基于磁流变阻尼器的整星半主动隔振技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在卫星的整个寿命周期内,发射阶段是最易受到损坏的阶段。在发射阶段,卫星将受到运载火箭发动机产生的准静态推力、发动机燃烧产生的随机振动、整流罩受到的气动激励以及各级火箭分离时产生的瞬态冲击等。由于传统的星箭连接采用锥壳适配器,其刚度很大,几乎能够传递所有来自于运载火箭的载荷,这些载荷对卫星安全构成严重威胁。为降低卫星受到的来自于运载火箭的各种振动和冲击载荷,采用整星隔振是近年来新兴起的卫星隔振措施。
     本文针对柔性卫星整体隔振,提出一种采用磁流变阻尼技术的新型半主动隔振平台。新型整星隔振平台以特殊形状杆件作为弹性元件,杆件与上下平台之间采用固接方式。为防止整星隔振系统的横向摇晃频率过低,提出一种套筒式防摇结构。建立新型整星隔振系统的动力学模型,并利用模态截断法简化模型。采用遗传算法对整星隔振平台的结构参数进行优化设计。
     建立常规剪切阀式磁流变阻尼器的集中参数模型,分析常规剪切阀式磁流变阻尼器在高频振动时的硬化原理,并对高频硬化对隔振的影响进行理论分析。针对常规剪切阀式磁流变阻尼器高频动刚度很大,对高频隔振不利的情况,提出一种可应用于整星隔振平台的新型磁流变阻尼器——高频解耦型磁流变阻尼器。建立高频解耦型磁流变阻尼器的集中参数模型,分析该阻尼器的高频动态特性及低频耗能损失。根据具体隔振要求,设计高频解耦型磁流变阻尼器的结构及参数。采用有限元方法进行磁饱和分析,确定磁流变阻尼器的最大出力和最大控制电流。在分析现有各种磁流变阻尼器力学模型的前提下,在双Sigmoid模型基础上建立高频解耦型磁流变阻尼器的阻尼力模型。设计并制造高频解耦型磁流变阻尼器,对其进行性能测试与分析,并与常规磁流变阻尼器的试验结果对比,同时验证所建立的阻尼力模型的准确性。
     在分析振动传递率、隔振器振级落差和功率流等指标的前提下,提出加权隔振器影响系数指标,以此做为整星隔振系统的效果评价指标。以新型整星隔振系统为例,推导出利用位移阻抗表示的加权隔振器影响系数表达式。通过计算加权隔振器影响系数指标,对新型整星隔振系统进行效果预测。采用加权隔振器影响系数对柔性体进行隔振效果评价,不但表达直观,而且可实现理论分析及实测的统一。
     建立卫星-锥壳适配器系统和卫星-隔振平台系统的有限元模型,分析整星隔振系统在基础随机激励下的被动隔振效果,证明新型隔振平台的被动隔振效果良好。建立星箭整体的有限元模型,分析星箭耦合情况。采用对比从发动机到卫星上关键点的传递函数来分析运载火箭的刚度对整星隔振效果的影响;通过计算运载火箭的振型相关系数来分析加入新型隔振平台后对运载火箭动态特性的影响。
     为了对新型整星隔振系统进行半主动隔振控制,采用一种融合了模糊逻辑控制和最优控制的模糊最优控制方法。建立整星隔振系统状态方程,利用Simulink和MATLAB联合仿真来分析新型整星隔振系统采用限幅最优控制和模糊最优控制时的控制效果,同时比较采用半主动隔振控制与采用锥壳适配器时的隔振效果。
     设计并制造新型整星隔振平台、锥壳适配器和模拟卫星,搭建整星隔振系统,进行整星被动隔振试验及半主动隔振控制的硬件在环试验。试验结果表明:新型整星隔振系统采用模糊最优控制在低频和高频域内都能得到较好的隔振效果。
The launch stage is the period with most severe dynamic environment that a spacecraft will experience during its whole mission life. At the launch stage, the spacecraft is subject to severe vibrations induced by the launch vehicle, such as the steady-state aerodynamic loads, the thrust load, and shock loads at the stage separation period. Generally, a conical adapter is employed to connect the payload and the launch vehicle. The conical adapter cannot prevent the vibration energy from being transmitted into the satellite because of its high stiffness. To protect the satellite from the severe loads, a whole-spacecraft isolation system is presented recently.
     In this dissertation, new semi-active whole-spacecraft vibration isolation (WSVI) platform is presented for the isolation of FY-III satellite and LM-3A launch vehicle. In the WSVI, the magneto-rheological (MR) damping technique is adopted and utilized. Special bars are presented as the elastic elements, which are fixed to the upper and lower stages. An anti-shake mechanism is proposed to enhance the lateral stiffness of the isolation system. The dynamic model of the platform is established in a simple form utilizing the mode truncation method. Furthermore, the dynamic and structural parameters are optimized by introducing the genetic algorithm.
     The principle of high-frequency hardening, which usually occurred in conventional shear-valve MR damper, is investigated based on the lumped-parameter model and its effects on isolation are evaluated theoretically.
     The large dynamic stiffness in high frequency plays a negative role in isolation; therefore, a new high-frequency decoupled MR Damper is proposed and applied to WSVIP. The lumped parameter model is derived; then the energy loss in lower frequency and dynamic properties in high frequency are analyzed. The structure and parameters are given according to the isolation requirements, while maximum output force and corresponding current are determined by magnetic circuit saturation analysis utilizing FEM. Based on the existing models of MR dampers, a parameterized dynamic model for high-frequency decoupled MR damper is given based on the Bi-Sigmoid model. The high-frequency decoupled MR dampers are manufactured and then tested to verify the mathematical model. The results are compared with the experimental results of conventional MR dampers. Generally, large damping is difficult to obtain, which is needed in the WSVI system. Therefore, a new mechanism is presented for the installation of the high-frequency decoupled MR dampers in the WSVI system.
     Based the analyses and comparison of conventional index, including transmission ratio, vibration level difference and power flow, a weighted impact factor is proposed for performance evaluation of WSVI. The formula of the weighted impact factor is derived for the proposed WSVI system. The formula is a function of the displacement admittance. The weighted impact factor is evaluated, and then the performance of the proposed WSVI system is predicted. The results prove that, the proposed appraisal method can unify the real measurement and theoretical analysis.
     Based on the finite element model of the satellite-PAF system and satellite-WSVIP, the passive isolation performance with base excitation is investigated. Numerical results prove that the proposed WSVIP can perform better. Furthermore, the satellite-launch vehicle coupled system is investigated in the same way. The transfer functions between key points in the satellite and the engine are used to evaluate effects of the rocket stiffness on the isolation performance. The correlative coefficients of the launch vehicle with and without the WSVI system are evaluated; accordingly, the effects of the additional WSVI system on the dynamic characteristics of the launch vehicle are investigated.
     A fuzzy optimal control method is utilized for the semi-active control of the WSVI system. The state equations are firstly established, and then the isolation performances of the WSVI system is analyzed in MATLAB/Simulink, two control method are compared, i.e. the limiting optimal control and fuzzy optimal control. Furthermore, the isolation performances of the WSVI system and the conical adapter are evaluated and compared.
     Finally, the PAF, the proposed WSVIP and the satellite model are designed and manufactured, and then the WSVI system is assembled. The on-loop experiments of passive and semi-active WSVI are carried out. The results prove that, by utilizing the fuzzy logic control, the proposed WSVI system is effective at both low and high frequency stage, which is coincident with theoretical analysis.
引文
1 P. S. Wilke, P. Alto, C. D. Johnson, et al. Payload Isolation System for Launch Vehicles. SPIE Proceedings. San Diego, 1997, 3045: 20-30
    2 A. S. Bicos, C. D. Johnson. Need for and Benefits of Launch Vibration Isolation. SPIE Proceedings. San Diego, 1997, 3045: 14-19
    3 C. D. Johson, P S Wilke, K R Darling. Multi-axis Whole-Spacecraft Vibration Isolation for Small Launch Vehicles. SPIE Conference on Smart Structures and Materials, Newport Beach, 2001, 4331: 153-161
    4赵会光,马兴瑞,冯纪生.整星隔振技术若干问题的探讨.航天器工程, 2001, 10(3): 30~37
    5 Y. Du. Internal Resonances in Vibration Isolators and Their Control Using Passive and Hybrid Dynamic Vibration Absorbers. Dissertation of Virginia Polytechnic Institute and State University, 2003
    6 Y. Du, R. A. Burdisso, E. Nikolaidis, et al. Effects of Isolators Internal Resonances on Force Transmissibility and Radiated Noise. Journal of Sound and Vibration, 2003, 268: 751-778
    7 C. D. Johnson, P. Wilke. Protecting Satellite from the Dynamics of the Launch Environment. CSA papers. 2003: 1-14
    8 K. K. Denoyer, C. D. Johnson. Recent Achievements in Vibration Isolation Systems for Space Launch and On-orbit Application. 52nd International Astronautical Congress. Toulouse, France. 2001: IAF-01-I.2.01
    9 C. D. Johnson, P. S. Wilke, S. C. Pendleton. SoftRide Vibration and Shock Isolation Systems that Protect Spacecraft from Launch Dynamic Environments. Proceedings of the 38th Aerospace Mechanisms Symposium, Langley Research Center, 2006: 1-15
    10 J. R. Maly, E. C. Fowler, A. C. Biskner et al. Structural Models and Dynamic Measurements of Satellite Launch Adapter Structures. 50th AIAA/ASME/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, 2009: AIAA2009-2695
    11 P. S. Wilke, C. D. Johnson. Payload Isolation System for Launch Vehicles. Proceedings of SPIE. Smart Structures and Materials-Passive Damping and Isolation. 1997: 20-30
    12 D. Sciulli, K. K. Denoyer, E. R. Fosness. Program Development of Whole-Spacecraft Launch Isolation Systems at the U.S. Air Force Research Laboratory. 50th International Astronautical Congress. Amsterdam, Netherlands. 1999: 1-6
    13 D. L. Edberg,Fukushima,D. Jeffrey,et al.Passive Lateral Vibration Isolation System for a Spacecraft Launch Vehicle.United States Patent:6012680,2001.
    14 F. Khorrami , J. Rastegar , R. S. Erwin . A three Degrees-of-freedom Adaptive-passive Isolator for Launch Vehicle Payloads.Proceedings of the SPIE - Industrial and Commercial Applications of Smart Structures Technologies.Newport Beach , 2000, 3991: 164-175
    15 D. L. Edberg, C. D. Johnson, L. P. Davis. On the Development of a Launch Vibration Isolation System. Proceedings of the SPIE - Smart Structures Conference, San Diego, CA, 1997, 3045: 31-37
    16 D. L. Edberg, B. Bruce, G. James. Passive and Active Launch Vibration Studies in the LVIS Program. Proceedings of SPIE - Passive Damping and Isolation. San Diego, CA, 1998, 3327: 411-422
    17 D. Sciulli , S. F.Griffin . Whole-spacecraft Hybrid Isolation System for Launch Vehicles.United States Patent:6135390,2000
    18 M. E. Evert, P. C. Janzen, E. H. Anderson. Active Vibration Isolation System for Launch Load Alleviation. Proceedings of SPIE - Industrial and Commercial Applications of Smart Structures Technologies. San Diego CA. 2004, 5388: 62-77
    19 M. Yalcintas, H. M. Dai . Vibration Suppression Capabilities of Magnetorheological Materials Based Adaptive Structures. Smart Materials and Structures,2004,13(1): 1-11
    20 G. Yang, B. F. Spencer Jr, J. D. Carlson,et al. Large-scale MR Fluid Dampers:Modeling and Dynamic Performance Considerations. Engineering Structures,2002, 24(3): 309-323
    21 G. Z. Yao, F. F. Yao,G. Chen, et al.MR Damper and Its Application for Semi-active Control of Vehicle Suspension System.Mechatronics,2002, 12(7): 963-973
    22 P. Jean, R. Ohayon, D. L. Bihan. Semi-active Control Using Magneto-Rheological Dampers for Payload Launch Vibration Isolation. SmartStructures and Materials. 2006, 6169: 61690H-1
    23 M. Unsal. Semi-active Vibration Control of a Parallel Platform Mechanism Using Magnetorheological Damping. Dissertation for the Doctoral Degree in Engineering . Florida:University of florida, 2006
    24 G. G. Karahalis, G. S. Agnes. Preliminary Analysis of Hybrid Launch Isolation for Spacecraft. Proceedings of SPIE - Industrial and commercial applications of smart structures technologies. Newport Beach, 1999, 3674: 360-370
    25 G. G. Karahalis. Whole Spacecraft Vibration Isolation. Master Thesis, Air Force Institute of Technology Wright-PattersonAFB OH School of Engineering, 1999
    26 P. S. Wilke, C. D. Johnson. Whole-Spacecraft Passive Launch Isolation. Journal of Spacecraft and Rocket. 1998, 35: 690-694
    27 T. T. Hyde, L. P. Davis. Optimization of Multi-Axis Passive Isolation Systems. Proceedings of SPIE - The International Society for Optical Engineering. 1998, 3327: 399-410
    28 G. T. Zheng. Parametric Studies of the Whole Spacecraft Vibration Isolation. AIAA Journal. 2003, 41(9): 1839-1841
    29 G. G. Karahalis. Whole Spacecraft Vibration Isolation. Master’s Thesis. USA: OH. School of Engineering, 1999
    30 D. Sciulli, S. F. Griffin. Hybrids Launch Isolation System. SPIE Proceedings. Newport Beach CA, 1999, 3674: 352-359
    31 J. R. Jarosh. Active and Adaptive Control for Payload Launch Vibration Isolation. Master’s Thesis. USA: OH. School of Engineering, 2000
    32 J. R. Jarosh,G. S. Agnes, G. G. Karahalis.Adaptive Control for Payload Launch Vibration Isolation. SPIE Proceedings-Damping and Isolation. Conference. Newport Beach, 2001, 4331: 162-174
    33 E. Flint. Active/Passive Counter-force Vibration Control and Isolation Systems. Proceedings of the IEEE 2000 Aerospace Conference. Big Sky Montana, 2000, 4: 285-298
    34 E. Flint, E. Anderson. Multi-degree of Freedom Parallel Actuation System Architectures for Motion Control. American Institute of Aeronautics and Astronautics (AIAA), 2001-4750
    35张军,谌勇,张志谊等.整星隔振器的隔振性能分析.宇航学报, 2005, 26(10): 110-114
    36张军,谌勇,张志谊等.一种整星隔振器的研制.振动与冲击, 2005, 24(5): 35-39
    37张军,韦凌云,谌勇等.整星隔振系统优化设计研究.机械科学与技术. 2005, 24(10): 1184- 1187
    38张军,梁启明,谌勇等.整星隔振防摇装置的研究.噪声与振动控制. 2005, (2): 29-32
    39梁鲁,申智春,齐晓军.整星阻尼减振方案及试验结果分析.上海航天, 2008, (4): 39-45
    40申智春,梁鲁,郑钢铁.某型卫星有效载荷支架振动抑制.宇航学报, 2006, 27(3): 503-506
    41 Y. Chen, B. Fang, T. Z. Yang, et al. Study of Whole-spacecraft Vibration Isolators Based on Reliability Method. Chinese Journal of Aeronautics, 2009, 22(2): 153-159
    42陈阳,方勃,曲秀全.新型整形隔振器隔振性能分析.宇航学报, 2007,
    28(4): 986-990
    43周杰,方勃,王日新.正交各向异性层合圆板的非轴对称弯曲.宇航学报, 2007, 28(4): 819-823, 864
    44 L. K. Liu, G. T. Zheng, W. H. Huang. Octo-strut Vibration Isolation Platform and its Application to Whole Spacecraft Vibration Isolation. Journal of Sound and Vibration, 2006, 289(4-5): 726-744
    45刘丽坤,郑钢铁,黄文虎.整星被动多杆隔振平台研究.应用力学学报. 2005, 22(3): 329-335
    46 L. K. Liu, G. T. Zheng, W. H. Huang. Study of Liquid Viscosity Dampers in Octo-strut Platform for Whole-spacecraft Vibration Isolation. Acta Astronautica, 2006, 58(10): 515– 522
    47 L. K. Liu, L. Liang, G. T. Zheng et al. Dynamic Design of Octostrut Platform for Launch Stage Whole-Spacecraft Vibration Isolation. Journal of Spacecraft and Rockets, 2005, 42(4): 654-662
    48 X. L. Wang, Q. J. Yang, G. T. Zheng. Dynamic Analysis and Decoupling Control of Octo-pneumatic Actuator Vibration Isolation Platform. Chinese Journal of Mechanical Engineering, 2009, 22(1): 116-123
    49王晓雷,杨庆俊,郑钢铁.整星主动隔振平台研究.宇航学报, 2007, 28(2): 438~441
    50欧进萍,关新春.磁流变耗能器及其性能.地震工程与工程振动, 1998,18(3): 74-81
    51关新春,李金海,欧进萍.足赤磁流变液耗能器的性能与试验研究.工程力学, 2005, 22(6): 207-211
    52陈照波,涂奉臣,李明章.旋转式磁流变阻尼器用于卷料张力模糊控制.哈尔滨工业大学学报, 2007, 39(11): 1732-1735, 1082
    53 Unsal, M. Niezrecki, C. Crane, et al. Two Semi-active Approaches for Vibration Isolation: Piezoelectric Friction Damper and Magnetorheological damper. Proceedings of the IEEE International Conference on Mechatronics 2004. Istanbul Turkey, 2004: 60- 65
    54周云,谭平.磁流变阻尼控制理论与技术.科学出版社, 2007: 33-35, 133
    55 M. Unsal, C. Niezrecki, C. D. Crane. Multi-axis Semi-active Vibration Control using Magnetorheological Technology. Journal of Intelligent Material Systems and Structures, 2008, 19(12): 1463-1470
    56 L. Liu, B. L. Wang. Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms Via H-infinity and mu synthesis. Chinese Journal of Aeronautics, 2008, 21(2): 125-133
    57 A. Preumont, M. Horodinca, I. Romanescu, et al. A Six-axis Single-stage Active Vibration Isolator Based on Stewart Platform. Journal of Sound and Vibration, 2007, 300(3-5): 644-661
    58机械设计手册编委会.机械设计手册(第一卷).机械工业出版社, 2007: 3-521
    59 F. Khorrami , J. Rastegar , R. S. Erwin. A three Degrees-of-freedom Adaptive-passive Isolator for Launch Vehicle Payloads. SPIE Proceedings- Industrial and Commercial Applications of Smart Structures Technologies. Newport Beach, 2000: 164-176
    60 Z. Wang, L. K. Liu, G. T. Zheng. Optimal Design of Octo-Strut Vibration Isolation Platform. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 749-756
    61李人厚.智能控制理论和方法.西安电子科技大学出版社, 1999: 169-199
    62 G. Kim, R. Singh. A Study of Passive and Adaptive Hydraulic Engine Mount Systems With Emphasis on Non-linear Characteristics. Journal of Sound and Vibration, 1995, 179(3): 427-453
    63涂奉臣,陈照波,李华等.一种改进型磁流变阻尼器用于宽频隔振研究.振动工程学报. 2007, 20(5): 484-488
    64 M. Lita, N. C. Popa, C. Velescu et al. Investigations of a Magnetorheological Fluid Damper. IEEE Transactions on Magnetics, 2004, 40(2): 469-472
    65 H. Gavin, J. Hoagg, M. Dobossy. Optimal Design of MR Dampers. Workshop on Smart Structures for Improved Seismic Performance in Urban Regions, Seattle WA, 2001: 225-236
    66张红辉,廖昌荣,陈伟民等.磁流变阻尼器磁路设计及磁饱和有限元分析.功能材料与器件学报, 2004, 10(4): 493-497
    67瞿伟廉,樊友川.磁流变阻尼器的磁路有限元分析与优化方法.华中科技大学学报, 2006, 23(3): 1-4
    68闫维明,纪金豹,葛惠娟.逆变式MR阻尼器磁路设计与试验研究.北京工业大学学报, 2006, 32(7): 592-595
    69李秀岭.非对称建筑结构的磁流变阻尼器半主动控制.大连理工大学博士学位论文, 2006: 33, 49-55
    70 H. P. Gavin, R. D. Hanson, F. E. Filisko. Electrorheological Dampere, Part1: Analysis and Design. Journal of Applied Mechanics, 1996, 63(3): 669-675
    71 H. P. Gavin, R. D. Hanson, F. E. Filisko. Electrorheological Dampere, Part2: Testing and Modeling. Journal of Applied Mechanics, 1996, 63(3): 676-682
    72 N. M. Wereley, L. Pang. Nondimensional Analysis of Semi-active Electrorheological and Magnetorheological Dampers Using Approximate Parallel Plate Models. Smart Materials and Structures, 1998, 7(5): 732-743
    73 G. M. Kamath, M. K. Hurt, N. M. Wereley. Analysis and Testing of Bingham Plastic Behavior in Semi-active Electrorheological Fluid Dampers. Smart Materials and Structure, 1996, 5: 576-590
    74 G. Yang. Large-scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control. Ph. D Dissertation University of Notre Dame,Indiana, USA, 2001
    75 R. Stanway, J. L. Sproston, N. G. Stevens. Non-linear Modeling of an Electrorheological Vibration Damper. Journal of Electrostatics, 1987, 20(2): 167-184
    76 T. Hiwatashi, Y. Shiozaki, H. Fujitani et al. Shaking table Tests on Semi-active Base-isolation System by Magnetorheological Fluid Damper. Proceedings of the SPIE. San Diego CA USA, 2003, 5056: 400-411
    77周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证.地震工程与工程振动, 2002, 22(4): 144-150
    78 L. Pang, G. M. Kamath, N. M. Wereley. Dynimic Characterization and Analysis of Magnetorheological Damper Behavior. Proceedings of SPIE-The International Society for Optical Engineering. San Diego CA USA, 1998, 3327: 284-302
    79 Y. K. Wen. Method of Random Vibration of Hysteretic Systems. Journal of Engineering Mechanics Division, 1976, 102(2): 249-263
    80 F. Yi, S. J. Dyke, J. M. Caicedo et al. Experimental Verification of Multiinput Seismic Control Strategies for Smart Dampers. Journal of Engineering Mechanics, 1998,127(11): 1152-1164
    81关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定.振动与冲击, 2001, 20(1): 5-9
    82徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析.建筑结构, 2003, 33(1): 68-70
    83李秀岭,李宏男.磁流变阻尼器的双sigmoid模型及试验验证.振动工程学报, 2006, 19(2): 168-172
    84 I. Kajiwara, A. Nagamatsu. Integrated Design of Structure and Control System Considering Performance and Stability. Proceedings of the 1999 IEEE International Conference on Control Application. USA, 1999: 86-91
    85 C. C. Chang, P. Roschke. Neural Network Modeling of a Magnetorheological Damper. Intell. Mater. Syst. Struct. 1998, 9(9): 755-764
    86 S. B. Choi, S. K. Lee, Y. P. Park. A Hysteresis Model for the Field-dependent Damping Force of a Magnetorheological Damper. J. Sound Vib.,2001,245:375-383
    87涂建维,瞿伟廉,邹承明. MR智能阻尼器试验研究及径向基网络模型.武汉理工大学学报, 2003, 25(1): 43-46
    88周丽,张志成.基于磁流变阻尼器的结构振动优化控制.振动工程学报, 2003, 16(1): 109-113
    89夏品奇.基于系统识别理论的磁流变阻尼器模型.工程力学, 2003, 20(3): 115-119
    90汪小华,张培强.磁流变液阻尼器的模糊逻辑非参数建模.中国科学技术大学学报, 2000, 30(2): 218-222
    91何亚东,黄金枝,何玉敖.智能磁流变(MR)阻尼器半主动控制的研究.振动工程学报, 2003, 16(2): 198-202
    92 H. G. Goyder, R. G. White. Vibrational Power Flow from Machines into Built- up Structure, PartⅠ: Introduction and Approximate Analyses of Beam and Plate-like Foundations. Journal of Sound and Vibration, 1980, 68(1): 59-75
    93 H. G. Goyder, R. G. White. Vibrational Power Flow from Machines into Built-up Structure, PartⅡ: Wave Propagation and Power Flow in Beam-Stiffened Plates. Journal of Sound Vibration, 1980, 68(1): 77-96
    94 H. G. Goyder, R. G. White. Vibrational Power Flow from Machines into Built-up Structure, PartⅢ: Power Flow Through Isolator Systems. Journal of Sound Vibration, 1980, 68(1): 97-117
    95 D. Sciulli, D. J. Inman. Isolation Design for a Flexible System. Journal of Sound and Vibration, 1998, 216(2): 251-267
    96孔杰,张蔚波,牛军川.功率流理论在柔性振动控制技术中的应用与发展.机械工程学报, 2003, 39(9): 23-28
    97 L. K. Liu, G. T. Zheng. Parameter Analysis of PAF for Whole-spacecraft. Aerospace Science and Technology, 2007, 11: 464-472.
    98杨德庆,王德禹,汪庠宝.考虑星-箭动力耦合作用结构瞬态响应分析.宇航学报, 2003, 24(2): 213-216
    99 L. K. Liu, L. Liang, G. T. Zheng, et al. Dynamic Design of Octostrut Platform for Launch Stage Whole-Spacecraft Vibration Isolation. Journal of Spacecraft and Rockets, 2005, 42(4): 654-662
    100 H. Z. Fei, W. H. Huang, Q. C. Mu. Correlation Evaluation of Tested and Calculated Modes of a Launch Vehicle Equipment Cabin. Journal of Harbin Institute of Technology, 2002, 9(1): 91-94
    101李秀岭,李宏男.磁流变阻尼器结构控制策略研究进展.防震减灾工程学报, 2004, 24(3): 335-342
    102 L. M. Iansen, S. J. Dyke. Semi-Active Control Strategies for MR Dampers: a Comparative Study. Journal of Engineering Mechanics, 2000, 126(8): 795-803
    103 K. C. Schurier, P. N. Roshke. Neuro-Fuzzy Control of Structures Using Magnetorheological Dampers. Proceedings of the American Control Conference, Arlington VA USA, 2001, 2: 1097-1102
    104徐赵东,郭迎庆.利用模糊控制器确定磁流变半主动控制结构的参数.东南大学学报. 2004, 34(2): 244-248
    105郭迎庆,费树岷,徐赵东.磁流变阻尼器结构模糊控制器的设计与分析. 2007, 37(6): 1027-1031
    106李宏男,杨浩,李秀岭.磁流变阻尼器参数化动力学的研究进展.大连理工大学学报, 2004, 44(4): 616-624
    107 S. J. Dyke, Spencer B F, Sain M K. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Materials and Structures, 1996, 5: 565-575
    108 O. Yoshida, S. J. Dyke. Seismic Control of a Nonlinear Benchmark Building Using Smart Dampers. Journal of Engineering Mechanics(ASCE). 2004, 130(4): 386-392
    109王昊,胡海岩.整车悬架的最优模糊半主动控制.振动工程学报, 2005, 18(4): 438-442
    110杨广强, B F Spencer, J D Carlson, et al.足尺寸磁流变阻尼器的建模及动态分析.地震工程与工程振动, 2001, 21(4): 8-22
    111顾仲权,马扣根,陈卫东.振动主动控制.国防工业出版社, 1997: 178-182
    112杨涤,李立涛,杨旭等.系统实时仿真开发环境与应用.清华大学出版社, 2002: 1-18, 249-260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700