干旱半干旱地区云系特征卫星遥感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云作为地气系统水循环与辐射收支平衡的重要调节因子,能影响全球气候。与此同时,气候变化的反馈作用又直接导致云系特征的改变,这种反馈效应在干旱半干旱地区尤为突出。研究表明,云对全球能量平衡及水循环系统的影响不仅取决于其微物理特性,同时与云宏观特性的变化密切相关。而作为云系宏观特性重要的组成部分,云类型及云的垂直结构一直以来都是云气候学研究的热点。不同的云类型间宏观及微观特性差异显著,能够对地-气系统产生明显甚至完全相反的辐射效应。而云的垂直结构则能通过影响地表及大气层顶的辐射效应及大气加热率廓线进而影响到大气环流与气候系统。因此,要深入了解云在地气系统中所扮演的角色,进一步改进我们对未来气候变化的认识,就必须对云的这些特性进行有效的观测、反演和研究。基于这些考虑,本文对云的宏观特性,尤其是云类型分布及云的垂直结构特征进行了全球及区域性的研究,主要结论如下:
     本文首次利用2012年发布的最新卫星遥感云分类资料分析了全球四年不同云类型的变化特征。分析发现,全球平均总云分数为74.9%。层云/层积云和卷云是分布最为广泛的主导云类型,其中卷云主要分布在中低纬度带及北半球干旱半干旱地区。绝大部分洋面地区尤其中低纬附近的东部洋面地区以层云/层积云为主导;云系海陆差异最大地区位于南北纬30。附近,赤道和低纬地区中高云陆地多于洋面,低云洋面多于陆地。各种云类型昼夜差异最大的是卷云和层云/层积云。卷云赤道地区夜间云分数较白天高15%左右;层云/层积云的昼夜差异具有显著的海陆区别。中低纬地区深对流云存在显著的年际变化特征,卷云变化特征与之相似,但变化区域更为广泛。
     全球干旱半干旱地区主导云类型以卷云分布最为广泛,其次是高层云与高积云。其中北半球以卷云和高层云为主,南半球以卷云和高积云为主。干旱半干旱地区云分数较全球平均状态少5%-30%。差异最显著的是中低纬度Hadley环流下沉支区域,差异最小区域位于北半球高纬度地区。值得注意的是夏季东亚干旱半干旱地区总云分数显著偏多,其中卷云、高层云等均高于同纬度陆地平均值。对于各个地区云系季节变化特性方面:卷云、高积云两者的季节变化趋势较为一致,而高层云、层云/层积云变化趋势较一致。
     本文还对我国西北典型区域不同云类型的垂直分布、液态云水含量及有效粒子半径的特征做了相关研究。西北三个典型区域的云分数中,天山地区最大为73.4%,祁连山和黄土高原较为相似,分别为65.2%,62.8%。层状云冬春季较多,积状云夏季占主导地位,且积状云季节变化较层状云显著。祁连山和天山地区云层发展的相对高度较低且一般集中于1.5-6km之间,黄土高原地区云层能延伸到9-12km。云液态水含量随相对高度增加有显著的递减趋势,峰值一般位于近地层,最大值为夏季低层的天山和祁连山地区,平均值达0.47mg/m3。另外,本文从观测上验证了液态降水云和非降水云有效粒子半径在垂直分布上的差异:降水云有效粒子半径在低层随高度具有显著的递减趋势;非降水云则存在较弱的上升趋势。
     总之,本文的研究揭示了各地区云系的基本特征与一般规律并讨论了我国西北典型干干半干旱地区云系的垂直结构及云水含量的变化特征,这些特征将会对我国干旱半干旱地区相关研究提供有益参考。
Clouds play in modulating the radiative energy flow within the Earth-atmosphere system and are strongly linked to the hydrological cycle. Cloud feedbacks in the Cli-mate System in turn influence the cloud characteristics. It's pointed out that cloud can affect the energy balance of hydrological cycle. Different cloud-climate feedback mechanisms in climate models are inconsistent with each other. Cloud characteristic is one of the most uncertain factors of climate change research. Precipitation in arid and semi-arid regions depends on both the microphysical and macrophysical characteris-tics of cloud. For better understanding how cloud distribution affects the earth-atmosphere system and global climate change, powerful observation and effec-tive inversion of cloud characteristics become increasingly indispensable.
     The latest satellite data released in2012are used to analyze the variation of dif-ferent cloud types. It is found that the global total cloud fractions are74.9%. Global dominant cloud types are analyzed in each region, of which cirrus and stratocumulus are the most widely distributed ones. Cirrus is mainly located in equatorial regions, low latitudes and the arid and semi-arid regions of the Northern Hemisphere. While stratocumulus covers most ocean areas especially the eastern part of the ocean in low latitudes. For latitudinal distribution, the cloud fraction of cirrus, altostratus and alto-cumulus over the land is higher than that over the ocean in equatorial regions and low latitudes; the cloud fraction of stratocumulus and cumulus shows the opposite result. What's more, cirrus and stratocumulus have significant diurnal variation. Significant interannual variations of cirrus and deep convective cloud are found in low-latitude regions.
     In arid and semi-arid areas, the dominant cloud types include cirrus, altostratus and altocumulus. Meanwhile, dominant cloud types differ in each region. Cloud frac-tion in arid and semi-arid areas is less than the global one by5%-30%. The most significant difference appears in the low-latitude where Hadley circulation sinks. The seasonal variations of altocumulus and cirrus are consistent with each other, so it is the same with altostratus and stratocumulus. But both trends differ slightly from re-gion to region.
     In addition, the combined CLOUDSAT and CALIPSO data are employed to an-alyze macro and micro vertical characteristics of different cloud types over North-western China from2007to2008. The Northwestern China has been divided into three typical regions in this study. The results show that there are more total cloud fractions in the Qilian and the Tianshan than the Loess Plateau; over these regions cumuliform clouds are more in summer and Stratiform clouds more in winter. And the Cloud vertical probability distribution function also analyzed, the peak region appears at2-6km, and cloud liquid water content shows significant seasonal variations and a decreasing trend with altitude. The maximum value is0.47mg/m3in summer in Tianshan region, which appears near the ground. The average effective particle radius of liquid cloud is8-16μm. With altitude increasing, the effective particle radius pre-sents a significant decreasing trend for precipitation clouds, while a weak increasing trend for non-precipitation clouds.
     In a word, by analyzing the global cloud distribution and comparing the differ-ences of cloud fraction between different arid and semi-arid regions, the basic cloud statistics and characteristics come clear. Furthermore, by focusing on the vertical structure of cloud water content, some preliminary discussions about artificial rainfall in semi-arid region of Northwest China may benefit government's decision-making and related researches.
引文
[1]UN General Assembly. The United Nations Convention to Combat Desertification:a New Re-sponse to an Age-old Problem [EB/OL]. Online:United Nations Department of Public Infor-mation.1997-1-1. http://www. un. org/ecosocdev/geninfo/sustdev/desert. htm.
    [2]Bonn. Desertification:A Visual Synthesis [EB/OL]. United Nations Convention to Combat Desertification Secretariat.2011-10-20. www. unccd. int/knowledge/docs/Desertification-EN. pdf.
    [3]Huang, J., W. Zhang, J. Zuo, et al. An Overview of the Semi-arid Climate and Environment Research Observatory over the Loess Plateau [J]. Advances in Atmospheric Sciences,2008, 25(6):906-921.
    [4]BOLLE, HJ, I LANGER. Echival Field Experiment in a Desertification-threatened Area (EFEDA)[J]. Field Experiment Plan. Meteorological Institute, Free University of Berlin, Germany,1991.
    [5]Gourorbe, JP, Thierry Lebel, A Tinga, et al. Hapex-sahel:a Large-scale Study of Land-atmosphere Interactions in the Semi-arid Tropics [Z].1994:53-64.
    [6]Wilhelmus, R., Antonius Hutjes, P Kabat, Sw Running, et al. Biospheric Aspects of the Hydro-logical Cycle [J]. Journal of Hydrology,1998,212:1-21.
    [7]胡隐樵,高由禧.黑河实验(HEIFE)—对干旱地区陆面过程的一些新认识[J].气象学报,1994,52(3):285-296.
    [8]符淙斌,延晓冬,郭维栋.北方干旱化与人类适应——以地球系统科学观回答面向国家重大需求的全球变化的区域响应和适应问题[J].自然科学进展,2006,16(10):1216-1223.
    [9]符淙斌,安芷生,郭维栋.我国生存环境演变和北方干旱化趋势预测研究(Ⅰ):主要研究成果[J].地球科学进展,2005,20(11):1158-1168.
    [10]王会军.东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J].地球科学进展,2010(6):563-570.
    [11]Heim, R Richard. A Review of Twentieth-century Drought Indices Used in the United States[J]. Bull. Amer. Meteor. Soc.,2002,83(8):1149-1165.
    [12]Reynolds, F James, D Mark Stafford Smith, Eric F Lambin, et al. Global Desertification: Building a Science for Dryland Development[J]. Science,2007,316 (5826):847-851.
    [13]Heusinkveld, G Bert, Simon M. Berkowicz, Adrie F. G. Jacobs, et al. An Automated Microly-simeter to Study Dew Formation and Evaporation in Arid and Semiarid Regions[J]. J. Hydro-meteor,2006,7(4):825-832.
    [14]Christopher M van de ven, S. B. Weiss, W. G. Ernst. Plant Species Distributions Under Pre-sent Conditions and Forecasted for Warmer Climates in an Arid Mountain Range[J]. Earth In-teract.,2007,11(9):1-33.
    [15]Woli, Prem, James Jones, Keith Ingram, et al. Forecasting Drought Using the Agricultural Reference Index for Drought (arid):a Case Study[J]. Wea. Forecasting,2012:.
    [16]Julia, Cristobal, David A. Rahn, Jose A. Rutllant. Assessing the Influence of the Mjo on Strong Precipitation Events in Subtropical, Semi-arid North-central Chile (30°s)[J]. J. Climate, 2012,25(20):7003-7013.
    [17]Durand, A., Oscillations of the Lakes and the Climate in Arid Regions[J]. Mon. Wea. Rev. 1900,28(12):544-544.
    [18]Chamey, Jule, William J. Quirk, Shu-hsien Chow, et al. A Comparative Study of the Effects of Albedo Change on Drought in Semi-arid Regions[J]. J.Atmos. Sci.,1977,34(9):1366-1385.
    [19]张传国,方创琳.干旱区绿洲系统生态—生产—生活承载力相互作用的驱动机制分析[J].自然资源学报,2002(2):181-187.
    [20]李洪波.半干旱区凝结水形成机制及对植物水分特性的影响[D].内蒙古农业大学,2010.
    [21]符淙斌,安芷生.我国北方干旱化研究——面向国家需求的全球变化科学问题[J].地学前缘,2002(2):271-275.
    [22]符淙斌,安芷生,郭维栋.我国生存环境演变和北方干旱化趋势预测研究(Ⅰ):主要研究成果[J].地球科学进展,2005(11):5-15.
    [23]符淙斌,安芷生,郭维栋.我国生存环境演变和北方干旱化趋势预测研究(Ⅱ):研究成果的创新性及项目实施效果[J].地球科学进展,2005(11):16-23.
    [24]符淙斌,马柱国.全球变化与区域干旱化[J].大气科学,2008(4):752-760.
    [25]符淙斌,温刚.中国北方干旱化的几个问题[J].气候与环境研究,2002(1):22-29.
    [26]陈洪滨.关于云和云天大气对太阳辐射的吸收异常[J].大气科学,1997(6):111-118.
    [27]Houghton, John, Ydjg Ding, David J Griggs, et al. Climate Change 2001:the Scientific Ba-sis[M]. United Kingdom and New York, Ny, Usa:Cambridge Univ. Press,2001.
    [28]Huang, J., X. Guan, F. JI. Enhanced Cold-season Warming in Semi-arid Regions[J]. Atmos-pheric Chemistry and Physics,2012,12(12):5391-5398.
    [29]Arking, Albert. The Radiative Effects of Clouds and Their Impact on Climate[J]. Bulletin of the American Meteorological Society,1991,72(6):795-813.
    [30]汪宏七,赵高祥.云微物理特性对云光学和云辐射性质的影响[J].应用气象学报,1996(1):36-44.
    [31]汪宏七,赵高祥.云和辐射(Ⅰ)云气候学和云的辐射作用[J].大气科学,1994(S1):910-921+923.
    [32]汪方,丁一汇.气候模式中云辐射反馈过程机理的评述[J].地球科学进展,2005(2):207-215.
    [33]Cess, D Robert, GL Potter, JP Blanchet, et al. Interpretation of Cloud-climate Feedback as Produced By 14 Atmospheric General Circulation Models[J]. Science,1989, 245(4917):513-516.
    [34]邓军,白洁,刘健文.基于EOS/MODIS的云雾光学厚度和有效粒子半径反演研究[J].遥感技术与应用,2006(3):220-226.
    [35]叶晶,李万彪,严卫.利用MODIS数据反演多层云光学厚度和有效粒子半径[J].气象学报,2009(4):613-622.
    [36]王越,吕达仁,霍娟.利用透射太阳辐射反演云光学厚度及有效粒子半径:方法研究[J].自然科学进展,2006(7):850-858.
    [37]Br6on, Francois-Marie, Philippe Goloub. Cloud Droplet Effective Radius From Spaceborne Polarization Measurements[J]. Geophysical Research Letters,1998,25(11):1879-1882.
    [38]Frisch, Shelby, Matthew Shupe, Irina Djalalova, et al. The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars[J]. Journal of Atmospheric and Oceanic Technology,2002, 19(6):835-842.
    [39]刘晓春,毛节泰.云中液水含量与云光学厚度的统计关系研究[J].北京大学学报(自然科学版),2008(1):115-120.
    [40]邱金桓.从太阳总辐射信息反演云光学厚度的理论研究[J].大气科学,1996(1):12-21.
    [41]Nakajima, Teruyuki, Michael D King. Determination of the Optical Thickness and Effective Particle Radius of Clouds From Reflected Solar Radiation Measurements. Part I:Theory[J]. Journal of the Atmospheric Sciences,1990,47(15):1878-1893.
    [42]Chiu, J Christine, Chiung-Huei Huang, Alexander MARSHAK, et al. Cloud Optical Depth Retrievals From the Aerosol Robotic Network (aeronet) Cloud Mode Observations[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2010,115(D14).
    [43]王帅辉,韩志刚,姚志刚,等.基于CloudSat资料的中国及周边地区云垂直结构统计分析[J].高原气象,2011(1):38-52.
    [44]章文星,吕达仁,常有礼.地基热红外亮温遥感云底高度可行性的模拟研究[J].地球物理学报,2007(2):354-363.
    [45]王胜杰,何文英,陈洪滨,等.利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J].高原气象,2010(1):1-9.
    [46]王青梅,张以谟,刘铁根,等.一种便携式激光测云仪的云底高度反演方法[J].强激光与粒子束,2005(9):1312-1316.
    [47]周非非,周毓荃,王俊,等.FY-2卫星反演的云顶高度与多普勒雷达回波顶高的关系初探[J].气象,2010(4):43-50.
    [48]林琳,黄思训,杜华栋MODIS数据的云顶高度反演[J].地球信息科学,2006(2):106-109.
    [49]李积明,黄建平,衣育红,等.利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J].大气科学,2009,33(4):698-707.
    [50]Botta, Giovanni, Kultegin Aydin, Johannes Verlinde, et al. Millimeter Wave Scattering From Ice Crystals and Their Aggregates:Comparing Cloud Model Simulations with X-and Ka-band Radar Measurements[J]. Journal of Geophysical Research,2011,116(D1):O.
    [51]Morrison, Hugh, Paquita Zuidema, Andrew S ACKERMAN, et al. Intercomparison of Cloud Model Simulations of Arctic Mixed-phase Boundary Layer Clouds Observed During She-ba/fire-ace[J]. Journal of Advances in Modeling Earth Systems,2011,3(6).
    [52]Ryzhkov, A, M Pinsky, A Pokrovsky, et al. Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics[J]. Journal of Applied Meteorology and Climatology, 2011,50(4):873-894.
    [53]盛夏,孙龙祥,郑庆梅.利用MODIS数据进行云检测[J].解放军理工大学学报(自然科学版),2004(4):98-102.
    [54]张建军,赵小艳,黄勇.基于遥感探测的不同类型降水云识别方法[J].气象科技,2010(5):588-593.
    [55]霍娟,吕达仁,王越.全天空云识别阈值法的数值模拟初步研究[J].自然科学进展,2006(4):480-484.
    [56]孙学金,秦超,秦健,等.中低云云底高的地基红外遥感的初步分析[J].遥感学报,2012(1):166-173.
    [57]周广强,赵春生,丁守国,等.不同辐射传输方案对中尺度降水影响的对比分析[J].应用气象学报,2005(2):148-158.
    [58]高歌,翁笃鸣.利用ERBE和ISCCP资料反演青藏高原地表短波吸收辐射场[J].南京气象学院学报,1998(1):8-14.
    [59]陈勇航,白鸿涛,黄建平,等.西北典型地域云对地气系统的辐射强迫研究[J].中国环境科学,2008,28(2):97-101.
    [60]魏丽,钟强.青藏高原云的气候学特征[J].高原气象,1997(1):11-16.
    [61]LI, J., Y. YI, P. Minnis, et al. Radiative Effect Differences Between Multi-layered and Sin-gle-layer Clouds Derived From Ceres, CALIPSO, and CloudSat Data[J]. Journal of Quantita-tive Spectroscopy and Radiative Transfer,2011,112(2):361-375.
    [62]Wang, Zhien, Kenneth Sassen. Cloud Type and Macrophysical Property Retrieval Using Mul-tiple Remote Sensors[J]. Journal of Applied Meteorology,2001,40(10):1665-1682.
    [63]Westbrook, CD, AJ Illingworth, EJ O'connor, et al. Doppler Lidar Measurements of Oriented Planar Ice Crystals Falling From Supercooled and Glaciated Layer Clouds[J]. Quarterly Jour-nal of the Royal Meteorological Society,2010,136(646):260-276.
    [64]Dong, Xiquan, Patrick Minnis, Baike XI, et al. Comparison of Ceres-modis Stratus Cloud Properties with Ground-based Measurements at the Doe Arm Southern Great Plains Site[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2008,113(D3).
    [65]Rossow, B William, Robert A Schiffer. Isccp Cloud Data Products[J]. Bulletin of the American Meteorological Society,1991,72(1):2-20.
    [66]Menzel, Christoph, Carsten Rockstuhl, Thomas Paul, et al. Retrieving Effective Parameters for Metamaterials at Oblique Incidence[J]. Physical Review B,2008,77(19):195328.
    [67]Stephens, L Graeme, Deborah G Vane, Ronald J Boain, et al. The CloudSat Mission and the A-train:a New Dimension of Space-based Observations of Clouds and Precipitation[J]. Bulle-tin of the American Meteorological Society,2002,83(12):1771-1790.
    [68]Dowling, R David, Lawrence F Radke. A Summary of the Physical Properties of Cirrus Clouds[J]. Journal of Applied Meteorology,1990,29(9):970-978.
    [69]Hallett, John, William P Arnott, Matthew P Bailey, et al. Ice Crystals in Cirrus[J]. Cirrus, Dk Lynch, K. Sassen, D. O'c. Starr, and G. Stephens, Eds. (oxford University,2002),2002:41-77.
    [70]Heymsfield, AJ, GM Mcfarquhar. Mid-latitude and Tropical Cirrus:Microphysical Proper-ties[Z].2002:78-101.
    [71]LIOU, K. N.. An introduction to atmospheric radiation. [M].2002.
    [72]Sassen, Kenneth, Zhien Wang, Dong Liu. Global Distribution of Cirrus Clouds From Cloud-Sat/cloud-aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Measure-ments[J]. Journal of Geophysical Research,2008,113(D8):0.
    [73]Demott, PJ, DJ Cziczo, AJ Prenni, et al. Measurements of the Concentration and Composition of Nuclei for Cirrus Formation[J]. Proceedings of the National Academy of Sciences,2003, 100(25):14655-14660.
    [74]Sassen, Kenneth, Zhien Wang, Vitaly I Khvorostyanov, et al. Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical Model[J]. Journal of Ap-plied Meteorology,2002,41(6):620-628.
    [75]Mace, Gerald, Roger Marchand, Qiquing Zhang, et al. Global Hydrometeor Occurrence as Observed By CloudSat:Initial Observations From Summer 2006[J]. Geophysical Research Letters,2007,34(9).
    [76]Wylie, DP. Cirrus and weather:A satellite perspective[M]. Oxford Univ. Press, New York.:D. Lynch et al.,2002:136-146.
    [77]Schumann, Ulrich. Contrail cirrus. [M].2002.
    [78]Wood, Robert. Stratocumulus Clouds[J]. Monthly Weather Review,2012,140(8):2373-2423.
    [79]Warren Stephen, Carole J Hahn, Julius London, et al. Global Distribution of Total Cloud Cov-er and Cloud Type Amounts Over the Ocean[R].1988.
    [80]Warren, Stephen, Carole J Hahn, Julius London. Simultaneous Occurrence of Different Cloud Types[J]. Journal of Climate and Applied Meteorology,1985,24(7):658-667.
    [81]Warren, Stephen, Ryan M Eastman, Carole J HAHN. A Survey of Changes in Cloud Cover and Cloud Types Over Land From Surface Observations,1971-96[J]. Journal of Climate,2007, 20(4):717-738.
    [82]Chen, Ting, William B Rossow, Yuanchong Zhang. Radiative Effects of Cloud-type Varia-tions[J]. Journal of Climate,2000,13(1):264-286.
    [83]Kaiser, P Dale. Analysis of Total Cloud Amount Over Chinas 1951-1994[J]. Geophysical Re-search Letters,1998,25(19):3599-3602.
    [84]Hartmann, D, M Ockert-Bell, M Michelsen. The Efiect of Cloud Type on Earth's Energy Bal-ance:Global Analysis[J]. J. of Clint,1992,5:1281-1304.
    [85]Randall, A David. Problems in Simulating the Stratocumulus-topped Boundary Layer with a Third-order Closure Model[J]. J. Atmos. Sci,1984,41:1588-1600.
    [1]NASA. The Afternoon Constellation [EB/OL].2012-6-5. http://atrain. nasa. gov/index, php.
    [2]Schoeberl, R Mark. The Afternoon Constellation:a Formation of Earth Observing Systems for the Atmosphere and Hydrosphere[Z].2002:354-356.
    [3]L'ecuyer, S Tristan, Jonathan H Jiang, David Hafemeister, et al. Touring the Atmosphere Aboard the A-train[Z].2011:245.
    [4]Stephens, L Graeme, Deborah G Vane, Ronald J Boain, et al. The CloudSat Mission and the A-train:a New Dimension of Space-based Observations of Clouds and Precipitation[J]. Bulle-tin of the American Meteorological Society,2002,83(12):1771-1790.
    [5]Stephens, L Graeme, Deborah G Vane, Simone Tanelli, et al. CloudSat Mission:Performance and Early Science After the First Year of Operation[J]. Journal of Geophysical Research:At-mospheres (1984-2012),2008,113(D8).
    [6]Winker, M David, Jacques Pelon, M Patrick Mccormick. The CALIPSO Mission:Spaceborne Lidar for Observation of Aerosols and Clouds[Z].2003:11.
    [7]Winker, M David, William H Hunt, Matthew J Mcgill. Initial Performance Assessment of Ca-liop[J]. Geophysical Research Letters,2007,34(19).
    [8]Li, J., Y. Yi, P. Minnis, et al. Radiative Effect Differences Between Multi-layered and Sin-gle-layer Clouds Derived From Ceres, CALIPSO, and CloudSat Data[J]. Journal of Quantita-tive Spectroscopy and Radiative Transfer,2011,112(2):361-375.
    [9]Liu, Zhaoyan, Mark Vaughan, David Winker, et al. The CALIPSO Lidar Cloud and Aerosol Discrimination:Version 2 Algorithm and Initial Assessment of Performance[J]. Journal of Atmospheric and Oceanic Technology,2009,26(7):1198-1213.
    [10]Vaughan, A Mark, Kathleen A Powell, David M Winker, et al. Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements[J]. Journal of Atmospheric and Oceanic Technology,2009,26(10):2034-2050.
    [11]Hu, Y., D. Winker, M. Vaughan, et al. CALIPSO/caliop Cloud Phase Discrimination Algo-rithm[J]. Journal of Atmospheric and Oceanic Technology,2009,26(11):2293-2309.
    [12]周毓荃,赵姝慧.CloudSat卫星及其在天气和云观测分析中的应用[J].南京气象学院学报,2008(5):603-614.
    [13]Mace, GG, D Vane, G Stephens, et al. Level 2 Radar-lidar Geoprof Product Version 1.0 Pro-cess Description and Interface Control Document[J]. Jpl, Pasadena, Usa,2007:1-20.
    [14]Sun, Wenbo, Gorden Videen, Seiji Kato, et al. A Study of Subvisual Clouds and Their Radia-tion Effect with a Synergy of Ceres, Modis, CALIPSO, and Airs Data[J]. Journal of Geophys-ical Research:Atmospheres (1984-2012),2011,116 (D22).
    [15]Wang, Zhien, Kenneth Sassen. Level 2 Cloud Scenario Classification Product Process De-scription and Interface Control Document[J]. Version,2007,5:50.
    [16]Wang, Zhien, GL Stephens, DG Vane. Level 2 Combined Radar and Lidar Cloud Scenario Classification Product Process Description and Interface Control Document[J]. CloudSat Pro-ject-A NASA Earth System Science Pathfinder Mission,2011.
    [17]Austin, R. T., Stephens, G. L.. Retrieval of stratus cloud microphysical parameters using mil-limeter-wave radar and visible optical depth in preparation for CloudSat 1. Algorithm formu-lation [J]. Journal of Geophysical Research,2001, D22:28,233-28,242.
    [18]杨大生,王普才.中国地区夏季6-8月云水含量的垂直分布特征[J].大气科学,2012,01:91-103.
    [1]Hartmann, D, M Ockert-Bell, M Michelsen. The Efiect of Cloud Type on Earth's Energy Balance:Global Analysis [J]. J. of Clint,1992,5:1281-1304.
    [2]Chen, Ting, William B Rossow, Yuanchong Zhang. Radiative Effects of Cloud-type Varia-tions[J]. Journal of Climate,2000,13(1):264-286.
    [3]Tovinkere, VR, M Penaloza, A Logar, et al. An Intercomparison of Artificial Intelligence Ap-proaches for Polar Scene Identification[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1993,98(D3):5001-5016.
    [4]Bankert, Richard. Automated Identification of Cloud Patterns in Satellite Imagery[J],1994.
    [5]Rossow, B William, Robert A Schiffer. Advances in Understanding Clouds From Isccp[J]. Bul-letin-american Meteorological Society,1999,80:2261-2288.
    [6]Luo, Gang, Paul A Davis, Larry L Stowe, et al. A Pixel-scale Algorithm of Cloud Type, Layer, and Amount for Avhrr Data. Part I:Nighttime[J]. Journal of Atmospheric and Oceanic Tech-nology,1995,12(5):1013-1037.
    [7]Welch, Rm, Sk Sengupta, Ak Goroch, et al. Polar Cloud and Surface Classification Using Avhrr Imagery:an Intercomparison of Methods[J]. Journal of Applied Meteorology,1992, 31(5):405-420.
    [8]李积明,黄建平,衣育红,等.利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J].大气科学,2009,33(4):698-707.
    [9]Duchon, E Claude, Mark S O'malley. Estimating Cloud Type From Pyranometer Observa-tions[J]. Journal of Applied Meteorology,1999,38(1):132-141.
    [10]Williams, P Jonathan, Leo Blitz, Anthony A Stark. The Density Structure in the Rosette Mo-lecular Cloud:Signposts of Evolution[J]. The Astrophysical Journal,1995,451:252.
    [11]Wang, Zhien, K Sassen. An Improved Cloud Classification Algorithm Based on the SGP Cart Site Observations[Z].2004.
    [12]Wang, Zhien, Gl Stephens, Dg Vane. Level 2 Combined Radar and Lidar Cloud Scenario Classification Product Process Description and Interface Control Document[J]. CloudSat Pro-ject-a Nasa Earth System Science Pathfinder Mission,2011.
    [13]Penaloza, A Manuel, Ronald M WELCH. Feature Selection for Classification of Polar Re-gions Using a Fuzzy Expert System[J]. Remote Sensing of Environment,1996,58(1):81-100.
    [14]Hagihara, Yuichiro, Hajime Okamoto, Ryo Yoshida. Development of a Combined CloudSat-CALIPSO Cloud Mask to Show Global Cloud Distribution[J]. Journal of Geophysical Re-search:Atmospheres (1984-2012),2010,115(D4).
    [15]Wetherald, Rt, S Manabe. Cloud Feedback Processes in a General Circulation Model[J]. Journal of the Atmospheric Sciences,1988,45(8):1397-1416.
    [16]Field, R Paul. Aircraft Observations of Ice Crystal Evolution in an Altostratus Cloud [J]. J. Atmos. Sci.,1999,56(12):1925-1941.
    [17]Hager, L Richard. The Kinematic-dynamic Origins and Effects of a Maritime Tropical Alto-stratus Layer[Z].1969.
    [18]Sassen, Kenneth, Zhien Wang, Dong Liu. Global Distribution of Cirrus Clouds From Cloud-Sat/cloud-aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Measure-ments [J]. Journal of Geophysical Research,2008,113(D8):0.
    [19]Wood, Robert. Stratocumulus Clouds [J]. Monthly Weather Review,2012,140(8):2373-2423.
    [20]Montoux, N., P. Keckhut, A. Hauchecorne, et al. Isentropic Modeling of a Cirrus Cloud Event Observed in the Midlatitude Upper Troposphere and Lower Stratosphere[J]. Journal of Geo-physical Research:Atmospheres,2010,115(D2):0.
    [21]Li, J., Y. Yi, P. Minnis, et al. Radiative Effect Differences Between Multi-layered and Sin-gle-layer Clouds Derived From Ceres, CALIPSO, and CloudSat Data[J]. Journal of Quantita-tive Spectroscopy and Radiative Transfer,2011,112(2):361-375.
    [22]李积明.结合主动和被动卫星遥感资料研究云的垂直分布特征[J].兰州大学,2011(6).
    [23]Doulas, C. K. M.. The Physical Processes of Cloud Formation[J]. Quarterly Journal of the Royal Meteorological Society,1934,60(256):333-344.
    [24]Robert, A, JR Houze. Cloud Dynamics[M].1994.
    [25]Zhu, Ping, Bruce Albrecht, Jon Gottschalck. Formation and Development of Nocturnal Boundary Layer Clouds Over the Southern Great Plains[J]. Journal of the Atmospheric Sci-ences,2001,58(11):1409-1426.
    [1]Bonn. Desertification:A Visual Synthesis[EB/OL]. United Nations Convention to Combat Desertification Secretariat.2011-10-20. www.unccd.int/knowledge/docs/Desertification-EN. pdf.
    [2]Bonn. UNCCD Executive Secretary Message on the World Meteorological Day [EB/OL]. 2013-3-23.http://www.unccd.int/Lists/SiteDocumentLibrary/secretariat/2013/Statements%20E S/ES%20 Message_WorldMeteoDay2013_FINAL. pdf.
    [3]Alley, M William. The Palmer Drought Severity Index:Limitations and Assumptions[J]. Jour-nal of Climate and Applied Meteorology,1984,23(7):1100-1109.
    [4]Bannayan, Mohammad, Sarah Sanjani, Amin Alizadeh, et al. Association Between Climate In-dices, Aridity Index, and Rainfed Crop Yield in Northeast of Iran[J]. Field Crops Research, 2010,118(2):105-114.
    [5]New, Mark, Mike Hulme, Phil Jones. Representing Twentieth-century Space-time Climate Var-iability. Part I:Development of a 1961-90 Mean Monthly Terrestrial Climatology[J]. Journal of Climate,1999,12(3):829-856.
    [6]Breman, H, Jj Kessler. The Potential Benefits of Agroforestry in the Sahel and Other Semi-arid Regions[J]. Developments in Crop Science,1997,25:39-47.
    [7]Prince, D Stephen, De Colstoun, E Brown, et al. Evidence From Rain-use Efficiencies Does Not Indicate Extensive Sahelian Desertification[J]. Global Change Biology,1998, 4(4):359-374.
    [8]UN General Assembly. The United Nations Convention to Combat Desertification:a New Re-sponse to an Age-old Problem[EB/OL]. Online:United Nations Department of Public Infor-mation.1997-1-1. http://www. un. org/ecosocdev/geninfo/sustdev/desert. htm.
    [9]李新周,刘晓东,马柱国.近百年来全球主要干旱区的干旱化特征分析[J].干旱区研究,2004(2):97-103.
    [10]俞亚勋,王劲松,李青燕.西北地区空中水汽时空分布及变化趋势分析[J].冰川冻土,2003(2):149-156.
    [11]黄玉霞.西北地区大气水汽输送特征及气候转型研究[D].南京信息工程大学,2005.
    [12]宋连春,韩永翔,孙国武.中亚和中国西北干旱气候变化特征及其对产业结构的影响[J].干旱气象,2003(3):43-47.
    [13]Huang, J., ZW Huang, JR Bi, et al. Micro-pulse Lidar Measurements of Aerosol Vertical Structure Over the Loess Plateau[J]. Atmos. and Oceanic Sci. Lett,2008,1:8-11.
    [14]Huang, J., P. Minnis, H. Yan, et al. Dust Aerosol Effect on Semi-arid Climate Over Northwest China Detected From A-train Satellite Measurements [J]. Atmospheric Chemistry and Physics, 2010,10(14):6863-6872.
    [15]Sassen, Kenneth, Zhien Wang, Dong Liu. Global Distribution of Cirrus Clouds From Cloud-Sat/cloud-aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Measure-ments [J]. Journal of Geophysical Research,2008,113(D8):0.
    [16]Bailey, Hp. Semi-arid climates:their definition and distribution. [M].1979:73-97.
    [17]Julia, Cristobal, David A. Rahn, Jose A. Rutllant. Assessing the Influence of the Mjo on Strong Precipitation Events in Subtropical, Semi-arid North-central Chile (30°s)[J]. J. Climate, 2012,25(20):7003-7013.
    [1]陈亚宁,杨青,罗毅,沈彦俊,潘响亮,李兰海,李忠勤.西北干旱区水资源问题研究思考[J].干旱区地理,2012,01:5-13.
    [2]王劲松,陈发虎,张强,靳立亚,李静,金明,陈建徽.亚洲中部干旱半干旱区近100年来的气温变化研究[J].高原气象,2008,05:1035-1045.
    [3]Huang, J., Guan, X., Ji, F.. Enhanced cold-season warming in semi-arid regions [J]. Atmos. Chem. Phys.,2012,12(12):5391-5398.
    [4]李泽椿,周毓荃,李庆祥,王月冬.人工增雨是缓和干旱半干旱地区水资源匮乏的一个补充途径[J].新疆气象,2006,01:5-10+15.
    [5]Bruintjes, R. T.. A review of cloud seeding experiments to enhance precipitation and some new prospects [J]. Bulletin of the American Meteorological Society,1999,5:805-820.
    [6]Cotton, W. R.. Weather Modification by Cloud Seeding-A Status Report 1989-1997 [J]. Web-site of Department of,2008.
    [7]Garstang, M., Bruintjes, R., Serafin, R., Orville, H., Boe, B., Cotton, W., Warburton, J.. WEATHER MODIFICATION [J].2005.
    [8]吴伟,王式功.中国北方云量变化趋势及其与区域气候的关系[J].高原气象,2011,03:651-658.
    [9]陈少勇,董安祥,陈添宇,安华银.祁连山总云量变化及其与气候变暖的关系[J].干旱区研究,2007,01:98-102.
    [10]陈少勇,董安祥,陈添宇,安华银.祁连山低云量对气候变暖的响应[J].干旱区资源与环境,2007,02:142-145.
    [11]陈少勇,董安祥,王丽萍.中国西北地区总云量的气候变化特征[J].成都信息工程学院学报,2006,03:423-428.
    [12]刘卫国,刘奇俊.祁连山夏季地形云结构和云微物理过程的模拟研究(Ⅱ):云微物理过程和地形影响[J].高原气象,2007,01:16-29.
    [13]刘卫国,刘奇俊.祁连山夏季地形云结构和云微物理过程的模拟研究(Ⅰ):模式云物理方案和地形云结构[J].高原气象,2007,01:3-17.
    [14]洪延超,李宏宇.一次锋面层状云云系结构、降水机制及人工增雨条件研究[J].高原气象,2011,05:1308-1323.
    [15]陈小敏,刘奇俊,章建成.祁连山云系云微物理结构和人工增雨催化个例模拟研究[J].气象,2007,07:33-43.
    [16]Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L.. The CloudSat mission and the A-Train [J]. Bulletin of the American Meteorological Society,2002,12:1771-1790.
    [17]Winker, D. M., Pelon, J. R., McCormick, M. P.. The CALIPSO mission:Spaceborne lidar for observation of aerosols and clouds [?]. Proceedings of SPIE,2003:1.
    [18]李积明,黄建平,衣育红,吕达仁.利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J].大气科学,2009,04:698-707.
    [19]李积明.结合主动和被动卫星遥感资料研究云的垂直分布特征[D].兰州大学,2011.
    [20]Luo, Y., Zhang, R., Wang, H.. Comparing Occurrences and Vertical Structures of Hydrome-teors between Eastern China and the Indian Monsoon Region Using CloudSat/CALIPSO Data [J]. Journal of Climate,2009,4:1052-1064.
    [21]尚博,周毓荃,刘建朝,黄毅梅.基于CloudSat的降水云和非降水云垂直特征[J].应用气象学报,2012,01:3-11.
    [22]王帅辉,韩志刚,姚志刚,赵增亮,项杰.基于CloudSat资料的中国及周边地区云垂直结构统计分析[J].高原气象,2011,01:38-52.
    [23]汪会,罗亚丽,张人禾.用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学,2011,06:127-141.
    [24]杨大生,王普才.中国地区夏季6-8月云水含量的垂直分布特征[J].大气科学,2012,01:91-103.
    [25]黄建平,何敏,阎虹如,张北斗,闭建荣,靳秦建.利用地基微波辐射计反演兰州地区液态云水路径和可降水量的初步研究[J].大气科学,2010,03:548-558.
    [26]Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Par-tain, P., Mace, G. G., Austin, R.. CloudSat mission:Performance and early science after the first year of operation [J]. J. Geophys. Res,2008, C5:D00.
    [27]Winker, D. M., Hunt, W. H., McGill, M. J.. Initial performance assessment of CALIOP [J]. Geophysical Research Letters,2007,19:L19803.
    [28]Li, J., Yi, Y., Minnis, P., Huang, J., Yan, H., Ma, Y., Wang, W., Kirk Ayers, J.. Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data [J]. Journal of Quantitative Spectroscopy and Radiative Trans-fer,2011,2:361-375.
    [29]Rosenfeld, D., Lensky, I. M.. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds [J], Bulletin of the American Meteorological Society,1998,11:2457-2476.
    [30]Rosenfeld, D., Gutman, G.. Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data [J]. Atmospheric research,1994,1: 259-283.
    [31]李国昌.甘肃省层状云宏微观结构及降水特征的观测分析[D].南京信息工程大学,2006.
    [32]周毓荃,赵姝慧.CloudSat卫星及其在天气和云观测分析中的应用[J].南京气象学院学报,2008,05:603-614.
    [33]Wang, Z., Stephens, G. L., Vane, D. G., Reinke, D.. Level 2 Combined Radar and Lidar Cloud Scenario Classification Product Process Description and Interface Control Document [M]. Jet Propulsion Laboratory California Institute of Technology,2011.
    [34]Austin, R. T., Stephens, G. L.. Retrieval of stratus cloud microphysical parameters using mil-limeter-wave radar and visible optical depth in preparation for CloudSat 1. Algorithm formu-lation [J]. Journal of Geophysical Research,2001, D22:28,233-28,242.
    [35]Huang, J., Zhang, W., Zuo, J., Bi, J., Shi, J., Wang, X., Chang, Z., Huang, Z., Yang, S. Zhang, B.. An overview of the semi-arid climate and environment research observatory over the Loess Plateau [J]. Advances in atmospheric sciences,2008,6:906-921.
    [36]Jing, X., Huang, J., Wang, G., Higuchi, K., Bi, J., Sun, Y., Yu, H., Wang, T.. The effects of clouds and aerosols on net ecosystem CO 2 exchange over semi-arid Loess Plateau of Northwest China [J]. Atmos. Chem. Phys,2010:8205-8218.
    [37]陈勇航,黄建平,陈长和,张强,冯建东,金宏春,王天河.西北地区空中云水资源的时空分布特征[J].高原气象,2005,06:905-912.
    [38]陈乾,陈添宇,张鸿.用Aqua/CERES反演的云参量估算西北区降水效率和人工增雨潜力[J].干旱气象,2006,04:1-8.
    [39]Hagihara, Y., Okamoto, H., Yoshida, R.. Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution [J]. Journal of Geophysical Research,2010, null: D00H33.
    [40]陈勇航,陈艳,黄建平,郑志海,苏婧,黄鹤.中国西北地区云的分布及其变化趋势[J].高原气象,2007,04:741-748.
    [41]Sun, W., Videen, G., Kato, S., Lin, B., Lukashin, C., Hu, Y.. A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data [J]. Journal of Geophysical Research,2011, D22:D22207.
    [42]Wylie, D., Jackson, D. L., Menzel, W. P., Bates, J. J.. Trends in global cloud cover in two decades of HIRS observations [J]. Journal of climate,2005,15:3021-3031.
    [43]陈少勇,石光普,董安祥,张晓芬.祁连山层状云的时空分布及其环流特征分析[J].中国沙漠,2010,04:946-953.
    [44]陈少勇,徐科展,董安祥,夏权.祁连山积雨云的时空分布及其环流特征[J].干旱区研究,2010,01:114-120.
    [45]洪延超,周非非.层状云系人工增雨潜力评估研究[J].大气科学,2006,05:187-200.
    [46]Huang, J., Minnis, P., Lin, B., Yi, Y., Fan, TF, Sun-Mack, S., Ayers, JK. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E meas-urements [J]. Geophys. Res. Lett,2006:L21801.
    [47]Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., Ayers, J. K.. Satel-lite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia [J]. Geophys. Res. Lett,2006:L19802.
    [48]Heggli, M. F., Rauber, R. M.. The characteristics and evolution of supercooled water in win-tertime storms over the Sierra Nevada:A summary of microwave radiometric measurements taken during the Sierra Cooperative Pilot Project. [J]. Journal of Applied Meteorology,1988: 989-1015.
    [49]陈勇航,黄建平,王天河,金宏春,葛觐铭.西北地区不同类型云的时空分布及其与降水的关系[J].应用气象学报,2005,06:717-727+862.
    [50]陈添宇,李照荣,陈乾,李宝梓.用GMS5卫星反演水汽场分析中国西北地区大气水汽分布的气候特征[J].大气科学,2005,06:22-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700