气动隔振器及八作动器隔振平台控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在卫星的寿命周期内,发射过程中的振动环境最为恶劣。采用六自由度隔振平台作为运载火箭和卫星的连接装置,能够隔离火箭传递到卫星的振动载荷,改善卫星发射过程的动力学环境。为保证可靠性和提高承载能力,本文采用气动八作动器主-被动一体化隔振平台实现卫星的六自由隔振。论文研究了气动隔振器及其构成的八作动器隔振平台的控制问题,重点研究了八作动器隔振平台的解耦控制方法。
     首先建立了气动主-被动一体化隔振器的动力学模型,分析了隔振器采用负载加速度反馈、相对位移反馈、气腔压力反馈以及基座加速度前馈控制时的控制性能,并通过实验进行了验证。然后将自适应滤波算法应用于气动隔振器的主动控制,通过实验对滤波x-LMS算法的两种控制器结构——自适应横向滤波器与自适应梳状滤波器进行了对比分析,讨论了影响振动控制效果的主要因素。实验结果显示,对简谐激励,两种滤波器的控制效果基本相同;但对含有多个谐波成分的周期激励,采用自适应梳状滤波器能得到更好的振动抑制效果。通
     过在自适应滤波器中引入偏置权,还可以抑制负载的低频干扰。采用牛顿-欧拉法建立了多动器并联六自由度隔振平台的动力学模型,分析了平台的通道耦合属性。分析结果表明,当各作动器的结构参数相同时,平台的通道耦合属性取决于平台构型和有效载荷的安装方式,作动器本身的动力学特性对平台的通道耦合属性没有影响。设计了几种六自由度隔振平台构型。对于这些构型,当有效载荷满足一定的安装条件时,平台的反馈通道具有一类解耦特征,其解耦控制比较容易实现。通过对这些构型的对比分析,本文的隔振平台选用一种对称的八作动器构型。文中还分析了该八作动器隔振平台的刚度矩阵与构型参数的关系,为平台的刚度设计提供了依据。
     论文系统研究了八作动器隔振平台的解耦控制问题。当有效载荷质心位于平台纵轴的延长线上、且载荷的质量矩阵为对角阵时,平台的动力学方程可分解为两个独立的单输入单输出通道和两个两输入两输出子系统。而在任意负载条件下,平台的六个输入输出通道间均存在交叉耦合影响。文中给出了一种解耦算法,这种算法即能用于第一种负载条件下平台二阶子系统的解耦,又可推广到任意负载条件下平台的解耦控制。然后分别采用比例控制和自适应滤波算法设计了平台的解耦控制器,对平台进行了仿真分析。
     此外,分析了负载柔性、作动器的质量和转动惯量以及弹簧分布质量对平台隔振性能的影响。仿真分析结果显示,八作动器隔振平台顶端放置柔性卫星时,平台通道间的耦合增强了,但是平台各主通道的振动仍然是主要的,采用所提出的解耦控制方法仍然能够很好地抑制平台振动。建立了考虑作动器质量和转动惯量情况下平台的动力学模型。分析结果表明,当平台八个作动器的结构参数相同时,作动器的质量和转动惯量对平台的通道耦合属性没有影响。由于转动惯量的作用,平台传递率曲线的高频段略有抬高,平台的高频隔振性能变差。作动器中弹簧分布质量的影响是使平台传递率曲线出现高频谐振峰。
     最后,通过实验验证了采用气动主-被动一体化隔振器的八作动器隔振平台的主、被动隔振性能。分别采用比例控制和自适应滤波算法设计了平台的解耦控制器,并在纵向和横向两种激振方式下对平台进行了主动控制实验。实验结果显示,在低频段,两种主动控制方法都能取得很好的振动抑制效果;在高频段,平台表现为被动隔振特性。这样,应用此平台可以实现六自由度主-被动一体化隔振。
During the launch stage, the launch vehicle (LV) provides the most severe dynamic loads that a satellite ever suffers in its whole mission life. Using a six degree of freedom (DOF) vibration isolation platform as the attachment fitting of the LV to the satellite is an effective way to attenuate the vibration transmission, thus improve the dynamic environment of the satellite. In this dissertation, to ensure the reliability and enhance the carrying capability, a six-DOF vibration isolation platform with eight pneumatic actuators is employed to realize the whole satellite vibration isolation (WSVI). The decoupling control problem of the octo-actuator vibration isolation platform (OVIP) is systemically studied.
     Firstly, the dynamic model of an integrated active and passive pneumatic isolator is established. Performances of the isolator using both the feedback control, where the feedback signals include the payload’s acceleration, the relative displacement and the chamber’s pressure, and the feedforward control with the base’s acceleration are theoretically investigated and experimentally validated. Then the adaptive filter algorithm is employed to control the isolator. An adaptive transversal filter and an adaptive comb filter using the filtered-X LMS algorithm are respectively implemented on the isolator, and major factors that influence the vibration suppression effect are discussed. Experimental results show that the two kinds of filters have the same performance for sinusoidal excitement, while, for multiple-harmonic excitement, the adaptive comb filter has better performance. Low-frequency disturbances of the payload can also be suppressed by using a bias weight in the filter.
     The dynamic model of a general six-DOF platform with several parallel actuators is established with the Newton-Euler method. Based on this model, the dynamic behavior of the platform is investigated. Analysis result shows that if all actuators are identical in structure, the coupling properties of the platform’s feedback channels depend on the configuration of the platform and the arrangement of the payload. Dynamics of the actuator have no influence on the coupling properties. Then several configurations of the six-DOF platform are designed. For a vibration isolation platform with one of these configurations, if the payload satisfies some conditions, the feedback channels of the platform will possess a decoupling feature, so its decoupling control is relatively easy to implement. By comparing these configurations, a symmetric octo-actuator configuration is selected for the WSVI platform studied in this dissertation. The relationship between the stiffness matrix and the configuration parameters of the OVIP is also studied, and a guide line for the stiffness design of the platform is proposed.
     Following the selection of the platform’s configuration, the decoupling control method of the OVIP is systemically studied. Dynamic analysis indicates that when the payload’s center of mass is at the extension line of the platform’s central axis and the payload’s mass matrix is diagonal, the dynamic equation of the platform can be decomposed into two independent single-input single-output channels and two independent two-input two-output subsystems. A decoupling control algorithm, which can further decouple the second-order subsystems, is developed. When the payload is arbitrarily placed, the six input and output channels of the platform are coupled with one another. In this case, the algorithm can also be generalized to realize the decoupling of the platform’s feedback channels. Base on the decoupling algorithm, a proportional controller and an adaptive filter controller are respectively designed and verified by numerical simulation.
     Effects of other factors, such as the payload’s flexibility, the actuator’s mass and moment of inertia as well as the distributed mass of the mechanical spring, on the performance of the platform are also studied. The flexibility of a satellite will reinforce the coupling among different channels, but the main channels of the platform are still dominant, thus the decoupling control method can also fairly well restrain the vibration of the platform. The dynamic model of the OVIP considering mass and moment of inertia of the actuator is developed. Analyses show that if all actuators have the same structure, its mass and moment of inertia have no effect on the coupling properties of the platform, nevertheless, due to the actuator’s moment of inertia, the high-frequency transmissibility of the platform is slightly amplified. As a result of the distributed mass of the mechanical spring, some high-frequency resonances appear on the vibration transmissibility curves of the platform.
     Finally, experiments are carried out to verify the performance of the OVIP. The decoupling proportional controller and the decoupling adaptive filter controller are separately implemented on the platform. Experimental results show that in the low-frequency range, the two kinds of controllers can both effectively attenuate the vibration of the platform, while, in the high-frequency range, the platform displays the passive performance. Therefore, with the integrated active and passive pneumatic isolator as the actuator, the OVIP can realize the six-DOF integrated active and passive vibration isolation.
引文
1张阿舟.实用振动工程(2)—振动控制与设计.航空工业出版社, 1997: 1~10
    2 D. Sciulli, D. J. Inman. Isolation Design for Systems with Flexible Base and Equipment. Proceedings of SPIE-The International Society for Optical Engineering. 1998, 3327: 378~386
    3 X. Huang, S. J. Elliott, M. J. Brennan. Active Isolation of a Flexible Structure from Base Vibration. Journal of Sound and Vibration. 2003, 263: 357~376
    4 B. Bavindra, A. K. Mallik. Performance of Non-Linear Vibration Isolators under Harmonic Excitation. Journal of Sound and Vibration. 1994, 170(3): 325~337
    5 W. H. Lin, A. K. Chopra. Earthquake Response of Elastic SDF Systems with Non-Linear Fluid Viscous Dampers. Earthquake Engineering and Structure Dynamics. 2002, 31: 1623~1642
    6 W. M. Haddad, A. Razavi, D. C. Hyland. Active Vibration Isolation of Multi-Degree of Freedom Systems. Proceedings of the American Control Conference. 1997: 3537~3541
    7王宝峰,李琳.多自由度系统振动控制仿真和实验.振动与冲击. 2004, 23(2): 58~60
    8陈玉强.双层隔振系统振动主动控制技术研究.哈尔滨工程大学工学博士学位论文. 2002
    9 T. Fujita, T. Honma, H. Kondo, T. Kobayashi, et al. Active 6-DOF Microvibration Control System Using Giant Magnetostrictive Actuator. Trans. Japan Soc. Mech. Eng. 1996: 55~61
    10 Z. Geng, S. H. Leonard. Six-Degree-of-Freedom Active Vibration Isolation Using a Stewart Platform Mechanism. Journal of Robotic Systems. 1993, (10): 725~744
    11王庭佛.冲压机械的隔振与蝶形弹簧隔振器.噪声与振动控制. 1989, (2):11~15
    12黄映云,吴善跃,朱石坚.囊式空气弹簧隔振器的特性计算研究.振动工程学报. 2004, 17(2):249~252
    13应杏绢,李郝林,倪争技.空气弹簧隔振器的动力特性研究.上海理工大学学报. 2006, 28(2):164~168
    14赵兵,朱石坚,翁雪涛,谭波.橡胶隔振器冲击刚度的试验研究.海军工程大学学报. 2005, 17(3):82~85
    15上官文斌,吕振华.液阻型橡胶隔振器非线性特性仿真分析.振动工程学报. 2003, 16(4):393~398
    16邹经湘.结构动力学.哈尔滨工业大学出版社, 1996:11~20
    17 R. C. Fenn, J. R. Downer, V. Gondhalekar, at el. An Active Magnetic Suspension for Space-based Microgravity Isolation. ASME Publication NCA. 1990, (8): 49~56
    18 C. E. Kaplow, J. R. Velman. Active Local Vibration Isolation Applied to a Flexible Space Telescope. Journal of Guidance and Control. 1980, (3):227~233
    19 R. S. Sharp, S. A. Hassan. On the Performance Capabilities of Active Automobile Suspension Systems of Limited Bandwidth. Vehicle System Dynamics. 1987, 16:213~225
    20朱浩,刘少军,黄中华等.铁道车辆垂向主动悬挂的预见控制.中国铁道科学. 2005, 26(2): 90~95
    21 S. M. Kim, S. J. Elliott, M. J. Brennan. Decentralized Control for Multichannel Active Vibration Isolation. IEEE Transactions on Control Systems Technology. 2001, 9(1): 93~100
    22王加春,董申,李旦.超精密机床的主动隔振系统研究.振动与冲击. 2000, 19(3): 54~56
    23浦军,梅德庆,陈子辰.超精密隔振平台主动振动控制系统设计.机械设计. 2003, 20(7): 31~33
    24顾仲权,马扣根,陈卫东.振动主动控制.国防工业出版社. 1997:2~10
    25 G. W. Bohannan, V. H. Schmidt, R. J. Conant, et al. Piezoelectric Polymer Actuators in a Vibration Isolation Application. Proceedings of SPIE-The International Society for Optical Engineering. 2000, 3987: 331~342
    26王加春,李旦.基于压电陶瓷的空气作动器的研制及应用.中国机械工程. 2005, 16(15): 1325~1328
    27李超,李琳.磁致伸缩材料作动器用于主动振动控制的实验研究.航空动力学报. 2003, 18(1): 134~139
    28梅德庆,浦军,陈子辰.用于超精密隔振的稀土超磁致伸缩致动器设计.仪器仪表学报. 2004, 25(6): 766~769
    29柳贵东,马国利,佘龙华.磁悬浮主动吸振器的研究.噪声与振动控制. 2003, (6): 18~20
    30 K. G. Ahn, H. J. Pahk, M. Y. Jung, et al. A Hybrid-Type Active Vibration Isolation System Using Neural Networks. Journal of Sound and Vibration. 1996, 192(4): 793~805
    31 J. Spanos, Z. Rahman, G. Blackwood, A Soft 6-axis Active Vibration Isolator. Proceedings of the American Control Conference, Washington. 1995: 412~416
    32马兴瑞,于登云,韩增尧等.星箭力学环境分析与试验技术研究进展.宇航学报. 2006, 27(3): 323~331
    33王毅,朱礼文,王明宇等.大型运载火箭动力学关键技术及其进展综述.导弹与航天运载技术. 2000, 243(1): 29~37
    34 A. S. Bicos, C. D. Johnson, L. P. Davis. Need for and Benefits of Launch Vibration Isolation. SPIE Proceedings. 1997, 3045: 14~19
    35 P. S. Wilke, C. D. Johnson, P. Grosserode. Whole-Spacecraft Vibration Isolation for Broadband Attenuation. Aerospace Conference Proceeding, IEEE. 2000, 4: 315~321
    36赵会光,马兴瑞,冯纪生.整星隔振技术若干问题的探讨.航天器工程. 2001, 10(3):30~37
    37 C. D. Johnson, P. S. Wilke. Protecting Satellite from the Dynamics of the Launch Environment. CSA Papers. 2003: 1~14
    38 K. K. Denoyer, C. D. Johnson. Recent Achievements in Vibration Isolation Systems for Space Launch and On-Orbit Application. CSA Papers. 2001: 1~10
    39 D. L. Edberg, C. D. Johnson, L. P. Davis, E. R. Fosness. On the Development of a Launch Vibration Isolation System. Proceedings of the SPIE Smart Structures Conference, San Diego, CA. 1997, 3-6: 31~37
    40 C. D. Johnson, P. S. Wilke, P. J. Grosserode. Whole-Spacecraft Vibration Isolation System for the GTO/Taurus Mission. SPIE Proceedings. 1999, 3672: 175~185
    41 C. D. Johnson, P. S. Wilke, K. R. Darling. Multi-axis Whole-Spacecraft Vibration Isolation for Small Launch Vehicles. SPIE Conference on Smart Structures and Materials, Newport Beach, CA. 2001, 4331: 151~161
    42 P. S. Wilke, C. D. Johnson. Payload Isolation System for Launch Vehicles. Proceedings of SPIE. Smart Structures and Materials–Passive Damping and Isolation. 1997:20~30
    43 D. Sciulli, K. K. Denoyer, E. R. Fosness. Program Development of Whole-Spacecraft Launch Isolation Systems at the U.S. Air Force Research Laboratory. 50th International Astronautical Congress, Amsterdam. 1999:1~6
    44 D. L. Edberg, B. Bruce, G. James, et al. Passive and Active Launch Vibration Studies in the LVIS Program. Proceedings of SPIE-The International Society for Optical Engineering. 1998, 3327: 411~422
    45 K. Farshad, R. Jahangir, R. E. Scott. A Three Degrees-of-Freedom Adaptive-Passive Isolator for Launch Vehicle Payloads. Proceeding of SPIE. 2000, 164~175
    46 D. Sciulli, S. F. Griffin. Hybrid Launch Isolation System. Part of the SPIE Conference on Industrial and Commercial Applications of Smart Structures Technologies, Newport Beach, California. 1999, 3674: 352~359
    47 L. K. Liu, L. Liang, G. T. Zheng, W. H. Huang. Dynamic Design of Octo-Strut Platform for Launch Stage Whole-Spacecraft Vibration Isolation. Journal of Spacecraft and Rocket. 2005, 42(4): 654~662
    48刘丽坤.八作动器隔振平台及整星隔振研究.哈尔滨工业大学博士学位论文. 2005
    49王战.整星隔振平台的优化设计和设计过程研究.哈尔滨工业大学硕士学位论文. 2005
    50 L. He, G. T. Zheng. Effect of Viscous Heating in Fluid Damper on the Vibration Isolation Performance. Mechanical Systems and Signal Processing. 2007, 21(8): 3060~3071
    51何玲.流体阻尼器特性及其对整星隔振性能影响的研究.哈尔滨工业大学博士学位论文. 2007
    52 Stewart. A Platform with Six Degree of Freedom. Proc. Inst. Mech. Eng., 1965, 180(15): 371~386
    53 K. H. Hunt. Kinematic Geometry of Mechanisms. Oxford: Claredon Press,1978
    54陈学生,陈在礼,孔民秀.并联机器人研究的进展与现状.机器人. 2002, 24(5): 464~470
    55 E. F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. Int J of Rob Res. 1986, 5(2): 157~182
    56 J. P. Merlet. Force-Feedback Control of Parallel Manipulators. IEEE International Conference on Robotics and Automation. 1988: 1484~1489
    57 K. Sugimoto. Kinematic and Dynamic Analysis of Parallel Manipulators by Means of Motor Algebra. Journal of Mechanisms, Transmissions, and Automation in Design. 1987, 109(1): 3~7
    58 W. Do, D. Yang. Inverse Dynamic Analysis and Simulation of a Platform Type of Robot. Journal of Robotic Systems. 1988, 5(3): 209~227
    59 Z. Geng, L. S. Haynes, J. D. Lee. On the Dynamic Model and Kinematics Analysis of a Class of Stewart Platform. Journal of Robotics and Autonomous Systems. 1992, (9):237~254
    60 G. Lebret, K. Liu, F. L. Lewis. Dynamic Analysis and Control of a Stewart Platform Manipulator. Journal of Robotic Systems. 1993, 10(5): 629~655
    61 B. Dasgupta, T. S. Mruthyunjaya. Closed-Form Dynamic Equations of the General Stewart Platform through the Newton-Euler Approach. Mech. Mach. Theory. 1998, 33(7):993~1012
    62 Z. Ji. Study of the Effect of Leg Inertia in Stewart Platforms. IEEE International Conference on Robotics and Automation, Atlanta. 1993: 121~126
    63黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社, 1997
    64王洪瑞.液压6-DOF并联机器人操作手运动和力控制的研究.河北大学出版社, 2001
    65 M. A. Nahon, J. Angeles. Force Optimization in Redundantly-Actuated Closed Kinimatic Chains. IEEE International Conference on Robotics and Automation. 1989: 951~956
    66 K. J. Reckdahl. Dynamics and Control of Mechanical Systems Containing Closed Kinematic Chains. Stanford University, PhD Thesis, 1996
    67蔡胜利,白师贤.冗余驱动的平面并联操作手的输入力优化.北京工业大学学报. 1997, 23(2): 37~40
    68蔡胜利,白师贤.冗余驱动的并联机器人性能分析.机械科学与技术. 1996, 15(2): 235~238
    69 Z. J. Geng, L. S. Hayes. Six Degree-of-Freedom Active Vibration Control Using the Stewart Platforms. IEEE Transactions on Control Systems Technology. 1994, 2(1): 45~53
    70 D. Thayer, J. Vagners, A. Flotow. Six-axis Vibration Isolation System Using Soft Actuators and Multiple Sensors. Journal of Spacecraft and Rockets. 2002, 39(2): 206~212
    71 J. E. McInroy. Dynamic Modeling of Flexure Jointed Hexapods for Control Purpose. IEEE International Conference on Control Applications, Hawaii. 1999: 508~513
    72 J. E. McInroy. Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes. IEEE Transactions on Mechatronics. 2002, 7(1): 95~99
    73 J. E. McInroy, J. C. Hamann. Design and Control of Flexure Jointed Hexapods. IEEE Transactions on Robotics and Automation. 2000, 16(4): 372~381
    74 J. E. McInroy, J. C. Hamann. Control of Flexure Jointed Hexapods. Proceedings of 38th Conference on Decision & Control, Phoenix, Arizona. 1999: 3863~3868
    75 Y. X. Chen, J. E. McInroy. Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix. IEEE Transactions on Control Systems Technology. 2004, 12(3): 413~421
    76 Y. X. Chen, J. E. McInroy. Identification and Decoupled Control of Flexure Jointed Hexapods. IEEE International Conference on Robotics and Automation, San Francisco. 2000: 1936~1941
    77 Y. Yong, J. E. McInroy, F. Jafari. Generating Classes of Locally Orthogonal Gough-Stewart Platforms. IEEE Transactions on Robotics. 2005, 21(5): 812~820
    78 J. E. McInroy, F. Jafari. Finding Symmetric Orthogonal Gough-Stewart Platforms. IEEE Transactions on Robotics. 2006, 22(5): 880~889
    79 F. Jafari, J. E. McInroy. Orthogonal Gough-Stewart Platforms for Micromanipulation. IEEE Transactions on Robotics and Automation. 2003, 19(4): 595~603
    80 Z. J. Guo, J. E. McInroy, F. Jafari. Realization of MicromanipulatingGough-Stewart Platforms with Desired Dynamics. IEEE International Conference on Robotics and Automation. 2006: 655~660
    81 J. Sullivan, Z. Rahman, R. Cobb. Closed-Loop Performance of a Vibration Isolation and Suppression System. Proceedings of the American Control Conference, New Mexico. 1997: 3974~3978
    82 R. Cobb, J. Sullivan, A. Das. Vibration Isolation and Suppression System for Precision Payloads in Space. Smart Materials and Structures. 1999, 8(6): 798~812
    83 J. E. McInroy, J. F. O’Brien, G. W. Neat. Precise, Fault-Tolerant Pointing Using a Stewart Platform. IEEE/ASME Transactions on Mechatronics. 1999, 4(1): 91~95
    84 J. E. McInroy, G. W. Neat, J. F. O’Brien. A Robotic Approach to Fault-Tolerant, Precision Pointing. IEEE Robotics & Automation Magazine. 1999, 6(4): 24~31
    85 B. Widrow, S. D. Stearn. Adaptive Signal Processing. Prentice Hall, 1985
    86 S. M. Kuo, D. R. Morgan. Active Noise Control: A Tutorial Review. Proceedings of the IEEE. 1999, 87(6): 943~973
    87 S. J. Elliott, P. A. Nelson. The Application of Adaptive Filtering to the Active Control of Sound and Vibration. ISVR, Univ. Southampton, U.K., Tech. Rep. 136, 1985
    88 D. R. Morgan. An Analysis of Multiple Correlation Cancellation Loops with a Filter in the Auxiliary Path. IEEE Trans. Acoust., Speech, Signal Processing. 1980, 28: 454~467
    89 S. D. Sommerfeldt. Adaptive Vibration Control of Vibration Isolation Mounts, Using an LMS-based Control Algorithm. Pennsylvania State University, PhD Thesis, 1989
    90 S. D. Sommerfeldt, J. Ticky. Adaptive Control of a Two-stage Vibration Isolation Mount. J. Acoust. Soc. Amer.. 1990, 88: 938~944
    91刘志刚.柴油机振动自适应有源隔离技术研究.哈尔滨工程大学博士学位论文. 2000
    92李玩幽,杨铁军,张洪田等.基于修改自适应算法(MLMS)的主动吸振模拟试验研究.船舶工程. 2000, (4): 29~32
    93 B. Widrow, D. Shur, S. Shaffer. On Adaptive Inverse Control. Proc. 15thAsilomar Conf., 1981: 185~189
    94 J. C. Burgess. Active Adaptive Sound Control in a Duct: A Computer Simulation. J. Acoust. Soc. Amer., 1981, 70: 715~726
    95 S. D. Snyder, C. H. Hansen. The Effect of Transfer Function Estimation Errors on the Filtered-X LMS Algorithm. IEEE Trans. Signal Processing. 1994, 42: 950~953
    96 C. C. Boucher, S. J. Elliott, P. A. Nelson. The Effects of Modeling Errors on the Performance and Stability of Active Noise Control Systems. In Proc. Recent Advances in Active Control of Sound Vibration. 1991: 290~301
    97 G. Long, F. Ling, J. G. Proakis. The LMS Algorithm with Delayed Coefficient Adaptation. IEEE Trans. Acoust., Speech, Signal Processing. 1989, 37: 1397~1405
    98 G. Long, F. Ling, J. G. Proakis. Corrections to‘The LMS Algorithm with Delayed Coefficient Adaptation’. IEEE Trans. Signal Processing. 1992, 40: 230~232
    99 J. R. Glover. Adaptive Noise Canceling Applied to Sinusoidal Interferences. IEEE Trans. Acoust., Speech, Signal Processing. 1977, 25(6): 484~491
    100 B. Widrow, J. R. Glover, et al. Adaptive Noise Cancelling: Principles and Applications. Proceedings of The IEEE. 1975, 63(12): 1692~1716
    101杨铁军.柴油机装置有源隔振技术研究.哈尔滨工程大学博士学位论文. 2001
    102费红姿,杨庆俊,郑钢铁,黄文虎.主动隔振中气动压力跟踪的预测控制研究.应用力学学报. 2005, 22(1): 12~16
    103费红姿.基于预测控制的主动隔振研究.哈尔滨工业大学博士学位论文. 2004
    104杨庆俊.八作动器气动隔振平台主动隔振研究.哈尔滨工业大学博士后出站报告. 2006
    105 Q. J. Yang, J. Li, Z. W. Wang. Double Loop Active Vibration Control of Pneumatic Isolator with Two Separate Chambers. Chinese Journal of Mechanical Engineering. 2006, 19(4): 610~613
    106黄廷祝,钟守铭,李正良.矩阵理论.高等教育出版社, 2003: 107~114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700