包层泵浦掺Tm~(3+)光纤激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用包层泵浦技术,加上大功率多模半导体激光器工艺的快速发展与完善,光纤激光器在常温下获得了极高的输出功率。热问题是影响掺Tm~(3+)晶体激光器阈值、效率和输出功率的主要因素,而掺Tm~(3+)硅基光纤激光器的掺Tm~(3+)光纤不需要复杂的主动冷却设备,在常温下即可获得高效率的大功率激光输出。本论文从理论和实验两个方面对掺Tm~(3+)硅基双包层光纤激光
     器进行了研究工作。
     讨论了Tm~(3+)掺在四种常用激光晶体里的吸收光谱、荧光发射谱和Tm~(3+)掺在ZBLAN、silica光纤基质中的吸收光谱、荧光发射谱,Tm~(3+)在两种光纤基质中的吸收光谱、荧光发射谱要明显宽于Tm~(3+)在四种晶体里的光谱。概述了强泵浦光纤激光器的输出功率和阈值的解析表达式,分析了掺稀土离子双包层光纤吸收泵浦光有效吸收系数的理论模型和计算有效吸收系数的简化表达式。从Tm~(3+)的稳态速率方程出发,结合谐振腔结构特点,在输出793nm的LD激光器作为泵浦源的情况下,给出了双包层光纤激光器的振荡阈值特性、激光输出特性和激光器谐振腔结构参数的关系。从理论上分析了3H6,3H4→3F4,3F4交叉弛豫过程降低掺Tm~(3+)硅基光纤激光器的阈值、提高激光器斜率效率的机理。3H6,3H4→3F4,3F4交叉弛豫过程可以使激光器的量子效率达到2,分析了掺杂浓度与加强掺Tm~(3+)硅基光纤激光器交叉弛豫过程的关系、掺杂浓度对光纤长度的影响。
     详细介绍了LD单端泵浦掺Tm~(3+)硅基双包层光纤激光器的实验过程和实验结果。研究了光纤长度、腔型结构和光纤温度对激光器阈值、斜率效率以及输出激光光谱的影响。在实验上对比了单程泵浦和双程泵浦掺Tm~(3+)双包层LMA光纤激光器的阈值、斜率效率的变化,用LD输出的807.5nm激光作为泵浦源泵浦掺Tm~(3+)双包层LMA光纤获得了高效的连续波激光输出。
     从速率方程出发,模拟了在1.06μm脉冲激光作为泵浦源时掺Tm~(3+)硅基光纤激光器增益开关弛豫振荡输出近2μm脉冲激光的波形振荡过程,模型中加入了Tm~(3+)在1.06μm作为泵浦源时强的激发态吸收效应,而且Tm~(3+)间存在的四个交叉弛豫效应也包含在速率方程中。计算并分析了Tm~(3+)掺杂浓度对激光器阈值的影响。
Using cladding-pumped method and high-power multimode laser diode as pumping sources, the fiber laser maximum output power has been increased greatly at room-temperature. The lasing threshold, slope efficiency and output scaling power of Tm~(3+)-doped crystals host is sensitive to the host material temperature. The Tm~(3+)-doped silica fiber laser can operate high efficiently with only passive cooling. The dissertation focuses on the Tm~(3+)-doped double clad fiber laser.
     The absorption and fluorescent spectrums of Tm~(3+)-doped four kind of popular laser crystals, ZBLAN fiber and silica fiber are reviewed and compared in the chapter 2. The absorption and fluorescent spectrums of Tm~(3+)-doped in the fiber host are wider than those of crystals host. Based on a rate equation model, the lasing threshold and output power approximate analytical and quasi-analytical expression are present. The theory of mode analysis to calculate the absorption efficiency for the double-clad optical fibers is present, and the simplified expression of calculating the effective absorption coefficient is given. From the Tm~(3+) rates equations, pumped at CW 793nm laser, the Tm~(3+)-doped silica fiber laser threshold characteristics, laser output characteristics, that correlated to parameters of cavity are discussed. The mechanics of 3H6,3H4→3F4,3F4 cross relaxation process due to low the lasing threshold and increase the slope efficiency. The 3H6,3H4→3F4,3F4 cross relaxation process can make the fiber laser quantum efficiency get to 2. The theoretical analysis results show that the heavily Tm~(3+)-doped silica fiber can boost the cross relaxation probability. At the same time, relevant energy levels parameters are variable.
     The experimental courses and results of Tm~(3+)-doped silica fiber laser are described in details using the single end-pumping method. It is also investigated that the fiber length, cavity structure and fiber temperature influence on the lasing threshold, slope efficiency and laser spectrum. The single-pass pump and double-pass pump results, including the lasing threshold and slope efficiency, are compared using the LMA Tm~(3+)-doped silica fiber. Pumped the LMA Tm~(3+)-doped silica fiber at 807.5nm output from LD,the fiber lasers acquire high efficient
引文
1 H. Po, J. Cao, B. M. Laliberte. High Power Neodymiumdoped Single Transverse Mode Fiber Laser. Electron. Lett. 1993, 29:1500~1501
    2 L. Zenteno. High-power Double-clad Fiber Lasers. J. Lightwave Technol., 1993, 11: 1435~1446
    3 H. M. Pask, R. J. Carman, D. C. Hanna, and A. C. Tropper. Ytterbium-doped Silica Fiber Lasers: Versatile Sources for the 1-1.2μm Region. IEEE J. Select. Topics Quantum Electron., 1995, 1: 2~13
    4 V. P. Gapontsev, N. S. Platonov, and O. Shkurihin. 400 W low-noise single-mode CW Ytterbium Fiber Laser with an Integrate. Proc.Conf. Lasers and Electro-Optics (CLEO), 2003, 88:2137~2139
    5 J. Limpert, A. Liem, and H. Zellmer. 500 W Continuous-wave Fiber Laser with excellent Beam Quality. Electron. Lett., 2003, 39:645~647
    6 M. K. Davis, M. J. F. Digonnet, and R. H. Pantell. Thermal Effects in Doped Fibers. J. Lightwave Technol., 1998, 16:1013~1023
    7 D. C. Brown, H. J. Hoffman. Thermal,Stress, and Thermal-optic Effects in high average Power Double-clad Silica Fiber Lasers. IEEE J. Quantumm Electron, 2001, 37: 207-217
    8 Y. Wang, C. Q. Xu, and H. Po. Thermal Effects in Kilowatt Fiber Lasers. IEEE Photon. Technol. Lett., 2004, 16(1):63~65
    9 D. Kouznetsov, J. V. Moloney. Efficiency of Pump Absorption in double-clad Fiber Amplifiers. Broken circular symmetry. J. Opt. Soc. Am. B, 2002, 19(6): 1259~1263
    10 X. M. Xiong, F. R. Hu, and S. Wang. Design of Pumping System for High Power Fiber Lasers. Proc. Of SPIE, 2006, 6019:27-1~27-4
    11 Ken-ichi Ueda. High Power Fiber lasers. Pacific Rim Conference on Lasers and Electro-Optics, 2001, 2:II-486~ II-487
    12 D. M. Cormack, S. Waarts, R. Sanders, and S. Bicknese. 110W Fibre Laser. Electron. Lett., 1999, 35(14): 1158~1160
    13 Fotiadi, A. A. Megret, Patrice, Blondel, Michel, Grukh, and Dmitrii. Self-Q-switched Fiber Lasers with Rayleigh/SBS Ring Mirrors. Proceedings of SPIE,2002, 5137:119~130
    14 Y. S. Inoue, Y. Maruyama, S. Murakami, Y. H.Yaguchi. Saturable Absorbers Incorporating Carbon Nanotubes Directly Synthesized onto Substrates and Fibers and their Application to Mode-locked Fiber Lasers. Opt. Lett., 2004, 29(14):1581~1583
    15 J. l. Yang, Z. H. Guo. Multi-wavelength Tunable and Mode-locked Fiber Ring Laser Employing a Sampled Fiber Bragg Grating. Lasers in Engineering, 2004 14(1):13~22
    16 Kane, T. J. Smoliar, L. A. Adams, F. Arbore, M. A. Balsley, R. David. >10 Watt Fiber Laser Source with 0.5-5 MHz Repetition Rate and 0.5-1.5 Nanosecond Pulse Width. Proceedings of SPIE, 2004, 5662:496~500
    17 Philippov, V. Sahu, J. K. Codemard, C. Clarkson, W. A. Jang, J. Nilsson. All-Fiber 1.15 mJ Pulsed Eye-safe optical Source. Proceedings of SPIE, 2004, 5335:1~7
    18 S. Maryashin, A. Unt and V.P.Gapontsev. 10-mJ Pulse Energy and 200W Average Power Yb-doped Fiber Laser. Proc. of SPIE, 2006, 6102:0O-1~0O-5
    19 Y. M. Fan, F. Y. Lu. Narrow-linewidth Widely Tunable Hybrid Q-switched Double-clad Fiber Laser. Opt. Lett., 2003, 28(7):537~539
    20 Y. X. Fan, F. Y. Lu, and S. L. Hu. 105-kW Peak-power Double-clad Fiber Laser. IEEE Photon. Technol. Lett., 2003, 15(5):652~654
    21 岳丛建,闫红.包层泵浦受激布里渊散射调 Q 光纤激光器. 太原师范学院学报(自然科学版),2005, 14(3):75~76
    22 D.C.Hanna, I.M.Jauncey, and R.M.Percival. Continuous-wave Oscillation of a Monomode Thulium-doped Fiber Laser. Electron. Lett., 1988, 24(19):1222~1223
    23 D. C. Hanna, M. J. Mccarthy, I. R. Perry. Efficient High-power Continuous-wave Operation of Monomode Tm-doped Fiber Laser at 2μm Pumped by Nd:YAG at 1.064μm. Electron. Lett., 1989, 25(20): 1365~1366
    24 C. H. Liu, G. Almantas, K. Victor, S. Bryce, M. Upendra, T. Kanishka, M. David. High-power Single-polarization and Single-transverse-mode Fiber Laser with an All-fiber Cavity and Fiber-grating Stabilized Spectrum. Opt. Lett., 2006, 31(1):17~19
    25 A. Shirakawa, K. Matsuo, and K. Ueda. Fiber Laser Coherent Array for Power Scaling, Bandwidth Narrowing, and Coherent Beam Direction Control. Proc ofSPIE, 2005, 5709: 165~174
    26 S. P. Chen, Y. G. Li, and K. C. Lu. Branch Arm Filtered Coherent Combining of Tunable Fiber Laser. Opt. Express, 2005, 13(20): 7878~7883
    27 K. Kathy. Fiber Lasers Find Opportunities in Medical Applications. Laser Focus World, 2005, 41(9):76~80
    28 E. C. Honea, R. J. Beach, S. B. Sutton, and J. A. Speth. 115-W Tm:YAG Diode-Pumped Solid-State Laser. IEEE J. Quantum. Electron., 1997, 33(9):1592~1600
    29 W. J. Xie, K. S. Lai, Y. L. Li, R. F. Wu, L. Ernest, and H. F. Wong. Thermal Investigation of a 120 W Tm:YAG laser. Proceedings of SPIE, 2001, 4595:1~8
    30 I. F. Elder, M. J. Payne. Lasing in Diode-pumped Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Opt. Commun., 1998, 145:329~339
    31 I. F. Elder, M. J. Payne. YAP Versus YAG as a Diode-pumped Host for Thulium. Opt. Commun., 1998, 148: 265~269
    32 P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis. High-Power/High-Brightness Diode-Pumped 1.9μmThulium and Resonantly Pumped 2.1μm Holmium Lasers. IEEE J. Selected Top. In Quantum Electron., 2000, 6(4): 629~634
    33 M. Petros, J. Yu, U. N. Singh. A 300-mJ Diode Pumped 1.9μm Tm:YLF laser. Proceedings of SPIE, 2002, 4484:17~24
    34 C. P. Wyss, W. Lüthy, H. P. Weber, and V. I. Vlasov. Emission Properties of a Tm3+:GdVO4 Microchip Laser at 1.9μm. Appl. Phys. B, 1998, 67:545~548
    35 C. P. Wyss, W. Luthy, and H. P. Weber. Performance of a Tm3+:GdVO4 Microchip Laser at 1.9μm. Opt. Commun., 1998, 153:63~67
    36 C. P. Wyss, W. Luthy, H. P. Weber. Diode-pumped 1.4-W Tm3+:GdVO4 Microchip Laser at 1.9 μm. J. Quantum. Electron., 1998, 34(12): 2380~2382
    37 S. Hendow, S. Falvey, and B. Nelson. Overview of Qualification Protocol of Fiber Lasers for Space Applications. Proc. of SPIE, 2006, 6100:1Y-1~1Y-13
    38 Galvanauskas, Almantas. High Power Fiber Lasers. Opt. and Photon. News, 2004, 15(7): 42~47
    39 L. Anping, M. Roy, V. T. Henderson. Spectral Beam Combining of High Power Fiber Lasers. Proceedings of SPIE, 2004, 5335:81~88
    40 S. D. Jackson, T. A. King. High-power Diode-cladding-pumped Tm-doped Silica Fiber Laser. Opt. Lett., 1998, 23(18):1462~1464
    41 R. A. Hayward, W. A. Clarkson, and P. W. Turner. Efficient Cladding-pumped Tm-doped Silica Fiber Laser with High Power Singlemode Output at 2μm. Electron. Lett., 2000, 36(8):711~712
    42 W. A. Clarkson, N. P. Barnes, and P. W. Turner. High-power Cladding-pumped Tm-doped Silica Fiber Laser with Wavelength Tuning from 1860 to 2090nm. Opt. Lett., 2002, 27(22) :1989~1991
    43 J. Q. Xu, M. D. Prabhu, and J. R. Lu. Efficient Double-clad Thulium-doped Fiber Laser with a Ring Cavity. Appl. Opt., 2001, 40(12): 1983~1988
    44 G. Frith, D. G. Lancaster, and S. D. Jackson. High Power 2μm Tm3+-Doped Fibre Lasers. Proc. of SPIE, 2004, 5620:36~45
    45 刘东峰, 杜戈果, 王贤华, 陈国夫. 掺 Tm3+ 石英单模光纤产生 1. 871 μm 激光的初步研究. 中国激光, 1998, l(11): 973~975
    46 董淑福, 陈国夫, 王贤华, 于连君, 赵卫, 王屹山. Tm3 + :Ho3 + 共掺石英光纤激光器的实验研究. 光子学报, 2004, 33(2): 129~132
    47 L. E. Nelson, E. P. Ippen, and H. A. Haus. Broadly Tunable Sub-500 fs Pulses from an Additive-pulse Mode-locked Thulium-doped Fiber Ring Laser. Appl. Phy. Lett., 1995, 67(1):19~21
    48 R. C. Sharp, D. E. Spock, and N. Pan. 190-fs Passively Mode-lock Thulium Fiber Laser with a Low Threshold. Opt. Lett., 1996, 21(12):881
    49 B. C. Dickinson, S. D. Jackson, and T. A. King. 10mJ Total Output from a Gain-switched Tm-doped Fiber Laser. Opt. Commun., 2000, 182:199~203
    50 P. S. Golding, S. D. Jackson, and P. K. Tsai. Efficient High Power Operation of a Tm-doped Silica Fiber Laser Pumped at 1.319μm. Opt. Commun., 2000, 175(1):179~183
    51 A. F. El-Sherif, T. A. King. High-energy, High-brightness Q-switched Tm3+-doped Fiber Laser Using an Electro-optic Modulator. Opt. Commun., 2003, 218 (4-6):337~344
    52 A. F. El-Sherif, T. A. King. High-peak-power Operation of a Q-switched Tm3+-doped Silica Fiber Laser Operating near 2μm. Opt. Lett., 2003, 28(1):22~24
    53 A. F. El-Sherif, T. A. King. Analysis and Optimization of Q-Switched Operation of a Tm3+-Doped Silica Fiber Laser Operating at 2μm. IEEE J. Quantum. Electron., 2003, 39(6):759~765
    54 F. Z. Qamar, T. A. King. Short-pulse, High-peak-power Q-switched Tm-silicaFibre Laser at 1.9 μm. Optics and Laser Technology, 2006, 38(1):1~7
    55 F. Z. Qamar, T. A. King. Passive Q-switching of the Tm-silica Fibre Laser near 2 μm by a Cr2+:ZnSe Saturable Absorber Crystal, Opt. Commun., 2005, 248(4-6):501~508
    56 S. D.Jackson, T. A. King. Efficient Gain-Switched Operation of a Tm-Doped Silica Fiber Laser. IEEE J. Quantum. Electron., 1998, 34(5):779~789
    57 C. Ghishler, W. Luthy, J. Morel, A. Woodtli, R. Dandliker, V. Neuman, and H. Berthou. A Tm3+ sensitized Ho3+ Silica Fiber at 2.04μm Pumped at 809nm. Opt. Commun., 1994, 109(2-3):279~285
    58 O. Kyunghwan, T. F. Morse, A. Kilian, and P. M. Weber. Continuous-wave Oscillation of Thulium-sensitized Holmium-doped Silica Fiber Laser. Opt. Lett, 1994, 19(4):278~280
    59 C. Ghisler, W. Luthy, and H. P.Weber. Tuning of a Tm3+:Ho3+:Silica Fiber Laser at 2μm. IEEE J. Quantum. Electron., 1995, 31(11):1877~1879
    60 C. Ghisler, W. Luthy, and H. P. Weber. Cladding-pumped of a Tm3+:Ho3+ Silica Fiber Laser. Opt. Commun., 1996, 132(5-6):474~478
    61 S. D. Jackson, S. Mossman. Efficiency Dependence on the Tm3+ and Al3+ Concentrations for Tm3+-doped Silica Double-clad Fiber Lasers. Appl. Opt., 2003, 42(15):2702~2707
    62 S. D.Jackson. Power Scaling Method for 2-μm Diode-cladding-pumped Tm3+-doped Silica Fiber Lasers that Uses Yb3+ Codoping. Opt. Lett., 2003, 28(22):2192~2194
    63 Y. Jeong, P. Dupriez, J. K. Sahu, and S. D. Jackson. Thulium-ytterbium Co-doped Fiber Laser with 75 W of Output Power at 2 μm. Pro. of SPIE, 2004, 5620:28~35
    64 G. P. Frith, D. G. Lancaster. Power Scalable and Efficient 790nm Pumped Tm3+-Doped Fibre Lasers. Proc. of SPIE, 2006, 6102:08-1~08-10
    65 S. D. Jackson, S. Mossman. High-power Diode-cladding-pumped Tm3+, Ho3+-doped Silica Fiber Laser. Appl. Phys. B, 2003, 77:489~491
    66 S. D. Jackson. 8.8W Diode-cladding-pumped Tm3+,Ho3+-doped Fluoride Fiber Laser. Electron. Lett., 2001, 37(13):821~822
    67 F. J. McAleavey, J. O. Gorman, J. F. Donegan, and B. D. MacCraith. Narrow Linewidth, Tunable Tm3+-Doped Fluoride Fiber Laser for Optical-BasedHydrocarbon Gas Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(4):1103~1110
    68 R. M. Percival, D. Szebesta, and S. T. Davey. Highly Efficient CW Cascade Operation of 1.47 and 1.82μm Transitions in Tm-doped Fluoride Fiber Laser. Electron. Lett., 1992, 28(20):1866~1868
    69 T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima. 1.47μm Band Tm3+ Doped Fluoride Fiber Amplifier Using a 1.064μm Upconversion Pumping Scheme. Electron. Lett., 1993, 29(1):111~112
    70 Y. Miyajima, T. Komukai, and T. Sugawa. 1-W CW Tm-doped Fluoride Fiber Laser at 1.47μm. Electron. Lett., 1993, 29(8):660~661
    71 R. M. Percival, D. Szebesta, and J. R. Williams. Highly Efficient 1.064μm Upconversion Pumped 1.47μm Thulium Doped Fluoride Fiber Laser. Electron. Lett., 1994, 30(20):1684~1685
    72 R. M. El-Agmy, W. Luthy, T. Graf, and H. P. Weber. 1.47μm Tm3+:ZBLAN Fiber Laser Pumped at 1.064μm. Electron. Lett., 2003, 39(6):507~508
    73 S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer. CW Room-temperature Blue Upconversion Fiber Laser. Electron. Lett., 1992, 28(13):1243~1244
    74 S. Sanders, R. G. Waarts, D. G.Mehuys, and D. F. Welch. Laser Diode Pumped 106mW Blue Upconversion Fiber Laser. Appl. Phys. Lett., 1995, 67(13):1815~1817
    75 I. J. Booth, C. J. Mackechnie, and B. F. Ventrudo. Operation of Diode Laser Pumped Tm3+ ZBLAN Upconversion Fiber Laser at 482nm. IEEE J. Quantum. Electron., 1996, 32(1):118~123
    76 E. B. Mejia, A. N. Starodumov, and Y. O. Barmenkov. Blue and Infrared Up-cinversion in Tm3+-doped Fluorozirconate Fiber Pumped at 1.06, 1.117, and 1.18μm. Appl. Phy. Lett., 1999, 74(11):1540~1542
    77 G. Qin, S. Huang, Y. Feng, A. Shirakawa, M. Musha, and K. Ueda. Power Scaling of Tm3+ Doped ZBLAN Blue Upconversion Fiber Lasers: Modeling and Experiments. Appl. Phys. B, 2005, 82(1):65~70
    78 D. Y. Shen,A. AbdolvandL, and J. Cooper. Efficient Ho:YAG Laser Pumped by a Cladding Pumped Tunable Tm: Silica-fibre Laser. Applied Physics B, 2004, 79(5):559~561
    79 R. J. Hutcheon, B. J. Perrett, and P. D. Mason. Modelling of Thermal Effects within a 2 μm Pumped ZGP Optical Parametric Oscillator Operating in the Mid-infrared. Proc. of SPIE, 2004, 5620:264~267
    80 E. Lippert, G. Rustad, S. Nicolas, and G. Arisholm. Fibre Laser Pumped Mid-infrared Source. Proc. of SPIE, 2004, 5620:56~62
    81 O. Humbach, H. Fabian, and U. Grzesik. Analysis of OH Absorption Bands in Synthetic Silica. J. of Non-Crystalline Solids, 1996, 203:19~26
    82 N. M. Fried, K. E. Murray. New Technologies in Endourology - High-power Thulium Fiber Laser Ablation of Urinary Tissues at 1.94 mum. Journal of Endourology, 2005, 19(1):25~31
    83 Z. Mierczyk, S. Kaczmarek, K. Kopczyriski. Analysis of Spectral Characteristics of the New Active Media for the Solid State Lasers Pumped with Laser Diodes. Proc. of SPIE, 1995, 2202:171~177
    84 R. C. Stoneman, L. Esterowitz. Efficient, Broadly Tunable, Laser-pumped Tm:YAG and Tm:YSGG cw lasers. Opt. Lett. 1990, 15 (8):486~488
    85 V. Sudesh, E. M. Goldys. Spectroscopic Properties of Thulium-doped Crystalline Materials Including a Novel Host, La2Be2O5: a Comparative Study. J. Opt. Soc. Am. B, 2000, 17(6):1068~1076
    86 M. Higuchia, K. Kodairaa, Y. Uratab, S. Wadac, and H. Machida. Float Zone Growth and Spectrosc Opic Characterization of Tm:GdVO4 Single Crystals. Journal of Crystal Growth, 2004, 265:487~493
    87 M. J. F. Digonnet, Rear-Earth-Doped Fiber Lasers and Amplifiers. Second Edition(2001), Revised and Expanded, New York Basel.
    88 S. D. Jackson, T. A. King. Theoretical Modeling of Tm-doped Silica Fiber Lasers. Journal of Lightwave Technology, 1999, 17(5):948~956
    89 B.M. Walsh, N.P. Barnes. Comparison of Tm: ZBLAN and Tm: silica Fibre Lasers; Spectroscopy and Tunable Pulsed Laser Operation around 1.9μm. Appl. Phys. B, 2004, 78(3-4):325-333
    90 I. Kelson, A. Hardy. Strongly Pumped Fiber Lasers. IEEE J. Quantum. Electron., 1998, 34(9):1570~1577
    91 I. Kelson, A. Hardy. Optimization of Strongly Pumped Fiber Lasers. Journal of lightwave technology, 1999, 17(5):891~897
    92 H. Zi, H. Zhang. Calculation of the Absorption Efficiency of Double-clad Fiberby Using the Model Analysis Method. Microwave and Optical Technology Letters, 2003, 37(2):111~113
    93 L. Philippe, V. Doya, R. Philippe, P. Dominique, M. Fabrice, and L. Olivier. Experimental Study of Pump Power Absorption along Rare-earth-doped Double Clad Optical Fibers. Opt. Commun., 2003, 218:249~254
    94 D. Kouznetsov, J. V. Moloney. Efficiency of Pump Absorption in Double-clad Fiber Amplifiers. J. Opt. Soc. Am. B, 2002, 19(6):1259~1263
    95 A. Bertoni, G. C. Reali. A model for the Optimization of Double-clad Fiber Laser Operation. Appl. Phys. B, 1998, 66:547-554
    96 S. D. Jackson. Cross Relaxation and Energy Transfer Upconversion Process Relevant to the Function of 2μm Tm3+-doped Silica Fibre Lasers. Opt. Commun., 2004, 230:197~203
    97 X. l. Zou, H. Toratani. Spectroscopic Properties and Energy Transfers in Tm3+ singly-and Tm3+/Ho3+ Doubly-doped Glasses. Journal of Non-Crystalline Solids, 1996, 195:113~124
    98 M. R. Ozalp, G. Ozen. Alphan Sennaroglu, Stimulated and Spontaneous Emission Probabilities of Tm3+ in TeO2-CdCl2 Glass: the Role of the Local Structure. Opt. Commun., 2003, 217:281~289
    99 Y. Jeong, J. K. Sahu, and S. Baek. Cladding-pumped Ytterbium-doped Large-core Fiber Laser with 610W of Output Power. Opt. Commun., 2004, 234(1-6):315~319
    100 Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson. Ytterbium-doped Large-core Fiber Laser with 1.36 kW Continuous-wave Output Power. Opt. Express, 2004, 12(25):6088~6092
    101 Y. Jeong, J. Nilsson, J. K. Sahu, and D. B. Soh. Single-mode Plane-polarized Ytterbium-doped Large-core Fiber Laser with 633-W Continuous-wave Output Power. Opt. Lett., 2005, 30(9):955~957
    102 R. Paschotta, P. R. Barber, A. C. Tropper, and D. C. Hanna. Characterization and Modeling of Thulium:ZBLAN Blue Upconversion Fiber Lasers. J. Opt. Soc. Amer. B, 1997, 14:1213~1218
    103 J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson. Time Resolved and Site Selected Spectroscopy of Thulium Doped into Germano- and Alumino-silicate Optical Fibers and Performs. J. Lumin., 1991,50:297~308
    104 B. Peng, T. Izumitani. Optical Properties, Fluorescence Mechanisms and Energy Transfer in Tm3+;Ho3+ ; and Tm3+ -Ho3+ Doped near Infrared Laser Glasses, Sensitized by Yb3+. Opt. Mat., 1995, 4:797~810
    105 R. Reisfeld, M. Eyal. Possible Ways of Relaxations for Excited States of Rare Earth Ions in Amorphous Media. J. Phys-Paris, 1985, 46(C7):349~355
    106 J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz. Spectra and Energy Levels of Tm3+ :Y3Al5O12. Phys. Rev. B, 1989, 40:9464~9478
    107 S. C. Fleming. Accurate Analytic Expressions for Gain in a Pr3+:ZBLAN Fiber Amplifier Using Modified Gaussian Field Functions. IEEE J. Quantum Electron., 1994, 30:280~283
    108 A. Ankiewicz, G. D. Peng. Generalized Gaussian Approximation for Single-mode Fibers. J. Lightwave Technol., 1992, 10:22~27
    109 A. Taniguchi, T. Kuwayama, A. Shirakawa, and M. Musha. 1212nm Pumping of 2μm Tm-Ho-codoped Silica Fiber Laser. Appl. Phy. Lett., 2002, 81(20): 3723~3825
    110 D. C. Hanna, I. R. Perry, J. R. Lincoln, and J. E. Townsend. A 1-watt Thulium Doped CW Fiber Laser Operating at 2μm. Opt. Commun., 1990, 80:52~56
    111 Y. H. Tsang, Daniel J. Coleman, and T. A. King. High power 1.9μm Tm3+-silica Fibre Laser Pumped at 1.09μm by a Yb3+-silica Fibre Laser. Opt. Commun., 2004, 231:357~364
    112 M. L. Flohic, P. L. Francois, M. J. Allain, and F. Sanchez. Dynamics of the Transient of Emission in Nd3+-doped Fiber Laser. IEEE J. Quantum Electron., 1991, 27:1910~1921
    113 S. D. Jackson, T. A. King. Dynamics of the Output of Heavily Tm-doped Double-clad Silica Fibre Lasers. J. Opt. Soc. Am. B, 16:2178~2188
    114 M. M. Pankratov, D. F. Perrault, S. M. Shapshay. Comparative Laser-tissue Interaction Effects at 1.96 and 2.01 μm of Cr; Tm:YAG Laser. Proc. of SPIE, 1646:30~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700