利用多孔介质局部非热平衡理论研究透壁式通风管路基的温度特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透壁式通风管路基是一种全新的冷区工程措施。本文主要研究了透壁式通风管路基的非线性温度特性,主要内容如下:
     1.本文介绍透壁式通风路基的降温机理:利用青藏高原年平均气温为负值、大气气温一般比地表温度低三度以上、以及风力资源较丰富的特点,通过空气在路基介质中流动带走堤身热量而达到主动降低路基下地温目的。与传统的通风路基有着本质区别。
     2.提出了透壁式通风路基的理论模型:利用Brinkman模型处理纯流体空气区域与多孔介质区域的耦合流动;在局部非热平衡理论的基础上把多孔介质骨架和流体分别看成两种不同的连续介质,在任意点和其相应的特征体积单元REV内分别定义两个平均温度,即固相平均温度Ts和流体相平均温度Tf,它们分别表征了同一特征单元每相的热状态,把多孔结构内的传热视为两相之间的传热;利用序贯耦合交错求解的方法求解流固耦合的“双能量方程”。
     3.利用Heaviside函数的阶梯性及Gaussian函数的突变性模拟了冻土相变过程能量的突变,提高了数值求解收敛的速度和稳定性。
     4.在两种气候条件下对透壁式通风路基、普通通风路基及普通非通风路基进行了对比模拟研究,得出透壁通风路基与普通通风路基是积极主动调控地温的冷区工程措施,其中透壁式通风路基的降温效果更好;非通风普通路基是一种消极保护多年冻土的工程,且路基下冻土有退化现象。
     5.在透壁式通风路基模型的基础上提出了片石气冷路基的控制模型,并进行了数值模拟分析,得出片石气冷路基能提高冻土上限,达到保护冻土的作用。
The ventilated embankment with porous ventilated tubes inside is a bran-new engineering measure, whose nonlinear temperature characteristic was studied in this paper.
     1. Refrigeration mechanism of ventilated embankment with porous tubes inside was presented, which is that air cool embankment by heat convection inside embankment medium under conditions of low temperature and windy weather, and is different from common ventilated embankment in nature.
     2. The theory model of ventilated embankment with porous tubes inside was presented. Coupling problem between fluid and solid was solved by Brinkman model in the region of porous media; Fluid and porous medium were looked as two kinds of different continuous media, and on the basis of local non-thermal equilibrium theory average temperature of solid phase and gas phase was defined in REV; Heat transfer in porous medium was looked as the exchange of heat between solid phase and gas phase; Double energy equations were solved by means of sequential coupling.
     3. The phase change phenomena of frozen soil were simulated based on Characteristics of Heaviside staircase function and Gaussian jump function, and convergence and stability were improved.
     4. The temperature characteristics of the ventilated embankment with porous ventilated tubes inside, common ventilated embankment and common embankment were simulated under two different climatic conditions, and the calculated results indicate that two kinds of ventilated embankments heighten the upper limit of frozen soil. The better one is the ventilated embankment with porous ventilated tubes inside.
     5. Governing differential equations of ballast embankment were presented and modeled based on the model of the ventilated embankment with a porous ventilated tube inside. The calculated results indicate that ballast embankment can heighten the upper limit of frozen soil to protect the frozen soil.
引文
[1] 徐学祖,王家澄,张立新著.冻土物理学.北京:科学出版社.2001
    [2] 周幼吾,郭东信,邱国庆等著.中国冻土.北京:科学出版社.2000
    [3] 李水春,鱼海麟,解宏伟.青藏铁路多年冻土地段的地质环境和工程地质问题.水文地质工程地质.2002,1:45~48
    [4] 马巍.关于青藏铁路建高的若干重大问题.武汉:21世纪的岩土力学与岩土工程.2003:90~101
    [5] 程国栋.青藏铁路工程与多年冻土相作用及环境效应.中国科学院院刊.2002, 21~25
    [6] 刘永志,等.高原多年冻土地区公路路基温度场现场实验研究[J].公路,2000,(2):5-8
    [7] 青藏铁路多年冻土工程技术汇报材料,铁道部,2005,1
    [8] 胡明鉴,汪稔等.透壁通风管对青藏铁路路基的冷却效果试验初探,岩石力学与工程学报,2004,23(24):4195-4199
    [9] 喻文兵,等.多年冻士区道渣、通风管结构铁路路基室内试验研究[J].岩土工程学报,2003,25(4):436-440
    [10] 喻文兵,赖远明等.多年冻士区铁路通风路基室内试验的温度场特征[J].冰川冻土,2002,24(5):601-607
    [11] 牛富俊,马巍等,青藏铁路管道通风路基下土体的温度变化分析[J].铁道工程学报,2003,29(4):29-32
    [12] 牛富俊,俞祁浩等,青藏铁路管道通风试验路基地温变化及热状况分析[J].冰川冻土,2003,25(6):614-620
    [13] H.A.崔托维奇著.冻土力学.张长庆,朱元林译.北京:科学出版社.1985
    [14] 吴紫汪,程国栋,朱林楠等.冻土路基工程.兰州:兰州大学出版社.1998
    [15] 李宁,程国栋,徐学祖等.冻土力学的研究进展与思考.力学进展.2001, 31 (1): 95~102
    [16] Ladanyi Brank.An engineering theory of creep of frozen soil.Can.Geotech.J.1972, 9(l):63~80
    [17] 陈湘生.冻土力学之研究一21世纪岩土力学的重要领域之一.煤炭学报.1998, 23(1):53~57
    [18] Harlan R L.Analysis of coupled heat-fluid transport in partially frozen soil. Water Resource Research.1973,9: 1314~1323
    [19] Sheppard M T, Kay B D, Loch J P G.Development and testing of a computer model for heat and mass flow in freezing soils. Proc.3rdInt Conf on Permafrost. 1978:76~81
    [20] Jasson P E,Halldin S.Model for the annual Water and energy flow in a layered soil, Halldin S.Comparison of Forest and Energy Exchange Models.Society for Ecological Modeling Copenhagen.1979:145~163
    [21] Fukuda M.Experimental studies of coupled heat and moisture transfer in soils during freezing.Sapporo: Hollado University.1982: 35~91
    [22] Fukuda M,Nakagawa S.Numerical analysis of frost heaving based upon the coupled heat and water flow model.Inter Symposium on Groundfreeing.Sappor. 1985:109~117
    [23] Guymon G,Berg R,Hromadka T. A one dimensional frost heaven model based upon simulation of simultaneous heat and water flux.Cold Regions and Technology.1980,3(2~3):253~263
    [24] Cuymon G Berg R,Hromadka T. Mathematical model of frost heave and thaw settlement in pavements.USA Cold Regions Research and Engineering Lab.1993
    [25] Shen Mu,Ladanyi B.Modeling of coupled heat; moisture and stress field in freezing soil. Cold Regions Science and Technology. 1987,14〔3〕:237~246
    [26] Konrad J M,Morgenstern N R.A mechanistic theory of ice lens formation in fine grained soils.Canadian Geotechnical Journal. 1980,17:476~486
    [27] Gilpin R R.A model for the prediction of ice lensing and frost heave in soils.Water Resources Research.1980,16:918~930
    [28] O’ Nell K,Miller R D.Exploration of a rigid ice model of frost heave. Water Resources Research.1985,21:281~296
    [29] Nixon J F. Discrete ice lens theory for frost heave in soils.Canadian Ceotechnical Journal.1991,28:843~859
    [30] Sheng Daichao.Thermo dynamics of freezing soils-theory and application[D].Sweden LuleaUniversity of the Technology,1994
    [31] Doquennoi C , Fremond M.Modeling of thermal soil behavior. VTT Symposium94.1989,2:895
    [32] Fremond M,Mikkola M. Thermo mechanical modelling of lreezing soil.Proceedings of the Sixth International Symposium on Ground Freezingsoil.Proceeding of the Sixth Interational Symposium on Ground Freezing.Rotterdam:A A Balkema. 1991,17~24
    [33] 马巍,吴紫汪.围压作用下冻结砂土做结构变化的电镜分折.冰川冻土.1995, 17(2):152~157
    [34] 吴紫汪,马巍.冻土强度与蠕变.兰州:兰州大学出版社.1994
    [35] Wei Ma,Ziwang Wu,Lixin Zhang.Analysis of process on the strength decrease in frozen soils underhigh confining pressures.Cold Regions Science and Technology.1999, 2(1)9:1~7
    [36] 朱林南,何平,等.围压对冻结粉土在振动荷裁作用下蠕变性能的影响.冰川冻土1995,17(supp):20~25
    [37] 何平,朱元林等.饱和冻结粉土的动弹模及动强度.冰川冻土.1993, 15(1):170~174
    [38] 何平,张家懿等.振动频率对冻土破坏之影响.岩土工程学报.1995, 17 (3):78~81
    [39] 苗天德,魏雪霞等.冻土蠕变过程的微结构损伤理论.中国科学(B辑).1995, 25 (3):309~317
    [40] Miao Tiande, Wei Xuexia ,Zhang Changqing. Creep of frozen soil by damage mechanical.Science in China〔Series B〕.1995,38(8):996~1002
    [41] Guo li,Miao Tiande, et alThermodynamia models of heat moisture migration saturated freezing soil.岩土工程学报.1998, 20 (5):87~91
    [42] 赵建军,董金梅,王沛等.正冻土中的水热耦合模型.天津城市建设学院学报.2001, 7 (1 ): 47~52
    [43] 苗天德,郭力,牛永红等.正冻土中水热迁移问题的混合物理论模型.中国科学(D辑).1999, 29(增刊1):8~14
    [44] 王海丽.冻土水热运动的数值模拟.内蒙古农牧学院学报.1998, 19(1):99~105
    [45] 陈飞熊,李宁,程国栋.饱和正冻土多孔多相介质的理论构架.岩土工程学报.2002, 24 (2):213~217
    [46] Li Ning, Chen Bo, Cheng Feixiong,et al. The coupled Heat-moisture-mechanic model of the frozen soil.Cold Regions Science and Technology. 2000,31 (3): 199-205
    [47] 何平,程国栋,俞祁浩等.饱和正冻土中的水、热、力场耦合模型.冰川冻土.2000, 22(2):135~138
    [48] 李洪升,刘增利,梁承姬.冻土水热力耦合作用的数学模型及数值模拟.力学学报.2001, 33 (5):621~629
    [49] 程国栋,何平.多年冻土地区线性工程建设.冰川冻土.2001, 23 (3): 213~217
    [50] 苏联科学研究院西伯利亚分院冻土研究所著.普通冻土学.郭东信,刘铁良,强维信译.北京:科学出版社.1988
    [51] 刘铁良.从贝阿干线中段路基病害的发生机理看其未来的变化.路基工程.1998, 3: 21~27
    [52] Douglas. Kane,Kenneth M,Hinkel,Douglas J. Goering et al. Non-conductive heat transfer associated with frozen soils. Global and Planetary Change,2001, 29:275~292
    [53] Erik Simonsen,Ulf Isacsson,Thaw weakening of pavement structures in cold regions. Cold regions Science and Technology.1999,29 (2). 135~151
    [54] Feng Ling,Tingjun Zhang. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water,Cold Regions Science and Technology. 2004,38(1): 1~15
    [55] 李东庆,魏春玲,吴紫汪.边坡渗流对冻土地区路基稳定性的影响分析.兰州大学学报{自然科学版}.2000,36(3):175~179
    [56] 令锋,吴紫汪.渗流对多年冻土区路基温度场影响的数值模拟.冰川冻土.1999,21 (2):115~119
    [57] 李述训,程国栋编.冻融土中的水热输运问题.兰州:兰州大学出版社1995
    [58] Iwata S. Driving force for water migration in frozen clayed soil.Soil science and Plant Nutrition. 1990,26: 215~227
    [59] 吴青柏,米海珍.青藏公路多年冻土路段冻土过程的变化和控制建议.水文地质工程地质2000, 2:14~17
    [60] Goodrich L E. The influence of snow cover on the ground thermal regime. Canadian Ceotechnical Journal. 1982,19: 421~432
    [61] Benoit C R,Mostaghimi S. Modeling soil frost under three tillage system. Transaction of the ASCE 1985: 28: 1499~1505
    [62] 马虹,胡汝骥.积雪对冻土热状况的影响.干旱区地理.1995,18(4):23~27
    [63] 潘树荣.草皮在青藏铁路多年冻土地区路基工程中的应用.路基工程.1997,4: 10~11
    [64] 王铁行,胡长顺,王秉纲等.考虑多种因素的冻土路基温度场有限元方法.中国公路学报. 2000, 13(4):8~11
    [65] 章金钊,李祝龙,武敬民.冻土路基稳定性主要影响因素探讨.公路.2000, 2: 17~20
    [66] 王铁行.多年冻土地区路基计算原理及临界高度研究.博士学位论文.西安:长安大学.2001
    [67] 胡泽勇,钱泽雨,程国栋等.太阳辐射对青藏铁路路基表面热状况的影响.冰川冻土.2002,24(2):121~128
    [68] L.S. Kuchment, A.N. Gelfan, V.N. Demidov. A distributed model of runoff generation in the permafrost regions. Journal of Hydrology 2000(240):1~22
    [69] 过增元.对流换热的物理机制及其控制:速度场与热流场的协同.科学通报2000, 45(19): 2118~2122
    [70] 王补宜.多孔介质的对流传热传质.安交通大学学报.1994,28(5):51~58
    [71] 孔祥言,卢德唐,徐献芝.多孔介质中对流的研究.1996, 26(4):510~520
    [72] 卢军,陈启高.含盐多孔材料传热传质研究.重庆建筑大学学报.1999, 21(6):77~79
    [73] 张志军,杜建华,王补宣.多孔介质强迫对流传热中粘性耗散的影响.上海交通大学学报. 1999,33(8):979~982
    [74] Wu Qingbai, Liu Yongzhi.Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold Regions Science and Technology. 2004, 38 (2-3): 85~92
    [75] Qingbai Wu, Bin Shi, Hsai-Yang Fang. Engineering geological characteristics and processes of permafrost along the Qinghai-Xizang (Tibet) Highway. Engineering Geology. 2003, 68: 387~396
    [76] Qingbai Wu, Zhu Yuanlin, Liu Yongzhi. Evaluating model of frozen soil environment change under engineering actions. SCIENCE IN CHINA (Series D). 2002. 45 (10) : 893~902
    [77] 吴青柏,朱元林,刘永智.人类工程活动下冻土环境变化评价模型.中国科学(D辑) 2002, 32(2):141~148
    [78] 吴青柏,施斌,刘永智.青藏公路沿线多年冻土与公路相互作用研究.中国科学(D辑) 2002,32(6):514~520
    [79] 吴青柏,米海珍.青藏公路多年冻土路段冻土过程的变化和控制建议.水文地质工程地质2000, 2:14~17
    [80] 吴青柏,朱元林,施斌.工程活动下的冻土环境研究.冰川冻土.2001,23 (2):200~207
    [81] 吴青柏,刘水智,童长江.寒区冻土环境与工程环境间的相互作用.工程地质学报.2000,8 (3):281~287
    [82] 吴青柏,李新,李文君.全球气候变暖化下青藏公路沿线冻土变化响应模型的研究.冰川冻土2001,23(l):1~6
    [83] 程国栋.局地因素对多年冻土分布地影响及其对青藏铁路设计启示.中国科学(D辑)2003, 33(6):602~607
    [84] Yinsheng hang, T.Ohata, T.Kadota. Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau Journal of Hydrology 2003, 283: 41~56
    [85] Tong Changjiang, Wu Qingbai. The effect of climate warming on Qinghai-TibeiHighway China. Cold regions Science and Technology.1996, 24 (1) : 101~106
    [86] 黄小铭.论高原冻土区铁路路基的设计原则及其应用.中国铁道科学.2001,22(1):23~31
    [87] 冉理.青藏高原铁路的设计与研究.中国铁道科学.2001, 22(1):16~22
    [88] 马巍,程国栋,吴清柏.多年冻土地区主动冷却地基方法研究.冰川冻土.2002,24(5):579~587
    [89] 李宁,程国栋,谢定义.西部大开发中的岩土力学问题.岩土工程学报.2001,23(3):268~272
    [90] G.H.Johnson.Permafrost Engineering Design and Construction[M].Henter Rose Company,1981
    [91] J.F.Nixon.Geothermal aspects of ventilated pad desig[A].In:Proceeding of the 3rd Int.Conf.on Permafrost[C].Alberta,Canada,1978.841~846
    [92] John P.Zarling. Air duct systems for Stabilization over permafrost area [A].In:Proceeding of the 4thInt.Conf.onpermafrost[C].Washington,D.C.:National Academy Press,1983.1463~1468
    [93] 赖远明,张鲁新等,气候变暖条件下青藏铁路抛石路基的降温效果[J].科学通报,2003,48(3):292~297
    [94] 米隆,赖远明等通风路基温度场三维非线性分析[J].冰川冻土,2002,24(6):765~769
    [95] Yuanming Lai,Qiusheng Wang,Three-dimensional nonlinear analysis for temperature characteristic of ventilated embankment in permafrost regions[J].Cold Regions Science and Technology,2004(38),165~184
    [96] 鲍维猛,刘建坤,多年冻土区片石通风路基温度场数值模拟[J].岩土工程界,2004,7(3):52~55
    [97] 蒋武军,葛修润,双能量方程在通风路基多孔介质中的应用[J].岩石力学与工程学报,已录用待发
    [98] 蒋武军,葛修润,通风路基温度特性的有限元分析[J].岩石力学与工程学报,2004,23(24):4112~4118
    [99] Ricbards L A. Capillary conduction of liquids through porous medium. Physics, 1931, 1.318~333
    [100] Sherwood Y K Application of the theoritical diffusion equation to the drying of solids. Tran AICh E, 1931, 27:190~202
    [101] Ceaglske N H, Hougen O A. Drying granular solids. lnt Eng Chem, 1937, 29, 805~813
    [102] Gurr C G, Marshall T J, Hutton J T. Movement of water in soil due to a temperature gradient. Soil Sci, 1952,74:325~345
    [103] Philip J R. The theory of infiltration. The infiltration equation and its solution. Soil Sci, 1957, 83: 345~357
    [104] Lulkov A V. Theory of energy and mass transfer. Prentice-Hall, Englowood Cliffs, N J, 1961
    [105] Whitaker S. A theory of drying in porous medium in advance treat transfer. Academic Press,1977
    [106] Huang C L. Governing differential equations of drying in porous media. NSF Report,1978
    [107] Echigo R. Effective energy convection method between gas enthalpy and thermal radiation and application to industrial furnaces. 7th 1nt Heat Transfer Conf, 1982, 6,361~366
    [108] Wang K Y,Tien C L. Thermal insulation in flow systems:combined radiation and Convoction through a porous segment. ASME J Heat Transfer,1984,106(5):453~459
    [109] Menegus D K,Udell K S. A study of steam injection into water saturated capillary porous media. ASME HTD.1985,(46) 31~42
    [110] Cheng P.Heat transfer in geothermal systems. Advance in Heat Transfer,1978,14: 1~105
    [111] Udell K S. Heat transfer in porous media Considering phase change and capillary-the heat pipe effect. Int J Heat Mass Transfer,1985,28:485~495
    [112] Singh B S, Shaubach R M. Boiling and two-phase flow in the capillary porous structure of a heat pipe. ASME HTD,1987,91:61~69
    [113] Russo A J,Reda D C. Drying of an initially saturated fractured volcanic tuff. ASME HTD. 1987,91:55~60
    [114] Pounder J R. A new mathermatical model of displacement pressing,ASME HTD, 1987,91,13~18
    [115] Tien C L,Kuo S M. Analysis of forced convection in microstructures for electronic system cooling. Int Sym in Cooling Technology for Electromic Equipment,Hawall,1987
    [116] Yu W P,Wang B X,Shi M H. Modeling of heat and mass transfer In unsaturated wet porous with consideration of capillary hysteresis Int J Heat Mass Transfer,36(15):3671~3676
    [117] 虞维平,王补宣,施明恒.非饱和多孔介质毛细滞后的成因分析.工程热物理论文集,西安.西安交通大学出版社,1990.329~332
    [118] 虞维平,王朴宜,施明恒等.多孔介质非饱和渗流的阀梯度理论.工程热物理学报,1992,13(1),74~76
    [119] Lei S Y,Bao S J,Wang B X. A model for heat and mass transfer in unsaturated wet media with infiltration. Transport Phenomena Science and Technology, ed. by Wang B X, Higher Education Press, 1992. 639~644
    [120] 王补宣,虞维平.热线法同时测定含湿多孔介质导热系数和导温系数,工程热物理学报,1986,7(4):381~386
    [121] 王补宣,刘涛.发热固体大颗粒间绕流的流体动力及传热的研究. 工程热物理学报,1991,12(2):169~174
    [122] 饶燕飞,王补宣.矩形空间充填多孔介质中内热源引起的自然对流.工程热物理论文集,西安:西安交通大学出版社,1990.263~266
    [123] (奥)A.E.薛定谔.多孔介质中的渗流物理.北京:科学出版社,1982.1~5
    [124] 林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995.9~11
    [125] 杜建华,王补宣.带内热源多孔介质中的受迫对流换热.工程热物理学报,1999,20(1):69~73
    [126] 李友荣,曾丹苓,吴双应.多孔介质对流干燥外部传热传质的非平衡热力学理论.工程热物理学报,2001,22(1):5~8
    [127] Pei-Xue Jiang,Ze-Pei Ren,and Bu-Xuan Wang.Numerical Simulation of Forced Convection Heat Transfer in Porous Plate Channels Using Thermal Equilibrium and Nonthermal Equilibrium Models.Numerical Heat Transfer,Part A,35:99-113,1999
    [128] 姜培学,李勐,司广树.空气在多孔介质中对流换热的数值模拟.工程热物理学报,2001,22(5):609~611
    [129] 姜培学,司广树等.粘性耗散及变物性对多孔介质中对流换热的影响研究.工程热物理学报,2000,21(5):590~593
    [130] 苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版社,1997.275~278
    [131] C.BONACINA and G.COMINI.Numerical Solution of Phase-change Problems,Int.j.Heat Mass Transfer.Vol.16,pp.1825-1832
    [132] Ansys Help System
    [133] 刘亦珩译.粘性流体理论.上海科学技术出版社.1962.8~16
    [134] Lai Yuanming.Three-dimensional Nonlinear Analysis for Temperature Characture Characteristic of Ventilated Embankment in Permafrost Regions,Cold regions science and technology 38 (2004) 165-184.
    [135] Goreing D J , Kumar P.Convective heat transfer in railway embankment ballast[A].Thimus.Ground Freezing 2000[C].Rotterdam:Balkeman,2000.31~36
    [136] Goreing D J,Instance A,Knudsen S.Winter-time convection in open grad embankments[J].Cold Regions Science and Technology,1966,24:57~74
    [137] Izadpanah M R , Muler-Steinhagen H , Jamialahmadi M.Experimential and theoretical studies of convection heat transfer in a cylindrical porous medium[J].Int.J.Heat and Fluid Flow,1998,19:629~635
    [138] Kane D L,Hinkel K M,Goreing D J,et al.Non-conductive heat transfer associated with frozen soil[J].Global and Planetary Change,2001,29:275~292
    [139] Xu Xiaozu,Sun Binxiang,LI Dongqing,ea al.Variation of temperature in ballasts under periodic fluctuation of boundary temperature[J].Chinese Journal of Geotechnical Engineering,2003,25(1):91~95.
    [140] YU Wenbing,Lai Yuanming,Niu Fujun,et al.Temperature field feature in the laboratory experiment of the ventilated railway embankment in permafrost regions[J].journal of Glaciology and Geocryology,2002,24(5):601~607.
    [141] Feng Wenjie,Ma Wei,et al.Application of riprapslope protection to roadway engineering in permafrost regions[J].Journal of Glaciology and Geocryology,2003,25(6):632~637
    [142] Yu Wenbing,Lai Yuanming,Zhang Xuefu,et al.Experimental study on the cooling effect of block of block stone and crushed stone[J].Journal of Glaciology and Geocryology,2003,25(6):638~643
    [143] 徐学祖,孙斌祥,赖远明等.青藏铁路片石路基长期使用效果分析.冰川冻土.2004:26(1)101~105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700