时滞相关非脆弱鲁棒静态输出反馈控制策略及其在主动悬架中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静态输出反馈(SOF)控制器因其结构简单而需要的在线计算工作量很少,从而可以降低控制器实现成本,但其求解较难。因此SOF控制器设计问题是控制理论和应用中最重要的研究焦点之一。众所周知,在包括车辆主动悬架在内的多种工程系统的设计过程中,被控对象的不确定性和系统的时滞是通常遇到的问题。容许控制器本身不确定性的非脆弱控制问题研究具有十分重要的理论和实践意义。在车辆主动悬架系统的设计中最重要的是控制策略,主动悬架的总体性能取决于控制策略。因此,为了改善车辆乘坐舒适性、行驶平顺性和操纵稳定性等性能,应该设计出性能良好的控制器。
     本文结合教育部新世纪优秀人才资助计划项目“惯性调控主动/半主动悬架技术研究”,针对具有输入时滞的不确定系统,直接而有效地设计时滞相关非脆弱鲁棒多目标SOF控制器,并通过应用于车辆主动悬架系统,验证本文所提出的设计方法在实际应用中的可行性和有效性。本文的研究工作内容包括以下几个方面:
     1)为了设计SOF控制器,提出了有效地求解双线性矩阵不等式(BMI)问题的新型PSO-DE/LMI优化算法,然后以车辆主动悬架H∞SOF控制和H2SOF控制为研究对象,验证了此算法的可行性和有效性。
     2)在多目标控制框架下,通过对混合H2/H∞控制问题、主动悬架H∞/L2-L∞SOF控制及H2/L2-L∞SOF控制的研究,进一步验证了基于PSO-DE/LMI优化算法的多目标SOF控制器设计方法的有效性。
     3)基于Lyapunov-Krasovskii方法以BMI形式分别提出了新的时滞相关鲁棒H∞SOF控制器和L2-L∞SOF控制器的存在条件,利用这些条件和PSO-DE/LMI算法设计了时滞相关鲁棒H∞/L2-L∞SOF控制器,通过将此方法应用于车辆主动悬架系统仿真分析,验证了控制器的控制效果。
     4)考虑到控制器本身的摄动,分别获得了BMI形式的时滞相关非脆弱鲁棒H∞SOF控制器和L2-L∞SOF控制器的存在条件,然后采用PSO-DE/LMI算法对主动悬架系统设计了控制器,并验证了得到的控制器的可行性和有效性。
     本文还通过在频域和时域中与以往的设计方法进行详细的对比分析,对所提出的控制器设计方法的有效性及实用性进行了验证。此外,针对车辆主动悬架系统,通过机械系统动力学仿真分析软件ADMAS与MATLAB/Simulink的联合仿真,进一步验证了所提出的控制器设计方法的有效性。
Static output feedback (SOF) controller requires a small amount of onlinecomputational effort due to the simplicity of the structure. Consequently, it can reducethe cost of the controller implementation, but it is difficult to be solved. Therefore, thedesign of SOF controller is one of the most important problems in the control theoryand application. Moreover, as is well-known, model uncertainties and time-delay arecharacteristics that are commonly encountered in various engineering system, such asvehicle active suspension system. On the other hand, a study of a non-fragile controlthat can tolerate some level of controller parameter variations is theoretically andpractically significant. A key point of the vehicle active suspension system design toimprove the ride comfort is control strategy, and its effectiveness in relation to theperformance of active suspension system. Thus, the controller design of the activesuspension system with good performance to improve vehicle ride comfort andhandling stability has a very important significance.
     The main research topic of this paper is to directly and effectively design adelay-dependent non-fragile robust multi-objective SOF controller for an uncertainsystem with input time-delay, and verify the feasibility and effectiveness of theproposed design approach by application to design an active suspension system.Detailed research contents are as follows:
     1) In order to design a SOF controller, this paper presents a new PSO-DE/LMIoptimization algorithm that can solve a bilinear matrix inequality (BMI) problemeffectively, and then verifies the feasibility and effectiveness of this algorithm byapplication to design H∞SOF controller and H2SOF controller of the active suspension system.
     2) In the framework of a multi-objective control, a design approach of themulti-objective SOF controller based on the PSO-DE/LMI algorithm is validatedfurther by H∞/L2-L∞SOF control and H2/L2-L∞SOF control for the active suspensionsystem.
     3) By employing a Lyapunov-Krasovskii method, new existence conditions ofdelay-dependent robust H∞SOF controller and L2-L∞SOF controller are derivedrespectively in terms of the feasibility of BMIs,and then a delay-dependent H∞/L2-L∞SOF controller is designed by using these existence conditions and the PSO-DE/LMIoptimization algorithm. Moreover, the proposed controller design approach is verifiedby application to active suspension system.
     4) By considering a controller itself perturbation, this paper presents newexistence conditions of delay-dependent non-fragile robust H∞SOF controller andL2-L∞SOF controller are derived respectively in terms of the feasibility of BMIs,andthen a delay-dependent non-fragile robust H∞/L2-L∞SOF controller is designed byusing these existence conditions and the PSO-DE/LMI optimization algorithm. Inaddition, the feasibility and effectiveness of the obtained controller is validated byapplication to design an active suspension system.
     This paper validated the practicability and validity of the proposed controlstrategies through the contrastive analysis in frequency domain and time domain withprevious design methods. In addition, aimed at the vehicle active suspension system,further validated the effectiveness of the proposed controller design approach byadopting the joint simulation of the dynamics simulation and analysis software ofmechanical system ADAMS and MATLAB/Simulink.
引文
[1] Zames G. Feedback and optimal sensitivity: model reference transformations,multiplicative seminorms and approximate inverses [J]. IEEE Transactions onAutomatic Control, April1981,26(2):301-320.
    [2] Doyle J C, Glover K, Khargonegar P. State-space solutions to standard H2and H∞control problems [J]. IEEE Transactions on Automatic Control, August1989,34(8):821–847.
    [3] Francis B A. A course in H∞control theory [M]. Lecture Notes in Control andInformation Sciences, Springer-Verlag,1987.
    [4] Dullerud G E, Paganini F G. A course in robust control theory: a convex approach[M]. New York: Springer-Verlag,2000.
    [5] Boyd S, Ghaoui LE, Feron E, Balakishnan V. Linear matrix inequalities in systemand control theory [M]. Philadelphia, PA: SIAM,1994.
    [6] Chilali M, Gahinet P, Apkarian P. Robust pole-placement in LMI regions [J].IEEE Transactions on Automatic Control, December1999,44(12):2257–2270.
    [7] Scherer C, Gahinet P, Chilali M. Multi-objective output-feedback control via LMIoptimization [J]. IEEE Transactions on Automatic Control, July1997:42(7):896–911.
    [8] Syrmos V L, Abdallah C T, Dorato P, Grigoriadis K. Static output feedback: asurvey [J]. Automatica, February1997,33(2):125–137.
    [9] Cao YY, Lam J, Sun YX. Static output feedback stabilization: An ILMI approach[J]. Automatica, December1998,34(12):1641–1645.
    [10] Huang D, Nguang S K. Static output feedback controller design for fuzzysystems: An ILMI approach [J]. Information Sciences, July2007,177(14):3005-3015.
    [11] He Y, Wang Q G. An improved ILMI method for static output feedback controlwith application to multivariable PID control [J]. IEEE Transactions onAutomatic Control, October2006,51(10):1678-1683.
    [12] Wu H N. An ILMI approach to robust H2static output feedback fuzzy control foruncertain discrete-time nonlinear systems [J]. Automatica, September2008,44(9):2333–2339.
    [13] Arzelier D, Peaucelle D. An iterative method for mixed H2/H∞synthesis via staticoutput-feedback [C]. Proceedings of41st IEEE Conference on Decision andControl. Las Vegas, Nevada, USA: IEEE,2002:3464-3469.
    [14] Geromel J C, Peres P L D, Souza S R. Convex analysis of output feedbackcontrol problems: robust stability and performance [J]. IEEE Transaction onAutomatic Control, July1996,41(7):997-1003.
    [15] Dong J X, Yang G H. Robust static output feedback control synthesis for linearcontinuous systems with polytopic uncertainties [J]. Automatica, June2013,49(6):1821–1829.
    [16] Fukuda M, Kojima M. Branch-and-cut algorithms for the bilinear matrixinequality eigenvalue problem [J]. Computational Optimization andApplications, April2001,19(1):79-105.
    [17] Hassibi A, How J, Boyd S. Path-following method for solving BMI problems incontrol [C]. Proceedings of American Control Conference, San Diego,California, June1999,2:1385-1389.
    [18] Sun C C, Chung H Y. H2/H∞Robust static output feedback control design viamixed genetic algorithm and linear matrix inequalities [J]. ASME Journal ofDynamic Systems, Measurement, and Control, December,2005,127:715-722
    [19] Du H P, Zhang N. H∞control for buildings with time delay in control via linearmatrix inequalities and genetic algorithms [J]. Engineering Structures, January2008,30(1):81–92.
    [20] Ho W H, Chen S H, Liu T K, Chou J H. Design of robust-optimal outputfeedback controllers for linear uncertain systems using LMI-based approach andgenetic algorithm [J]. Information Sciences, December2010,180(23):4529-4542.
    [21] Du H P, Lam J. Energy-to-peak performance controller design for building viastatic output feedback under consideration of actuator saturation [J]. Computersand Structures, December2006,84(31-32):2277–2290.
    [22] Chung H Y, Wu S M, Yu F M, Chang W J. Evolutionary design of static outputfeedback controller for Takagi–Sugeno fuzzy systems [J]. IET Control Theoryand Application, April2007,1(4):1096–1103.
    [23] Wu S M, Yu F M, Sun C C, Chung H Y. Static output feedback fuzzy controllerdesign via a mixed approach for regional T-S fuzzy system [C]. Proceedings of2006IEEE International Conference on Systems, Man, and Cybernetics.October8-11, Taipei, Taiwan: IEEE,2006:3074-3079.
    [24] Chung H Y, Chan S C. GA-based H2/H∞static output feedback design withaverage performance concept and techniques of family of polynomials [J].Expert Systems with Applications, April2009,36(Issue3, Part2):5859–5865.
    [25] Toscano R, Lyonnet P. Robust static output feedback controller synthesis usingKharitonov’s theorem and evolutionary algorithms [J]. Information Sciences,May2010,180(10):2023–2028.
    [26]刘树博,赵丁选.静态输出反馈多目标控制的求解方法[J].西安交通大学学报,2009,43(7):49-52.Liu S B, Zhao D X. Method for multi-object control based on static outputfeedback [J]. Journal of Xi’an Jiaotong University,2009,43(7):49-52.
    [27] Richard J P. Time-delay systems: an overview of some recent advances and openproblems [J]. Automatica, October2003,39(10):1667–1694.
    [28] Gu K, Kharitonov VL, Chen J. Stability of time-delay systems [M], Birkh user,Boston,2003.
    [29] Kolmanovskii V, Richard J P. Stability of some linear systems with delays [J].IEEE Transactions on Automatic Control, May1999,44(5):984–989.
    [30] Li X, De Souza C. Criteria for robust stability and stabilization of uncertainlinear systems with state delay [J]. Automatica, September1997,33(9):1657–1662.
    [31] Fridman E, Shaked U. Delay-dependent stability and H∞control: constant andtime-varying delays [J]. International Journal of Control, January2003,76(1):48-60.
    [32] Fridman E, Shaked U. Parameter dependent stability and stabilization ofuncertain time-delay systems [J]. IEEE Transactions on Automatic Control,May2003,48(5):861-866.
    [33] Jiang X F, Han Q L. Delay-dependent robust stability for uncertain linearsystems with interval time-varying delay [J]. Automatica, June2006,42(6):1059–1065.
    [34] Chen B, Li H Y, Shi P, Lin C, Zhou Q, Delay-dependent stability analysis andcontroller synthesis for Markovian jump systems with state and input delays [J],Information Sciences, July2009,179(16):2851–2860.
    [35] Miranda M F, Leite V J S. Robust stabilization of polytopic discrete-time systemswith time-varying state delay: A convex approach [J]. Journal of the FranklinInstitute, May2011,348(4):568–588.
    [36] Fridman E, Shaked U. An improved stabilization method for linear time-delaysystems [J]. IEEE Transactions on Automatic Control, November2002,47(11):1931-1937.
    [37] Zhao Y, Gao H J, Lam J, Du B Z. Stability and stabilization of delayed T–Sfuzzy systems: a delay partitioning approach [J]. IEEE Transactions on FuzzySystem, August2009,,17(4):750-762.
    [38] Peng C, Tian Y C, Tian E G. Improved delay-dependent robust stabilizationconditions of uncertain T–S fuzzy systems with time-varying delay [J]. FuzzySets and Systems, October2008,159(20):2713–2729.
    [39] Chen S H, Chou J H. Algebraic criterion for robust controllability of continuouslinear time-delay systems with parametric uncertainties [J]. Journal of theFranklin Institute, October2013,350(8):2277–2290.
    [40] Wu M, He Y, She J H, Liu G P. Delay-dependent criteria for robust stability oftime-varying delay systems [J]. Automatica, August2004,40(8):1435–1439.
    [41] He Y, Wu M, She J H, Liu G P. Delay-dependent robust stability criteria foruncertain neutral systems with mixed delays [J]. Systems&Control Letters,January2004,51(1):57–65.
    [42] He Y, Wang Q G, Lin C, Wu M. Delay-range-dependent stability for systems withtime-varying delay [J]. Automatica, February2007,43(2):371–376.
    [43] Ge J H, Frank P M, Lin C F. Robust H∞state feedback control for linear systemswith state delay and parameter uncertainty [J]. Automatica, August1996,32(8):1183-1185.
    [44] Fridman E, Shaked U. H∞control of linear state-delay descriptor systems: anLMI approach [J]. Linear Algebra and its Applications, August2002,351-352:271–302.
    [45] Suplin V, Fridman E, Shaked U. H∞control of linear uncertain time-delaysystems—A projection approach [J], IEEE Transactions on Automatic Control,April2006,51(4):680–685.
    [46] Yazici H, Guclu R, Kucukdemiral I B, Alpaslan Parlakci M N. Robust delay-dependent H∞control for uncertain structural systems with actuator delay [J].Journal of Dynamic System, Measument, and Control, May2012,134(3): doi:10.1115/1.4005500.
    [47] Palhares R M, Campos C D, Ekel P Y, Leles M C R. Delay-dependent robust H∞control of uncertain linear systems with time-varying delays [J]. Computers andMathematics with Apphcations, July2005,50(1-2):13-32.
    [48] Gao H J, Wang C H. Comments and further results on “A descriptor systemapproach to H∞control of linear time-delay systems”[J], IEEE Transactions onAutomatic Control, March2003,48(3):520–525.
    [49] Chen W H, Guan Z H, Lu X M. Delay-dependent output feedback guaranteedcost control for uncertain time-delay systems [J]. Automatica, July2004,40(7):1263-1268.
    [50] Loreto M D, Loiseau J J, Lafay J F. Disturbance attenuation by dynamic outputfeedback for input-delay systems [J]. Automatica, August2008,44(8):2202–2206.
    [51] Suplin V, Shaked U. Robust H∞output-feedback control of systems withtime-delay [J]. Systems&Control Letters, March2008,57(3):193–199.
    [52] He Y, Wu M, Liu G P, She J H. Output feedback stabilization for a discrete-timesystem with a time-varying delay [J]. IEEE Transactions on Automatic Control,November2008,53(10):2372-2377.
    [53] Zhang Y X, Wang Q, Dong C Y, Jiang Y F. H∞output tracking control for flightcontrol systems with time-varying delay [J]. Chinese Journal of Aeronautics,October2013,26(5):1251–1258.
    [54] Deshpande P, Menon P P, Edwards C. Delayed static output feedback control ofa network of double integrator agents [J]. Automatica, November2013,49(11):3498–3501.
    [55] Zhu S Q, Meng M, Zhang C H. Exponential stability for positive systems withbounded time-varying delays and static output feedback stabilization [J].Journal of the Franklin Institute, April2013,350(3):617–636.
    [56] Peng C, Yue D, Tian Y C. New approach on robust delay-dependent H∞controlfor uncertain T–S fuzzy systems with interval time-varying delay [J]. IEEETransactions on Fuzzy System, August2009,17(4):890-900.
    [57] Zhang B Y, Xu S Y. Delay-dependent robust H∞control for uncertaindiscrete-time fuzzy systems with time-varying delays [J]. IEEE Transactions onFuzzy System, August2009,17(4):809-823.
    [58] Zhang Y S, Xu S Y, Zhang B Y. Robust output feedback stabilization foruncertain discrete-time fuzzy markovian jump systems with time-varying delays[J]. IEEE Transactions on Fuzzy System, April2009,17(2):411-420.
    [59] Chiu C S, Chiang T S. Robust output regulation of T–S fuzzy systems withmultiple time-varying state and input delays [J]. IEEE Transactions on FuzzySystem, August2009,17(4):962-975.
    [60] Chen A M, Wang J W. Delay-dependent L2–L∞control of linear systems withmultiple time-varying state and input delays [J]. Nonlinear Analysis: RealWorld Applications, February2012,13(1):486-496.
    [61] Li Z H, Wang J C, Shao H H. Delay-dependent dissipative control for lineartime-delay systems [J]. Journal of the Franklin Institute, September-November2002,339(6-7):529–542.
    [62] Keel L H, Bhattacharyya SP. Robust, fragile, or optimal?[J]. IEEE Transactionson Automatic Control, August1997;42(8):1098-1105.
    [63] Makila P M. Comments on ‘robust, fragile, or optimal?’[J]. IEEE Transactionson Automatic Control, September1998,43(9):1265-1268.
    [64] Paattilammi J, Makila P M. Fragility and robustness: a case study on PMheadbox control [C]. Proceedings of the American Control Conference, SanDiego, California, USA: June,1999.
    [65] Dorato P. Non-fragile controller design: an overview [C], Proceedings of theAmerican Control Conference, Philadelphia, June1998:2829–2831.
    [66] Moreira M V, Basilio J C. Fragility problem revisited: overview andreformulation [J]. IET Control Theory and Applications,2007,1(5):1496-1503.
    [67] Blanchini F, Cigno R L, Tempo R. Control of ATM networks: fragility androbustness issues [C]. Proceedings of the American Control Conference,Philadelphia, June1998:2847–2851.
    [68] Yee J S, Yang G H, Wang J L. Non-fragile H∞Flight Controller Design for aHigh Performance Aircraft [C]. Proceedings of the American ControlConference, Chicaco, June2000,3:1857-1861.
    [69] Yang G H, Wang J L, Lin C. H∞control for linear systems with additivecontroller gain variations [J], International Journal of Control,2000,73(16):1500–1506.
    [70] Yang G H, Wang J L. Non-fragile H∞control for linear systems withmultiplicative controller gain variations [J]. Automatica, May2001,37(5):727-737.
    [71] Du H P, Lam J, Sze K Y. Non-fragile H∞vibration control for uncertainstructural systems [J]. Journal of Sound and Vibration, June2004,273(4-5):1031–1045.
    [72] Xu S Y, Lam J, Wang J L, Yang G H. Non-fragile positive real control foruncertain linear neutral delay systems [J]. Systems&Control Letters, May2004,52(1):59-74.
    [73] Lien C H. Non-fragile guaranteed cost control for uncertain neutral dynamicsystems with time-varying delays in state and control input [J]. Chaos, Solitons&Fractals, February2007;31(4):889-899.
    [74] Wang C, Shen Y. Delay-dependent non-fragile robust stabilization and H∞controlof uncertain stochastic systems with time-varying delay and nonlinearity [J].Journal of the Franklin Institute, October2011;348(8):2174-2190.
    [75] Hu H, Jiang B, Yang H. Non-fragile H2reliable control for switched linearsystems with actuator faults [J]. Signal Processing, July2013,93(7):1804-1812.
    [76] Ren J C, Zhang Q L. Non-fragile PD state H∞control for a class of uncertaindescriptor systems [J]. Applied Mathematics and Computation, May2012,218(17):8806–8815.
    [77] Yang G H, Wang J L. Nonfragile H∞output feedback controller design for linearsystems [J], Journal of Dynamic Systems, Measurement, and Control,2003,125(1):117–123.
    [78] Chen J D, Yang C D, Lien C H, Horng J H. New delay-dependent non-fragile H∞observer-based control for continuous time-delay systems [J]. InformationSciences, December2008;178(24):4699-4706.
    [79] Lien C H, Cheng W C, Tsai C H, Yu K W. Non-fragile observer-based controls oflinear system via LMI approach [J], Chaos, Solitons and Fractals, May2007,32(4):1530-1537.
    [80] Lien C H. H∞non-fragile observer-based controls of dynamical systems via LMIoptimization approach [J]. Chaos, Solitons and Fractals, October2007,34(2):428–436.
    [81] Li L, Jia Y. Non-fragile dynamic output feedback control for linear systems withtime-varying delay [J]. IET Control Theory and Applications,2009;3(8):995-1005.
    [82] Liu Z W, Zhang H G, Sun Q Y. Non-fragile static output feedback controllerdesign for linear continue-time systems with delay [C]. Proceeding of the31thChinese Control Conference, Hefei, China,2012, pp204-209.
    [83] Yang J, Zhong S M, Xiong L L. A descriptor system approach to non-fragile H∞control for uncertain fuzzy neutral systems [J]. Fuzzy Sets and Systems,February2009,160(4):423–438.
    [84] Zhang B Y, Zhou S S, Li T. A new approach to robust and non-fragile H∞controlfor uncertain fuzzy systems [J]. Information Sciences, November2007,177(22):5118–5133.
    [85] Karnopp D, Crosby M J, Harwood R A. Vibration control semi-Active forcegenerators [J], ASME Journal of Engineering for Industry,1974,96(2):619-626.
    [86] Thompson A G. An active suspension with optimal linear state feedback[J].Vehicle System Dynamics, December1976,5(4):187-203.
    [87] Thompson AG. Optimal and suboptimal linear active suspension for roadvehicles [J], Vehicle System Dynamics, January1984,13(2):61-72.
    [88] Hrovat D. Survey of advanced suspension developments and related optimalcontrol applications [J]. Automatica, October1997;33(10):1781–1817.
    [89] Chen H, Guo K H. Constrained H∞control of active suspensions: an LMIapproach [J]. IEEE Transactions on Control Systems Technology, May2005;13(3):412-421.
    [90] Guo L X, Zhang L P. Robust H∞control of active vehicle suspension undernon-stationary running [J], Journal of Sound and Vibration, December2012,331(26):5824-5837.
    [91] Ma M M, Chen H. Disturbance attenuation control of active suspension withnon-linear actuator dynamics [J]. IET Control Theory and Applications,2011,5(1):112–122.
    [92] Gao H J, Sun W C, Shi P. Robust sampled-data H∞control for vehicle activesuspension systems [J]. IEEE Transactions on Control Systems Technology,January2010,18(1):238-245.
    [93] Li H, Gao H J, Liu H. Robust quantised control for active suspension systems [J].IET Control Theory and Applications,2011,5(17):1955–1969.
    [94] Jastrzebski R P, Hynynen K M, Smirnov A. H∞control of active magneticsuspension [J]. Mechanical Systems and Signal Processing, May2010,24(4):995–1006.
    [95] van der Sande T P J, Gysen B L J, Besselink I J M, Paulides J J H, Lomonova EA, Nijmeijer H. Robust control of an electromagnetic active suspension system:Simulations and measurements [J]. Mechatronics, March2013,23(2):204–212.
    [96] Zhang Z Y, Liu X, Huang C X, H∞Output feedback control for vehicle seatsuspension subject to parameter perturbations [J]. Procedia Engineering,2011,16:444–452.
    [97]王娟,刘志远,陈虹,裴润.基于LMI的主动悬架的滚动时域H∞输出反馈控制[J].汽车工程,2009,31(1):37-40.Wang J, Liu Z Y, Chen H, Pei R. Output feedback H∞control combiningmoving horizon scheme for active suspension based on LMI approach [J].Automotive Engineering,2009,31(1):37-40.
    [98] Sun W C, Li J F, Ye Zhao, Gao H J. Vibration control for active seat suspensionsystems via dynamic output feedback with limited frequency characteristic [J].Mechatronics, February2011,21(1):250-260.
    [99]陈虹,赵桂军,孙鹏远,郭孔辉. H2和H∞主动悬架统一的理论框架与比较[J].汽车工程,2003,25(1):1-6.Chen H, Zhao G J, Sun P Y, Guo K H. H2and H∞active suspensions a unitedtheoretic framework and comparison [J],2003,25(1):1-6.
    [100] Sun P Y, Chen H. Multi-objective output-feedback suspension control on ahalf-car model [C]. Proceedings of2003IEEE Conference on ControlApplications, Turkey: IEEE, vol.1,2003:290-295.
    [101] Amirifar R, Sadati N. Low-order H∞controller design for an active suspensionsystem via LMIs [J]. IEEE Transactions on Industrial Electronics, April2006;53(2):554-560.
    [102] Gao H J, Lam J, Wang C H. Multi-objective control of vehicle activesuspension systems via load-dependent controllers [J]. Journal of Sound andVibration, March2006,290(3-5):654-675.
    [103]陈虹,马苗苗,孙鹏远.基于LMI优化的主动悬架多目标控制[J].自动化学报,2006,32(4):550-559.Chen H, Ma M M, Sun P Y, Multi-objective control design for activesuspensions: an LMI approach [J]. Acta Automatica Sinica,2006,32(4):550-559.
    [104] Wang J, Wilson DA. Mixed GL2/H2/GH2control with pole placement and itsapplication to vehicle suspension systems [J]. International Journal ofControl,2001;74(13):1353–1369.
    [105] Fang M, Wang Y, Chen WW. Mixed H2/H∞control&μ analysis of vehicleactive suspension system [C]. Proceedings of the Fifth World Congress onIntelligent Control and Automation, Hangzhou, China,2004, pp.723-727.
    [106] Sun W C, Zhao Y, Li J F, Zhang L X, Gao H J. Active suspension control withfrequency band constraints and actuator time-delay [J]. IEEE Transactions onIndustrial Electronics, January2012;59(1):530-537.
    [107] Du H P, Zhang N. H∞control of active vehicle suspensions with actuator timedelay [J]. Journal of Sound and Vibration, March2007,301(1-2):236–252.
    [108] Zhao Y B, Sun W C, Gao H J. Robust control synthesis for seat suspensionsystems with actuator saturation and time-varying time-delay [J]. Journal ofSound and Vibration, October2010,329(21):4335–4353.
    [109] Du H P, Zhang N, Lam J. Parameter-dependent input-delayed control ofuncertain vehicle suspensions [J]. Journal of Sound and Vibration, November2008,317(3-5):537–556.
    [110] Li H Y, Jing X J, Karimi H R. Output-feedback-based H∞control for vehiclesuspension systems with control delay [J]. IEEE Transactions on IndustrialElectronics, January2014,61(1):436-446.
    [111] Du H P, Lam J, Sze K Y. Non-fragile output feedback H∞vehicle suspensioncontrol using genetic algorithm [J]. Engineering Applications of ArtificialIntelligence, October-December2003;16(7–8):667-680.
    [112]刘树博.赵丁选,尚涛.主动悬架非脆弱H2/广义H2静态输出反馈最优控制[J].四川大学学报(工程科学版),2011,43(1):240-246.Liu S B, Zhao D X, Shang T. Non-fragile H2/generalized H2optimal controlfor active suspension based on static output feedback [J]. Journal of SichuanUniversity (Engineering Science Edition),2011,43(1):240-246.
    [113] Burl J B. Linear Optimal Control: H2and H∞Methods [M]. Addison WesleyPublishing,1998.
    [114] Rotea M A. The generalized H2control problem [J]. Automatica, March1993,29(2):373–385.
    [115] Fleming P J, Purshouse R C. Evolutionary algorithms in control systemsengineering: a survey [J]. Control Engineering Practice, November2002,10(11):1223–1241.
    [116] Crews J H., Mattson M G., Buckner G D. Multi-objective control optimizationfor semi-active vehicle suspensions [J]. Journal of Sound and Vibration,November2011,330(23):5502-5516.
    [117] Kennedy J, Eberhart RC. Particle swarm optimization [C]. Proceeding of theIEEE International Conference on Neural Networks, Washington, USA,November1995, pp.1942-1948.
    [118] Rana S, Jasola S. A review on particle swarm optimization algorithms and theirapplications to data clustering [J]. Artificial Intelligence Review,2011,35(3):211-222.
    [119] del Valle Y, Venayagamoorthy G K, Mohagheghi S, Hernandez J C, Harley R G.Particle swarm optimization: Basic concepts, variants and applications inpower systems [J]. IEEE Transactions on Evolutionary Computation, April2008,12(2):171-195.
    [120] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergencein a multidimensional complex space [J]. IEEE Transactions on EvolutionaryComputation, February2002,6(1):58–73.
    [121] Kadirkamanathan V, Selvarajah K, Fleming P J. Stability analysis of the particledynamics in particle swarm optimizer [J]. IEEE Transactions on EvolutionaryComputation, June2006,10(3):245-255.
    [122]刘顺安,胡庆玉. PSO-BP网络算法在汽车悬架优化中的应用[J].吉林大学学报(工学版),2009,39(3):571-575.Liu Shun-an, Hu Qing-yu. Application of PSO-BP network algorithm inoptimization of automotive suspension [J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(3):571-575.
    [123] Storn R, Price K. Differential evolution—A simple and efficient heuristic forglobal optimization over continuous spaces [J]. Journal of GlobalOptimization,1997,11(4):341–359.
    [124] Price K. Differential evolution vs. the functions of the2nd ICEO [C].Proceedings of the IEEE Conference on Evolutionary Computation,Indianapolis, USA, April1997, pp.153–157.
    [125] Das S, Suganthan P N. Differential evolution: A survey of the state-of-the-art [J].IEEE Transactions on Evolutionary Computation, February2011,15(1):4-31.
    [126] Neri F, Tirronen V. Recent advances in differential evolution:a survey andexperimental analysis [J]. Artificial Intelligence Review,2010,33:61-106.
    [127] Hendtlass T. A combined swarm differential evolution algorithm foroptimization problems [J]. Lecture Notes in Computer Science,2001,2070:11-18.
    [128] Zhang W J, Xie X F. DEPSO: Hybrid particle swarm with differential evolutionoperator [C]. Proceedings of the IEEE International Conference on Systems,Man, and Cybernetics, Washington, DC, USA,2003.
    [129] Moore P W, Venayagamoorthy G K. Evolving combinational logic circuitsusing a hybrid quantum evolution and particle swarm inspired algorithm [C].Proceedings of the2005NASA/DoD Conference of Evolution Hardware(EH’05),2005:97-102.
    [130] Xin B, Chen J, Zhang J, Fang H, Peng Z. Hybridizing differential evolution andparticle swarm optimization to design powerful optimizers: A review andtaxonomy [J]. IEEE Transactions on Systems, Man and Cybernetics—Part C:Applications and Reviews,2011;99:1-24.
    [131] Epitropakis M G, Plagianakos V P, Vrahatis M N. Evolving cognitive and social162experience in Particle Swarm Optimization through Differential Evolution: Ahybrid approach [J]. Information Sciences, December2012,216:50-92.
    [132] Zhang C, Ning J, Lu S, Ouyang D, Ding T. A novel hybrid differential evolutionand particle swarm optimization algorithm for unconstrained optimization [J].Operations Research Letters, March2009;37(2):117-122.
    [133] Ozcan H, Ozdemir K, Ciloglu H. Optimum cost of an air cooling system byusing differential evolution and particle swarm algorithms [J]. Energy andBuildings, October2013,65:93–100.
    [134] Sayah S, Hamouda A. A hybrid differential evolution algorithm based onparticle swarm optimization for nonconvex economic dispatch problems [J].Applied Soft Computing, April2013,13(4):1608–1619.
    [135] Fialho I, Balas G J. Design of nonlinear controllers for active vehiclesuspensions using parameter-varying control synthesis [J], Vehicle SystemDynamics, May2000,33(5):351–370.
    [136] Xie L. Output feedback H∞control of systems with parameter uncertainty [J].International Journal of Control, March1996,63(4):741–750.
    [137]俞立.鲁棒控制——线性矩阵不等式保处理方法[M].北京:清华大学出版社,2002.
    [138]石博强,申焱华,宁晓斌,李跃娟. ADAMS基础与工程范例教程[M].北京:中国铁道出版社,2007.
    [139]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [140]韩朝晖.基于ADAMS和MATLAB的汽车悬架系统仿真分析[J].机械设计,2008,25(7):16-19.
    [141]陈黎卿,郑泉,陈无畏等.基于ADAMS和Simulink联合仿真的主动悬架控制[J].农业机械学报,2007,38(4):12-15.Chen Liqing, Zheng Quan, Chen Wuwei, et al. Study on active suspensionsystem based on ADAMS and Simulink [J], Transactions of the ChineseSociety for Agricultural Machinery,2007,38(4):12-15.
    [142]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700