超声引导经皮微波消融治疗机器人系统的研发和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来的大量研究结果表明超声引导经皮微波消融治疗肝肿瘤是一项微创、安全、有效的治疗方法,为进一步推进该技术的规范化应用,使之建立在更加客观和可预见性的基础上,便于该技术的普及应用,需解决治疗前的科学规划、治疗中的准确定位、稳定穿刺及对治疗过程的量化评估等问题。我们试图通过研制机器人辅助治疗系统来解决相应的问题。
     机器人辅助治疗系统是一种计算机集成治疗系统。治疗前机器人辅助治疗系统将患者的影像资料及其它信息建立为个体化的模型,辅助医生在此模型上制定最优的治疗方案;治疗中系统将治疗前的数据与治疗时的患者实体及治疗器械匹配到同一个空间中,然后通过影像导航和机器人辅助医生精确地完成治疗方案;治疗后系统还可以对治疗过程中的各项数据进行进一步的分析处理,用以科学的量化评估治疗及系统规划模型自身的不断完善。
     从治疗技术及需求方面而言,超声引导经皮微波消融治疗适合应用机器人辅助治疗系统,通过科学规划、实时导航和监视、精确植入等一系列方法使该治疗更加科学、可控和规范。我们相信通过机器人辅助治疗系统可以极大的提高超声引导下微波消融治疗的准确性、有效性和安全性。目前国内外尚无商品化的可以应用于超声引导消融治疗的机器人辅助治疗系统,国外仅有少数研究机构研制了初步的实验系统,因此从超声引导经皮微波消融治疗肝肿瘤为出发点,研发一套完整的超声引导消融治疗机器人系统,将有利于相关的工程研究人员和医生在此实验平台上进行更深入的研究,进而应用到临床造福于患者。
     本论文首先回顾和分析了机器人辅助治疗系统的相关基础理论,这些理论提供了研发机器人辅助治疗系统所需的关键技术。在此基础上建立了超声引导经皮微波消融治疗肝肿瘤的机器人辅助系统,并利用模型模拟经皮穿刺流程,进行了系列的实验研究,以验证系统的可操作性和准确性。
     本研究开创性完成了超声引导经皮微波消融治疗机器人系统的整体操作流程,设计了被动机器人,并进行了系列实验研究。研究表明将机器人辅助
    治疗系统应用于超声引导经皮微波消融治疗技术可行,并有望为临床提供一种更加稳定和准确的操作方法。
Recent studies have shown that ultrasound-guided percutaneous microwave ablation is a simple, safe and potentially effective treatment for patients with liver tumors. To facilitate normative application of this technology further and make it more objective and predictive, there are many problems should been solved, such as pre-operative planning, intra-procedural target localization, precise and consistent placement of the tissue ablator device, and quantitative procedure evaluations. In response to these limitations, we propose the use of a robotic system.
    Robotic system for surgery is a kind of computer-integrated surgery (CIS) system. These systems transform preoperative images and other information into models of individual patients, assist clinicians in developing an optimized interventional plan, register this preoperative data to the actual patient in the operating room, and then use a variety of means, such as robots and image navigation, to assist in the accurate execution of the planned interventions. Finally, they perform complex postoperative analysis of the interventions.
    Ultrasound-guided percutaneous microwave ablation is an ideal setting to make use of robotic system. Improved real-time guidance for planning, delivering, and monitoring the ablative therapy would provide the missing tool needed to allow accurate and effective application of this promising therapy. It is believed that robotic system can ultimately make these procedures significantly more accurate, more effective and safer. Currently, no commercial Robotic system is applied in ultrasound-guided ablation therapy. Such systems only exist in the academic domain. So build a full robotic system would be of significant benefit to the broad community of scientists, engineers and doctors who develop these systems and use them to improve patients' lives.
    In this dissertation we first present the underlying theory for the robotic
    system. This theoretical foundation provides the ability to fully specify the technologies required for the system. Building on this foundation, we design a robotic system for ultrasound-guided percutaneous microwave ablation. And then we make some initial experiments using phantoms to verify and determine the accuracy of the system.
    A whole work-flow of the robotic system for ultrasound-guided percutaneous microwave ablation was completed and a passive robot was designed and a series of empirical studies were made in this study. This project demonstrates that the efficacy of ultrasound-guided percutaneous microwave ablation could be enhanced with the use of robotic system and this technique may become a stable and precise method of operation for clinical therapy.
引文
1、 BW Dong, P Liang, XL Yu, et al. Percutaneous sonographically guided microwave coagulation therapy for hepatocellular carcinoma: Results in 234 patients. AJR, 2003,180:1547-1555.
    2、 P Liang, BW. Dong, XL. Yu, DJ. et al. Prognostic factors for survival in patients with hepatocellular carcinoma after percutaneous microwave ablation. Radiology, 2005, 235(l):299-307.
    3、 P Liang, BW Dong, XL Yu, et al. Computer-aided dynamic simulation of microwave-induced thermal distribution in coagulation of liver cancer. IEEE Transactions on Biomedical Engineering. 2001, 48: 821-829.
    4、 Lobo SM, Liu ZJ, Yu NC, et al. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity. Int-J-Hyperthermia. 2005, 21(3): 199-213.
    5 、 Jacob AL, Messer P, Kaim A, et al. A whole-body registration-free navigation system for image-guided surgery and interventional radiology. Invest Radiol. 2000,35:279-288.
    6、 Michael Rosenthal, Andrei State, Joohi Lee et al. Augmented reality guidance for needle biopsies: An initial randomized, controlled trial in phantoms. Medical Image Analysis, 2002,6:313-320
    7、 Boctor E., Fichtinger G, Taylor R, et al. Tracked 3D ultrasound in radio-frequency liver ablation. Medical Imaging 2003, 5035:174-182.
    8、 JS.Hong, T.Dohi, M.Hashizume, et al. Ultrasound-guided Needle Insertion Instrument Based on Real-time Motion Tracking. Japan Society of Computer-aided Surgery, 2002, 4: 199-200.
    9、 Fichtinger,G, Theodore L, Alexandru P, et al. System for robotically assisted prostate biopsy and therapy with intraoperative CT Guidance. Academic Radiology, 2002,9: 61-74.
    10、 Camarillo DB, Krummel TM, Salisbury JK. Robotic technology in surgery: past, present, and future. Am-J-Surg, 2004, 188(4A Suppl): 2S-15S.
    11、 Russell H. Taylor. Medical Robotics in Computer-Integrated Surgery. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2003, 19:765-781.
    12、 Isabelle M. Germano. The neurostation system for image-guided, frameless stereotaxy. Neurosurgery, 1995, 37(2):348-350.
    13、 W.E.L. Grimson et al. An automatic registration method for frameless stereotaxy, image guided surgery and enhanced reality visualization. IEEE Trans. Med. Imag, 1996, 15(2): 129-140.
    14、 Ron Kikinis et al. Computer assisted interactive three-dimensional planning for neurosurgical procedures. Neurosurgery, 1996, 38(4): 640-651.
    15、 Kurt R. Smith, Kevin J. Frank, Richard D. Bucholz. The neurostation~(TM)(?) a highly accurate, minimally invasive solution to frameless stereo tactic neurosurgery. Comput. Med. Imaging Graph, 1994, 18(4): 247-256.
    16、 Leo Joskowicz, Charles Milgrom, Ariel Simkin, et al. FRA-CAS: A system for computer-aided image-guided long bone fracture surgery. Computer Aided Surgery, 1998, 3(6): 271-288.
    17、 Anders Westermark, Stefan Zachow, Barry L. Eppley. Three-dimensional osteotomy planning in maxillofacial surgery including soft tissue prediction. Journal of Craniofacial Surgery, 2005, 16(1): 100-104.
    18、 Matthieu Chabanas, Vincent Luboz, and Yohan Payan. Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Medical Image Analysis, 2003, 7(2): 131-151.
    19、 Filip Banovac et al. Liver tumor biopsy in a respiring phantom with the assistance of a novel electromagnetic navigation device. In Medical Image Computing and Computer-Assisted Intervention, 2002: 200-207.
    20、 E. Chen, R. E. Ellis, and J. T. Bryant. A strain-energy model of passive knee kinematics for the study of surgical implantation strategies. In Medical Image Computing and Computer-Assisted Intervention, 2000:1086-1095.
    
    21、Kris Verstreken et al. An image-guided planning system for endosseous oral implants. IEEE Trans. Med. Imag., 1998, 17(5): 842-852.
    
    22、 Richard A. Robb, Dennis P. Hanson, and Jon J. Camp. Computer-aided surgery planning and rehearsal at mayo clinic. IEEE Computer, 1996, 29(1): 39-47.
    
    23、 Robert L, Galloway JR, Robert J, et al. The accuracies of four stereo tactic frame systems: An independent assessment. Biomedical Instrumentation & Technology, 1991, 25:457.
    
    24、 Robert L, Galloway JR, Robert J, et al. The accuracies of four stereo tactic frame systems: An independent assessment. Biomedical Instrumentation & Technology, 1991,25:457
    
    25、 Eric P, Sipos MD, Scot A , et al. In vivo accuracy testing and clinical experience with the ISG viewing wand. Neurosurgery,1996, 39: 194
    
    26、 Robert R, Patrice M, John M, et al. Comparison of relative accuracy between a mechanical and an optical position tracker for image-guided neurosurgery. J Image Guided Surgery, 1995, 1: 30
    27、 Fabrice C, Lavallee S. An experimental protocol for accuracy evaluation of 6D localizers for computer assisted surgery: Application to four optical localizers. Lecture Notes in Computer Science, 1998; 1496: 277
    28、 Light ED, Davidsen RE, Fiering JO, et al. Progress in two-dimensional arrays for real-time volumetric imaging. Ultrason Imaging, 1998, 20: 1-15.
    29、 Tuthill TA, Krucker JF, Fowlkes JB, et al. Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology, 1998, 209: 575-582.
    30、 Prager RW, Gee AH, Treece GM, et al. Sensorless freehand 3-D ultrasound using regression of the echo intensity. Ultrasound Med Biol, 2003, 29: 437- 446.
    
    31、Li PC, Li CY, Yeh WC. Tissue motion and elevational speckle decorrelation in freehand 3D ultrasound. Ultrason Imaging, 2002, 24: 1-12.
    32、 Brendel B, Winter S, Rick A, et al. Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput Aided Surg, 2002, 7: 146 -155.
    33、 Lindseth F, Tangen GA, Lang0 T, et al. Probe calibration for freehand 3-D ultrasound. Ultrasound Med Biol, 2003, 29: 1607-1623.
    34、 Laurence M, Thomas L, Frank L, A review of calibration techniques for freehand 3-D ultrasound systems Ultrasound in Medicine and Biology, 2005, 31(4): 449-471.
    35、 Comeau RM, Fenster A, Peters TM. Integrated MR and ultrasound imaging for improved image guidance in neurosurgery. SPIE Proc, 1998, 3338: 747-754.
    36、 Pagoulatos N, Haynor DR, Kim Y. A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer. Ultrasound Med Biol, 2001,27:1219-1229.
    37、 Marc Levoy. Display of surfaces from volume data. IEEE Comput. Graph. Appl., 1988, 8(3): 29-37.
    38、 Thomas M. Lehmann, Claudia GOnner, Klaus Spitzer. Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imag., 1999, 18(11):1049-1075.
    39、 Erik Meijering. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE, 2002, 90(3): 319-342.
    40、 J. B. Antoine Maintz, Max A. Viergever. A survey of medical image registration. Medical Image Analysis, 1998, 2(1): 1-37.
    41、 Cleary K, Nguyen C. State of the art in surgical robotics: clinical applications and technology challenges. Computer Aided Surgery, 2001, 6: 312-328.
    42、 J. Yanof, J. Haaga, P. Klahr, et al. "CT-integreted robot for interventional procedures: Preliminary experiment and computer-human interfaces," Comput. Aided Surgery, 2001, 6: 352-359.
    
    43、 J Hummel, C.M. Jun, M. Figl, et al. Standardized Evaluation Method for Electromagnetic Tracking Systems [J]. Medical Imaging, 2005, 5744: 236-240.
    
    44、 J Hummel, M.R. Bax, M.L. Figl, et al. Design and Application of an Assessment Protocol for Electro- magnetic Tracking Systems [J]. Med. Phys., 2005, 32(7): 2371-2378.
    
    45、 Emmanuel Wilson. Accuracy Analysis of Electromagnetic Tracking within Medical Environments [D]. Washington: Georgetown University, 2006.
    46、Daniel.F.leotta, Paul.R.Deter, et al. Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging [J]. Ultrasound Med Biol., 1997, 23(4): 597-609.
    47、 Ikits M., Brederson, J.D., Hansen, C, et al. An improved calibration framework for electromagnetic tracking devices [C]// Proc. IEEE Virtual Reality. Japan: IEEE Press, 2001: 63-70.
    48、 G. Zachmann. Distortion correction for magnetic fields for position tracking [C]// Proceedings of IEEE International Conference on Computer Graphics. Belgium: IEEE Press, 1997: 213-220.
    49、 M.A. Livingston, A. StatE. Magnetic tracker calibration for improved augmented reality registration [J]. Presence: Teleoperators and Virtual Environments, 1997, 6(5): 532-546.
    50、 A Gee, R Pragee, GTreece, et al. Processing and visualizing three-dimensional ultrasound data. The British Journal of Radiology, 2004: 186-193.
    51、 Stephen M.Pizer, David Eberly, Daniel S.Fritsch. Zoom-Invariant Vision of Figural Shape: The Mathematics Cores. Computer Vision and Image Understanding, 1996,69(1): 55-71
    1、梁萍,董宝玮,主编.超声引导微波凝固治疗肝癌.北京:人民军医出版社,2003.
    2、徐辉雄 谢晓燕 吕明德等.三维超声在介入性诊疗中的应用研究.中华超声影像学杂志,2002,11(10):600-603
    3、Motohide S, Go-W, Masahiro O, et al. Clinical application of three-dimensional ultrasound imaging as intraoperative navigation for liver surgery. Nippon-Geka-Gakkai-Zasshi, 1998, 99(4): 203-207
    4、曾辉,陈孝岳.三维超声成像对肝脏实质性占位病变的探讨.中华超声影像学杂志,1996,5(6):249-251
    5、Rose S-C, Hassanein T-I, Easter D-W, et al. Value of three-dimensional US for optimizing guidance for ablating focal liver tumors. J-Vasc-Interv-Radiol, 2001, 12(4): 507-515
    6、J. W. Cannon, J. A. Stoll, I. S. Salgo, et al. Real Time 3-Dimensional Ultrasound for Guiding Surgical Tasks, Computer Aided Surgery, 2003, 8(2)
    7、赵开银,张世维,杨开宇等.三维超声导向射频治疗肝癌的临床应用.西部医学,2004,16(2):162-163
    8、王春美.三维超声成像技术的原理及临床应用.第一军医大学学报, 2001,21(12):66-68
    9、盛林 梁萍 董宝玮.三维超声体积精测在临床中的应用.中华超声影像学杂志,2005,14(1):70-73
    10、徐辉雄 徐作锋 吕明德等.三维超声在肝脏疾病介入性诊疗中的应用.医学临床研究,2004,21(3):218-220
    11、Weismann CF, Forstner R, Prokop E, et al. Three-dimensional targeting: a new three-dimensional ultrasound technique to evaluate needle position during breast biopsy [J]. Ultrasound Obstet Gynecol, 2000,16: 359-364.
    12、P Liang, BW Dong. XL Yu et al. Computer aided dynamic simulation of microwave -induced thermal distribution in coagulation of liver cancer. IEEE transation biomedical Eng, 2001, 48: 821
    13、梁萍,董宝玮,等.超声引导双电极植入式微波凝固肝组织的计算机热场模拟.中华超声影像杂志,1999,8:255
    14、Michael Rosenthal, Andrei State, Joohi Lee et al. A ugmented reality guidance for needle biopsies: An initial randomized, controlled trial in phantoms. Medical Image Analysis, 2002,6:313-320
    15、Stetten, G., Chib, V. Overlaying ultrasound images on direct vision. J. Ultras. Med, 2001,20(1): 235-240
    16、George Stetten, Damion Shelton, Wilson Chang et al. TOWARDS A CLINICALLY USEFUL SONIC FLASHLIGHT. 2002 IEEE International Symposium on Biomedical Imaging
    17、K. Oshio, and H. Shinmoto. Simulation of US Imaging by Using a CT Data Set. 1996Scientific Program of Radiological Society of North America, 517, 1996
    18、Akira Kato, Tsutomu Tamai, Sho Kudo et al. Real-time Virtual Sonography in Ultrasound-guided Therapy for Hepatocellular Carcinoma. 2004 Scientific Program of Radiological Society of North America
    19、 Boctor, E., et al. "Tracked 3D ultrasound in radio-frequency liver ablation." Proc. SPIE Vol. 5035, p. 174-182, Medical Imaging 2003: Ultrasonic Imaging and Signal Processing; William F. Walker, Michael F. Insana; Eds.
    
    20、 Boctor, E., et al. "Rapid calibration method for registration and 3D tracking of ultrasound images using spatial localizer." Proc. SPIE Vol. 5035, p. 521-532, Medical Imaging 2003: Ultrasonic Imaging and Signal Processing; William F. Walker, Michael F. Insana; Eds.
    
    21、 G. P. Penney, J. M. Blackall, M.S. Hamady, et al. "Registration of freehand 3D ultrasound and magnetic resonance liver images" , Medical Image Analysis, 2004, 8: 81-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700