993,15(1):170~174
    [33]何平,张家懿等. 振动频率对冻土破坏之影响. 岩土工程学报. l995,17(3):78~81
    [34]苗天德,魏雪霞等. 冻土蠕变过程的微结构损伤理论. 中国科学(B 辑). 1995,25(3):309~317
    [35]Miao Tiande,Wei Xuexia,Zhang Changqing. Creep of frozen soil by damage mechanical. Science in China (Series B). 1995,38(8):996~1002
    [36] Guo li,Miao Tiande,Zahng Hui,et al. Thermodynamia models of heat moisture migration saturated freezing soil. 岩土工程学报. 1998,20(5):87~91
    [37]赵建军,董金梅,王沛等. 正冻土中的水热耦合模型. 天津城市建设学院学报. 2001,7(1):47~52
    [38]苗天德,郭力,牛永红等. 正冻土中水热迁移问题的混合物理论模型. 中国科学(D辑). 1999,29(增刊 1):8~14
    [39]王海丽. 冻土水热运动的数值模拟. 内蒙古农牧学院学报. 1998,19(1):99~105
    [40]陈飞熊,李宁,程国栋. 饱和正冻土多孔多相介质的理论构架. 岩土工程学报. 2002,24(2):213~217
    [41]Li Ning,Chen Bo,Cheng Feixiong,et al. The coupled heat-moisture-mechanic model of the frozen soil. Cold Regions Science and Technology. 2000,31(3):199-205
    [42]何平,程国栋,俞祁浩等. 饱和正冻土中的水、热、力场耦合模型. 冰川冻土. 2000,22(2):135~138
    [43]李洪升,刘增利,梁承姬. 冻土水热力耦合作用的数学模型及数值模拟. 力学学报. 2001,33(5):621~629
    [44]程国栋,何平. 多年冻土地区线性工程建设. 冰川冻土. 2001,23(3):213~217
    [45]苏联科学研究院西伯利亚分院冻土研究所著. 普通冻土学. 郭东信,刘铁良,强维信译. 北京:科学出版社. 1988
    [46]刘铁良. 从贝阿干线中段路基病害的发生机理看其未来的变化. 路基工程. 1998,3:21~27
    [47]Douglas. Kane,Kenneth M.Hinkel,Douglas J. Goering et al. Non-conductive heat transfer associated with frozen soils. Global and Planetary Change. 2001,29:275~292
    [48]V.E. Romanovsky, T.E. Odterkamp, N.S. Duxbury. An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes. Cold regions Science and Technology .1997,26(3):195~203
    [49]Erik Simonsen,Ulf Isacsson. Thaw weakening of pavement structures in cold regions. Cold regions Science and Technology .1999,29(2):135~151
    [50]Feng Ling,Tingjun Zhang. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Regions Science and Technology. 2004,38(1):1~15
    [51]李东庆,魏春玲,吴紫汪. 边坡渗流对冻土地区路基稳定性的影响分析. 兰州大学学报(自然科学版).2000,36(3):175~179
    [52]令锋,吴紫汪. 渗流对多年冻土区路基温度场影响的数值模拟. 冰川冻土. 1999,21(2):115~119
    [53]李述训,程国栋编 冻融土中的水热输运问题 兰州:兰州大学出版社. 1995
    [54]Iwata S. Driving force for water migration in frozen clayed soil. Soil science and Plant Nutrition. 1980,26:215~227
    [55]Goodrich L E. The influence of snow cover on the ground thermal regime. Canadian Geotechnical Journal. 1982,19:42l~432
    [56]Benoit G R,Mostaghimi S.Modeling soil frost under three tillage system. Transaction of the ASCE. 1985:28:1499~1505
    [57]马虹,胡汝骥. 积雪对冻土热状况的影响. 干旱区地理. 1995,18(4):23~27
    [58]潘树荣. 草皮在青藏铁路多年冻土地区路基工程中的应用. 路基工程. 1997,4:10~11
    [59]王铁行,胡长顺,王秉纲等. 考虑多种因素的冻土路基温度场有限元方法. 中国公路学报. 2000,13(4):8~11
    [60]章金钊,李祝龙,武敬民. 冻土路基稳定性主要影响因素探讨. 公路. 2000,2:17~20
    [61]王铁行. 多年冻土地区路基计算原理及临界高度研究. 博士学位论文. 西安:长安大学. 2001
    [62]胡泽勇,钱泽雨,程国栋等. 太阳辐射对青藏铁路路基表面热状况的影响. 冰川冻土. 2002,24(2):121~128
    [63]L.S. Kuchment, A.N. Gelfan,V.N. Demidov. A distributed model of runoff generation in the permafrost regions. Journal of Hydrology 2000(240):1~22
    [64]过增元. 对流换热的物理机制及其控制:速度场与热流场的协同. 科学通报. 2000,45(19):2118~2122
    [65]王补宣. 多孔介质的对流传热传质. 西安交通大学学报. 1994,28(5):51~58
    [66]孔祥言,卢德唐,徐献芝. 多孔介质中对流的研究. 1996,26(4):510~520
    [67]卢军,陈启高. 含盐多孔材料传热传质研究. 重庆建筑大学学报. 1999,21(6):77~79
    [68]张志军,杜建华,王补宣. 多孔介质强迫对流传热中粘性耗散的影响. 上海交通大学学报. 1999,33(8):979~982
    [69]Wu Qingbai,Liu Yongzhi. Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau. Cold Regions Science and Technology. 2004,38(2~3):85~92
    [70]Yinsheng Zhang,T. Ohata,T. Kadota. Land-surface hydrological processes in the permafrost regionofthe eastern Tibetan Plateau Journal of Hydrology 2003,283:41~56
    [71]Tong Changjiang,Wu Qingbai. The effect of climate warming on Qinghai-Tibei Highway China. Cold regions Science and Technology. 1996,24(1):101~106
    [72]Qingbai Wu,Bin Shi,Hsai-Yang Fang. Engineering geological characteristics and processes of permafrost along the Qinghai–Xizang (Tibet) Highway. Engineering Geology. 2003,68:387–396
    [73]WU Qingbai,ZHU Yuanlin,LIU Yongzhi. Evaluating model of frozen soil environment change under engineering actions. SCIENCE IN CHINA (Series D). 2002,45(10):893~902
    [74]吴青柏,朱元林,刘永智. 人类工程活动下冻土环境变化评价模型. 中国科学(D 辑). 2002,32(2):141~148
    [75]吴青柏,施斌,刘永智. 青藏公路沿线多年冻土与公路相互作用研究. 中国科学(D 辑). 2002,32(6):514~520
    [76]吴青柏,米海珍. 青藏公路多年冻土路段冻土过程的变化和控制建议. 水文地质工程地质. 2000,2:14~17
    [77]吴青柏,朱元林,施斌. 工程活动下的冻土环境研究. 冰川冻土. 2001,23(2):200~207
    [78]吴青柏,刘永智,童长江. 寒区冻土环境与工程环境间的相互作用. 工程地质学报. 2000,8(3):281~287
    [79]吴青柏,李新,李文君. 全球气候变化下青藏公路沿线冻土变化响应模型的研究. 冰川冻土. 2001,23(1):1~6
    [80]程国栋 局地因素对多年冻土分布地影响及其对青藏铁路设计地启示 中国科学(D 辑)2003,33(6):602~607
    [81]张鲁新. 青藏铁路沿线多年冻土区地温场变化规律及其对路基稳定性影响. 中国铁道科学. 2000,21(1):37~47
    [82]黄小铭. 论高原冻土区铁路路基的设计原则及其应用. 中国铁道科学. 2001,22(1):23~31
    [83]冉理. 青藏高原铁路的设计与研究. 中国铁道科学. 2001,22(1):16~22
    [84]钱征宇. 青藏铁路多年冻土区主要工程问题及其对策. 中国铁路. 2002,8:23~27
    [85]李宁,程国栋,谢定义. 西部大开发中的岩土力学问题. 岩土工程学报. 2001,23(3):268~272
    [86]伍法权. 中国 21 世纪若干重大工程地质与环境问题. 工程地质学报. 2001,9(2):115~120
    [87]陈肖柏. 我国寒区工程冻害及其防治对策. 地学与四化建设. 1990,3:46~50
    [88]孟凡松,刘建平,刘永智. 黑北公路冻土路基设计原则及病害特征. 冰川冻土. 2001,23(3):307~311
    [89]李永忠. 路基冻害原因分析及整治. 煤炭技术. 2002,21(7):15
    [90]雷金山,杨秀竹,王星华等. 青藏铁路路基与涵洞冻害分析及防冻措施. 西部探矿工程. 2003,1:26~27
    [91]马文胜,孔玉坤. 道路冻害与防治探讨. 辽宁交通科技. 2000,23(4):23~25
    [92]何成久,宋致信,王钊起等. 冻害及其防治. 水利科技与经济. 1997,34(4):221~222
    [93]李明星. 东北多年冻土区道路冻害与防治. 内蒙古林业调查设计. 1994,2:32~35
    [94]苏群. 东北地区路基土冻胀机理与防治对策. 黑龙江工程学院学报. 2001,15(1):2~5
    [95]徐学祖,张立新,王家澄. 土体冻胀发育的几种类型. 冰川冻土. 1994,16(4):301~307
    [96]薛新功,包黎明,周孝文. 加拿大冻土铁路考察报告. 科技交流. 2002,32(1):1~7
    [97]原喜忠. 大兴安岭北部多年冻土地区路基沉陷研究. 冰川冻土. 1999,21(2):155~158
    [98]焦臣,陈鹏郎. 青藏公路流冰冻害的防治. 西安公路交通大学学报. 1997,17(2):41~44
    [99]蒋富强. 高原多年冻土区铁路路基结构问题. 中国铁路. 2002,4:57~59
    [100]马巍,程国栋,吴青柏. 多年冻土地区主动冷却地基方法研究. 冰川冻土. 2002,24(5):579~587
    [101]丁靖康,赫贵生. 年平均气温临界值——设计青藏高原多年冻土区路堤临界高度的一个重要因素. 冰川冻土. 2000,22(4):333~338
    [102]田亚护,刘建坤,钱征宇等. 多年冻土区含保温夹层路基温度场的数值模拟. 中国铁道科学. 2002,23(2):59~64
    [103]中华人民共和国铁道部标准. 青藏铁路高原多年冻土区工程设计暂行规定. 北京:中华人民共和国铁道部. 2001
    [104]Nixon J F. Geothermal aspects of ventilated pad design. Proceedings of the Third International Conference on Permafrost. Edmonton,Alberta,National Research Council of Canada. 1978:841~846
    [105]Wayne Tobiasson. Performance of the Thule hangar soil cooling systems. North American Contribution. Second International Permafrost Conference. Yakutsk. 1973:752~758
    [106] Johnston G H. Permafrost Engineering Design and Construction. Rexdale. 1981:251~258
    [107]臧恩穆, 吴紫汪. 多年冻土退化与道路工程. 兰州:兰州大学出版社.1999
    [108]喻文兵,赖远明,牛富俊等. 多年冻土区铁路通风路基室内模型试验研究. 铁道学报. 2002,24(6):78~83
    [109]牛富俊,程国栋,赖远明. 青藏铁路通风路堤室内模型试验研究. 西安工程学院学报. 2002,24(3):1~6
    [110]喻文兵,赖远明,牛富俊等. 多年冻土区铁路通风路基室内模型试验的温度场特征. 冰川冻土. 2002,24(5):601~607
    [111]Cheng K T. Experimental research on an area with massive ground ice at the lower limit of alpine permafrost. Proceedings of the Third International Conference on Permafrost. National Research Council of Canada. 1978,2:199~222
    [112]杨海蓉. 多年冻土地区防治路基融化下沉及提高其稳定性的措施. 冰川冻土,1985, 7(1):83-88
    [113]Kondratjav V G. Strengthening railroad roadbed bases constructed on icy permafrost soils. Proceeding of Eighth International Conference on Cold Regions Engineering . Fairbanks:ASCE. 1996:688~699
    [114]He Guisheng,Zhang Luxin. Analysis on climate change and thermal stability of experiment railway embankment in Fenghuoshan region Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology. 2000,22(supp):20~25
    [115]冯文杰,李东庆,马巍等. 不同边界条件对多年冻土上限影响的模型试验研究. 冰川冻土. 2001,23(4):353~359
    [116]Goreing D J,Instnes A,Knudsen S. Winter time convection in open-graded embankments. Cold regions Science and Technology. 1996,24(1):57~74
    [117]赖远明,张鲁新,徐伟泽等. 青藏铁路抛石路基的温度特性研究. 冰川冻土. 2003,25(3):291~296
    [118]赖远明,张鲁新,张淑娟等. 气候变暖条件下青藏铁路抛石路基的降温效果. 科学通报. 2003,48(3):292~297
    [119]米隆,赖远明,吴紫汪等. 高原冻土铁路路基温度特性的有限元分析. 铁道学报. 2003,25(2):62~67
    [120]谢鸣. 国外加固多年冻土地基的新方法——热管技术的应用. 施工技术. 1994,6:51~53
    [121]宋文华,宋庆会. 输变电基础冻胀的分析. 电力建设. 1996,17(3):9~12
    [122]吴存真,孙志坚,潘阳. 应用热管技术解决寒区地基冻胀问题的理论研究. 岩土工程学报. 2002,24(3):347~350
    [123]朱卫东,雷华阳. 青藏高原冻土地区岩土工程研究进展与思考. 岩土工程技术. 2003,1:19~23
    [124]N.H. Abu-Hamdeh,A.I. Khdair,R.C. Reeder. A comparison of two methods used to evaluate thermal conductivity for some soils. International Journal of Heat and Mass Transfer. 2001,44:1073~1078
    [125] S.W. Reesa,M.H. Adjalib,Z. Zhoua,el. Ground heat transfer effects on the thermal performance of earth-contact structures. Renewable and Sustainable Energy Reviews 2000 (4):213~265
    [126]刘为民,何平,张钊. 土体导热系数的评价与计算. 冰川冻土. 2002,24(6):770~773
    [127]孙斌祥,徐学祖,赖远明等. 块石的热扩散系数和导热系数确定方法. 冰川冻土. 2002,24(6):790~795
    [128]徐学祖,孙斌祥,李东庆等. 边界温度周期波动下块石的温度变化规律. 岩土工程学报. 2003,25(1):91~95
    [129]李永春,鱼海麟,解宏伟. 青藏铁路多年冻土地段的地质环境和工程地质问题. 水文地质工程地质. 2002,29(1):45~48
    [130]潘卫东,朱元林,吴亚平等. 青藏高原多年冻土地区不良冻土现象对铁路建设的影响. 兰州大学学报(自然科学版). 2002,38(1):127~131
    [131]张建明,刘永智,吴青柏等. 公路工程冻土类型划分研究. 西安公路交通大学学报. 2001,21(4):1~5
    [132]牛富俊,张建明,张钊. 青藏铁路北麓河试验段冻土工程地质特征及评价. 冰川冻土. 2002,24(3):264~269
    [133]叶阳升,王志坚,王仲锦等. 青藏铁路清水河段细粒土用作路基填料问题的探讨. 中国铁道科学. 2002,23(6):86~89
    [134]高长胜,张,凌,汪肇京等. 塑料排水板的等效直径. 水利水运工程学报. 2002,4:28~32
    [135]何开胜. 水平排水板振动碾压地基处理技术和工程措施. 施工技术. 2002,31(1):41~42
    [136]李爱国. 填石路堤与土石路堤的施工和质量控制方法. 中南公路工程. 2003,28(1):66~68
    [137]王丹生,朱宏平. 光纤光栅传感技术在桥梁结构健康监测中的应用. 中外公路. 2002,22(6):31~34
    [138]陈轮,郭瑞平, 李广信. 土工加筋抗冻胀工作机制的研究. 冰川冻土. 1996,18(4):297~305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700