基于Lamb波的航空复合材料板结构损伤识别技术方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来在智能材料与结构领域取得的新进展,使得利用集成在结构中的先进驱动/传感元件网络,在线获取与结构状态相关的信息,识别结构的安全状况成为可能。应用结构健康监测系统及时获取有关结构损伤的性质、程度、分布和演变等信息,对及时做出决策来阻止结构性能的退化和失效,增加飞行安全,降低维护费用具有至关重要的意义。
     本文对航空复合材料结构健康监测中的若干技术方法进行研究,采用主动监测的方法,对结构进行在线的连续监测,近乎实时地监测到结构损伤发生和作用的位置。本文的主要研究内容和取得的成果有:
     (1)对运用Lamb波时间反转法对复合材料板结构损伤监测进行研究。首先采用弹性力学基本方程求导了Lamb波频散方程,建立了Lamb波传播的力学模型,对压电传感器驱动/感应Lamb波的原理进行了深入的探讨,通过有限元数值方法研究了Lamb波在结构中传播的特性;然后研究了Lamb波的时间反转法在复合材料损伤检测中的应用,提出了一种利用Lamb波时间反转法对复合材料结构进行损伤成像的方法;通过建立损伤指标,得到传感器通道的损伤系数,为损伤成像提供基准信息;对工业CT成像中的损伤概率成像算法进行改进,使其适用于无基准信号下的结构健康监测。实验验证所提方法的可行性及有效性。
     (2)对运用Lamb波匹配追踪方法的蜂窝复合材料损伤识别技术进行研究。首先详细介绍了匹配追踪方法,针对Lamb波监测方法的特点,提出了字典库为Chirplet原子的匹配追踪方法的快速实现方案,对Lamb波信号进行快速分解,提取相关的特征信息,并证明Chirplet原子能准确地匹配受弥散效应影响发生失真变形的窄带脉冲信号;提出一种基于Lamb波和匹配追踪方法的损伤识别方法,通过有限元仿真的结果加以验证,仿真结果表明匹配追踪方法能有效识别出Lamb波的模态,准确地提取出Lamb波中包含的损伤信息,实现对损伤进行精确定位,通过在各向同性板结构进行验证,实验结果表明匹配追踪方法能有效地分辨出多损伤的散射信号,精确定位损伤。最后将该方法应用于蜂窝夹层复合材料结构的冲击损伤识别中,分别采用椭圆定位技术和损伤成像技术定位冲击损伤位置。
     (3)对基于概率统计方法对复合材料损伤监测和识别进行研究,提出一种两步识别方法用于监测并识别环境变化下损伤发生与否及损伤的位置。该方法先采用信号处理方法提取信号的能力特征,通过对比结构损伤前后Lamb波信号的特征得到损伤差异系数,作为损伤指标;再采用概率统计方法来判断该损伤指标是由损伤引起还是由环境变化造成,从而判断结构是否发生损伤;最后采用损伤概率成像算法获取损伤存在的概率图像对损伤的位置和大小进行可视化识别。通过在复合材料层板和加筋结构实验研究以验证所提方法的有效性。
Recent developments in the area of smart materials and structures have made it possible to obtaininformation about the state of structures and to identify the structural safety status online withadvanced actuator/sensor network integrated in the structures. It is important and crucial for impedingthe structural health monitoring system (SHMS) to obtain the information about the characteristics,extent, distribution and progress of the damages.
     This dissertation studies several methods and techniques in structural health monitoring ofaircraft structures.The active methods is applied to monitor the structures continuously and online toensure the structural safety. These techniques can indentify the damage loction and damage size, andconsider the effect of actual operational environment on damage detection and identification. After abrief introduction of the background of this study in Chapter1, the main contents of this dissertationare as follows:
     (1) In Chapter2, the problem of damage identification for composite plate structure is studied. Lambwave time reversal method is a new and tempting baseline-free damage detection technique forstructural health monitoring. With this method, damage can be detected without baseline data. In thepaper an online damage detection and identification method is presented using time reversal Lambwaves method and ultrasonic tomography for damage diagnosis of composites. The principle andcharacters of the time reversal lamb waves in a composite plate have been introduced firstly. Then thetime reversal method has been adapted to detect the local defects in composite plate structures, byusing an active sensing system mounted on a composite plate to excite and receive Lamb waves. Thismethod can identify the location and size of the damage in a composite plate quickly without relyingon past baseline date. The image that indicates the damage can be obtained by the ultrasonictomography algorithm. Experimental study results demonstrate the applicability and effectiveness ofthe proposed method.
     (2) In Chapter3, the multiple modes and dispersion nature of ultrasonic Lamb waves are investigatedin plate structure, the propagation of Lamb waves in damaged plate is simulated using the finiteelement method, and the electromechanical coupling behavior of piezoelectric ceramic piece and theinduced strain model are studied for the activation and sensation of Lamb waves; the matchingpursuits is introduced in detail, a fast implement method is proposed for matching pursuits methodwith a Chirplet dictionary, it can decompose the Lamb signals quickly and extract the characteristic information, and it is demonstrated that the Chirplet atoms can match the distorted narrow band pulsesaccurately; a damage identification method is proposed based on Lamb waves and matching pursuits,and it is verified by the results of finite element method, the simulation results show that matchingpursuits method can identify the modes of Lamb waves and extract the damage informationeffectively, it can locate the damage accurately, and an experiment device is established to verify thismethod, the experiment results show that the matching pursuits method can distinguish the overlappedscattered signals from several damages, and locate the damage accurately; finally the damageidentification method is employed to detect the impact damage in honeycomb sandwich of carbonfiber composite structure, the ellipse location method and damage imaging method are used to locatethe impact damage.
     (3) In chapter4, the problem of damage detection and identification for composite structures underenvironmental changes is studied. At first, reconstruction algorithm for probabilistic inspection ofdamage, which is a two step identification method, is proposed to firstly judge whether there isdamage in the structure, and secondly identify the location and size of the damage. In this method,signal processing methods are applied to extract the features of the Lamb wave signals. The differencecoefficient, which is called as damage index (DI), is obtained by comparing the features of thereference and present signals. Then the probabilistic method is used to judge that the DI is caused byeither the structural damage or the environmental factors and decide whether the damage occurs. Andfinally, the damage imaging algorithm is applied to obtain a tomogram for damage identification. Inorder to verify the feasibility and effectiveness of this method, some structural damage identificationexperiments are carried out on composites. The experimental identification results are accurate andthe image is clearness.
     This study is partially supported by the National Natural Science Foundation of China GrantNo.11172128, and the Funds for International Cooperation and Exchange of the National NaturalScience Foundation of China (No.61161120323), the Jiangsu Province for Six Kinds of ExcellentTalent of China (No.2010-JZ-004) and Jiangsu Graduate Training Innovation Project (CX09B_070Z).
引文
[1]Ihn J B. Built-in diagnostics for monitoring fatigue crack growth in aircraft structures. Ph.D Dissertation, Stanford University,2003.
    [2]Sampath S G. Aging combat aircraft fleets-long term application. AGARD LS-206,1996.
    [3]Boller C. Next generation structural health monitoring and its integration into aircraft design. International Journal of Systems Science,2000,31(11):1333-1349.
    [4]王利恒.复合材料飞机结构健康监测系统的若干问题探讨.航空科学技术,2011,5:63-66
    [5]朱新宇,卢俊文.复合材料结构健康监测技术在飞机中的应用.宇航材料工艺,2011,41(6):23-27
    [6]Yang J, Chang F K, Derriso M. Design of hierarchical health monitoring system for detection of multilevel damage in bolted thermal protection panels. Structural Health Monitoring,2003,2(2):115-122
    [7]Boeing Company, www.boeing.com/news/releases/2003/q2/nr_030612g.html
    [8]Pfeiffer H, Wevers M. Aircraft integrated structural health assessment-structural health monitoring and its implementation within the European project AISHA. Proceedings of EU Project Meeting on Aircraft Integrated Structural Health Assessment(AISHA), Leuven, Belgium, June2007.
    [9]Park C Y, Kin J H, Jun S M. A structural health monitoring project for a composite unmanned aerial vehicle wing:overview and evaluation tests. Structrual Control Health Monitoring,29Mar2012. online.
    [10]Acellent Technologies Inc. http://www.acellent.com
    [11]Lopez M. R, Sergiyenko O. Y., Tyrsa V.V. et al. Bergman L A, Optoelectronic Method for Structural Health Monitoring. Structural Health Monitoring,2010,9(2):105-120
    [12]Charles R F, Sohn H. Condition/damage monitoring methodologies. Invited Talk, The Consortium of Organizations for Strong Motion Observation Systems (COSMOS) Workshop, Emeryville, CA November14-15,2001, LA-UR-01-6573.
    [13]李东升,张莹,任亮等.结构健康监测中的传感器布置方法及评价准则,力学进展,2011,41(1):39-50.
    [14] Majumder M, Gangopadhyay T K, Chakraborty A K. Fibre Bragg gratings in structural healthmonitoring-present status and application. Sensors and Actuators A: Physical,2008,147(1):150-164.
    [15] Lin B, Giurgiutiu V. Power and energy transduction analysis of piezoelectric wafer-activesensors for structural health monitoring. Structural Health Monitoring,2012,11(1):109-121
    [16] Yang C, Fritzen C-P. Piezoelectric paint: characterization for further applications. SmartMaterials and Systems,2012,21(4):045017
    [17] Lin M, Chang F K. The manufacture of composite structures with a built-in network ofpiezoceramics. Composite Science and Technology,2002,62(7-8):919-939
    [18]王强,袁慎芳.航空结构健康监测的压电夹层设计.传感器与微系统,2008,27(7):72-74.
    [19] Loh K, Hou T C, Lynch J P, et al. Carbon nanotube sensing skins for spatial strain and impactdamage identification. Journal of Nondestructive Evaluation,2009,28(1):9-25.
    [20] Bao Y Q, Beck J L, Li H. Compressive sampling for accelerometer signals in structural healthmonitoring. Structural Health Monitoring.2011,10(3):235-245.
    [21] Hsu T Y, Huang S K, Lu K C, et al. On-line structural damage localization and quantificationusing wireless sensors. Smart Materials and Structures,2011,20(10):105025.
    [22] Tsang K M, Chan W L. Non-destructive stiffness detection of utility wooden poles usingwireless MEMS sensor. Measurement,2011,44(6):1201-1207.
    [23] Pitropakis L, Pfeiffer H, Wevers M. Crack detection in aluminium plates for aerospaceapplications by electromagnetic impedance spectroscopy using flat coil sensors. Sensors andActuators A: Physical,2012,176:57-63.
    [24] Lim H J, Kim M K, Sohn H, et al. Impedance based damage detection under varyingtemperature and loading conditions. NDT&E International,2011,44(8):740-750
    [25] Kessler S S. Piezoelectric-based in-situ damage detection of composite materials for structuralhealth monitoring systems. Ph.D Dissertation, Massachusetts Institute of Technology,2002.
    [26] Ng C T, Veidt M. A Lamb-wave-based technique for damage detection in composite laminates.Smart Materials and Structures,2009,18(7):074006.
    [27] Ong W H, Chiu W K. Redirection of Lamb Waves for Structural Health Monitoring. SmartMaterials Research,2012,718686.
    [28] Messina A, Jones I A, Williams E J. Damage detection and localization using natural frequencychanges. Proceedings of the Conference on Identification in Engineering Systems, Swansea, UK,1996
    [29] Maia N M M, Silva J M M, Almas E A M, et al. Damage detection in structures: from modeshap to frequency response function methods. Mechanical Systems and Signal Processing,2003,17(3):489-498.
    [30] Qiao P Z, Lu K, Lestari W, et al. Curvature mode shape-based damage detection in compositelaminated plates. Composite Structures,2007,80(3):409-428.
    [31] Yang J N, Lei Y, Lin S, et al. Hilbert-Huang based approach for structural damage detection.ASCE Journal of Engineering Mechanics,2004,130(1):85-95.
    [32] Zou Y, Tong L, Steven G P. Vibration-based model-dependent damage (delamination)identification and health monitoring for composite structures-a review. Journal of Sound andVibration,2000,230(2):357-378.
    [33] Valdes S H D, Soutis C. Delamination detection in composite laminates from variations of theirmodal characteristics. Journal of Sound and Vibration,1999,128(1):1-9.
    [34] Yang Z C, Yu Z F, Sun H. On the cross correlation function amplitude vector and its applicationto structural damage detection. Mechanical Systems and Signal Processing,2007,21(7):2918-2932.
    [35] Amraoui M Y, Lieven N A. Laser Vibrometry based detection of delaminates in glass/epoxycomposite. ASME Journal of Vibration and Acoustic,2004,126(3):430-437
    [36] Yan Y J, Yam L H. Detection of delamination damage in composite plates using energyspectrum of structural dynamic responses decomposed by wavelet analysis. Computers andStructures,2004,82(4-5):347-358.
    [37] Chen H G, Yan Y J, Jiang J S. Vibration-based damage detection in composite wingboxstructures by HHT. Mechanical Systems and Signal Processing,2007,21(1):307-321.
    [38] Yam L H, Yan Y J, Jiang J S. Vibration-based damage detection for composite structures usingwavelet transform and neural network identification. Composite Structures,2003,60(4):403-412.
    [39] Cawley P, Alleyne D N. The use of Lamb waves for the long range inspection of largestructures. Ultrasonics,1996,34(2):287-290.
    [40] Alleyne D N, Cawley P. The interaction of Lamb waves with defects. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,1992,39(3):381-397.
    [41] Guo N, Cawley P. The interaction of Lamb waves with delaminations in composite laminates.Journal of Acoustic Society of American,1994,94(4):2240-2246.
    [42] Guy P, Jayet Y, Goujon L. Guided waves interaction with complex delaminations: applicationto damage detection in composite structures. Proceedings of SPIE, Smart NondestructiveEvaluation and Health Monitoring of Structural and Biological System, San Diego, CA, March2003.
    [43] Prosser W H, Seale M D, Smith B T. Time-frequency analysis of the dispersion of Lamb modes.Journal of Acoustic Society of American,1999,105(5):2669-2676.
    [44] Niethammer M, Jacobs L J, Qu J, et al. Time-frequency representations of Lamb waves. Journalof Acoustic Society of American,2001,109(5):1841-1847.
    [45] Kehlenbach M, Hanselka H. Automated structural integrity monitoring based on broadbandLamb wave excitation and matched filtering. Proceedings of4thAIAA/ASME/ASCE/AHSStructures, Structural Dynamics, and Materials Conference, Norfolk, VA, April2003.
    [46] Wang C S, Chang F K. Diagnosis of impact damage in composite structures with built-inpiezoelectrics network. Proceedings of SPIE, Smart Structures and Materials, San Diego, CA,March2000.
    [47] Kishimoto K, Inoue H, Hamada M, et al. Time frequency analysis of dispersive waves by meansof wavelet transform. Journal of Applied Mechanics,1995,62(4):841-846.
    [48] Jeong H, Jang Y S. Wavelet analysis of plate wave propagation in composite laminates.Composite Structures,2000,49(4):443-450.
    [49] Jeong H, Jang Y S. Fracture source location in thin plates using the wavelet transform ofdispersive waves. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2000,47(3):612-619.
    [50] Lemistre M, Balageas D.Structural health monitoring system based on diffracted Lamb wavesanalysis by multiresolution processing. Smart Materials and Structures,2001,10(3):504-511.
    [51] Su Z, Wang X M. A hierarchical data fusion scheme for identifying multi-damage in compositestructures with a built-in sensor network. Smart Materials and Structures,2007,16(6):2067-2079
    [52] Su Z, Ye L, Bu X. A damage identification technique for CF/EP composite laminates usingdistributed piezoelectric transducers. Composite Structures,2002,57(1-4):465-471
    [53] Huang N E, Shen Z, Long S R.. et al. The empirical mode decomposition and Hilbert spectrumfor nonlinear and nonstationary time series analysis. Proceedings of the Royal Society ofLondon, Series A,1998,454:903-995.
    [54] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert-spectrumAnnual Review of Fluid Mechanics,1999,31:417-457.
    [55] Quek S T, Tua P S. Detection anomalies in beams and plate based on the Hilbert-Huangtransform of real signals. Smart Materials and Structures,2003,12(3):447-460.
    [56] Tua P S, Quek S T. Detection of cracks in plates using piezo-acutated Lamb waves. SmartMaterials and Structures,2004,13(4):643-660.
    [57] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions onSignal Processing,1993,41(12):3397-3415.
    [58] Qian S, Chen D. Signal representation via adaptive normalized Gaussian functions. SignalProcessing,1994,36(1):1-11.
    [59] Hong J C, Sun K H. Waveguide damage detection by the matching pursuit approach employingthe dispersion-based chirp function. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2006,53(3):592-605.
    [60] Raghavan A, Cesnik C E S. Guided-wave signal processing using chirplet matching pursuitsand mode correlation for structural health monitoring. Smart Materials and Structures,2007,16(2):355-366.
    [61] Staszewski W J. Intelligent signal processing for damage detection in composite materials.Composites Science and Technology,2002,62(7-8):941-950.
    [62] Lee J W, Kirikera G R, Kang I, et al. Structural health monitoring using continuous sensors andneural network analysis. Smart Materials and Structures,2006,15(5):1266-1274.
    [63] Coelho C K, Das S, Chattopadhyay A. Binary tree SVM based framework for mining fatigueinduced damage attributes in complex lug joints. Proceedings of SPIE, Smart Materials andStructures, San Diego, CA, March2008.
    [64] Nag A, Mahapatra D R, Gopalakrishnan S. Identification of delamination in composite beamsusing spectral estimation and a genetic algorithm. Smart Materials and Structures,2002,11(6):899-908.
    [65] Rosalie S C, Vaughan M, Bremner A, et al. Variation in the group velocity of Lamb waves as atool for the detection of delamination in GLARE aluminium plate-like structures. CompositeStructures,2004,66(1-4):77-86.
    [66] Grondel S, Assaad J, Delebarre C, et al. Health monitoring of a composite wingbox. Ultrasonics,2004,42(1-9):819-824
    [67] Biemans C, Staszewski W J, Boller C, et al. Crack detection metallic structures using broadbandexcitation of acousto-ultrasonics. Journal of Intelligent Material Systems and Structures,2001,12(8):589-595.
    [68] Ihn J B, Chang F K. Detection and monitoring of hidden fatigue crack growth using a built-inpiezoelectric sensor/actuator network: I. diagnostics. Smart Materials and Structures,2004,13(3):609-620.
    [69] Su Z, Ye L. Digital damage fingerprints (DDF) and its application in quantitative damageidentification. Composite Structures,2004,66(1-4):627-637.
    [70] Park H W, Shon H, Law K H, et al. Time reversal active sensing for health monitoring of acomposite plate. Journal of Sound and Vibration,2007,302(1-3):50-66.
    [71] Sohn H, Park H W, Law K H, et al. Combination of a time reversal process and a consecutiveoutlier analysis for baseline-free damage diagnosis. Journal of Intelligent Material Systems andStructures,2007,18(4):335-346.
    [72] Rizzo P, Cammarata M, Dutta D, et al. An unsupervised learning algorithm for fatigue crackdetection in waveguides. Smart Material and Structures,2009,18(2):025016
    [73] Iwasaki A, Todoroki A, Shimamura Y, et al. An unsupervised statistical damage detectionmethod for structural health monitoring (applied to detection of delamination of a compositebeam). Smart Materials and Structures,2004,13(5): N80-N85.
    [74] Sohn H, Kim S D. Reference-free damage classification based on cluster analysis.Computer-Aided Civil and Infrastructure Engineering,2008,23(5):324-338.
    [75] Banerjee S, Bicci F, Monaco E, et al. A wave propagation and vibration-based approach fordamage identification in structural components. Journal of Sound and Vibration,2009,322(1-2):167-183.
    [76] Lu Y, Wang X, Tang J, et al. Damage detection using piezoelectric transducers and the Lambwave approcah: II. robust and quantitative decision. Smart Materials and Structures,2008,17(2):025034.
    [77] Kessler S S, Agrawal P. Application of pattern recognition for damage classification incomposite laminates. Proceedings of6thInternational Workshop on Structural HealthMonitoring, Stanford, CA, September2007.
    [78] Su Z, Ye L. Lamb wave-based quantitative identification of delamination in CF/EP compositestructures using artificial neural algorithm. Composite Structures,2004,66(1-4):627-637.
    [79]白鹏,张喜斌,张斌等.支持向量机理论及工程应用实例.西安:西安电子科技大学出版社,2008.
    [80] Park S, Lee J J, Yun C B, et al. A built-in active sensing system-based structural healthmonitoring technique using statistical pattern recognition. Journal of Mechanical Science andTechnology,2007,21(6):896-902.
    [81] Chattopadhyay A, Das S, Coelho C K. Damage diagnosis using a kernel-based method. Insight,2007,49(8):451-458.
    [82] Xu Y G, Liu G R. Detection of flaws in composites from scattered elastic-wave field using animproved uGA and a local optimizer. Computer Methods in Applied Mechanics andEngineering,2002,191(36):3929-3946.
    [83] Krawczuk M, Ostachowicz W M. Identification of delamination in composite beams by geneticalgorithm. Science and Engineering of Composite Materials,2002,10(2):147-155.
    [84] Rosalie C, Chan A, Chiu W K, et al. Structural health monitoring of composite structures usingstress wave methods. Composite Structures,2005,67(2):157-166
    [85] Olson S E, Desimio M P, Derriso M M. Beam forming of Lamb waves for structural healthmonitoring. Journal of Vibration and Acoustic,2007,129(12):730-738.
    [86] Sundararaman S, Adams D E, Rigas E. Structural damage identification in homogeneous andheterogeneous structures using beamforming. Structural Health Monitoring,2005,4(2):171-190.
    [87] Giurgiutiu V, Bao J. Embedded-ultrasonics structural radar for in situ structural healthmonitoring for thin-wall structures. Structural Health Monitoring,2004,3(2):121-140.
    [88] Yu L, Giurgiutiu V. In-situ optimized PWAS phased arrays for Lamb wave structural healthmonitoring. Journal of Mechanics of Materials and Structures,2007,2(3):459-488.
    [89] Yan F, Rose J L. Guided wave phased array beam steering in composite plates. Proceedings ofSPIE, Health monitoring of Structural and Biological Systems, San Diego, CA, March2007.
    [90] Fromme P, Wilcox P D, Lowe M J S, et al. On the development and testing of guided ultrasonicwave array for structural integrity monitoring. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,2006,53(4):777-785.
    [91] Rajagopalan J, Balasubramaniam K, Krishnamurthy C V. A single transmitter multi-receiver(STMR) PZT array for guided ultrasonic wave based structural health monitoring of largeisotropic plate structures. Smart Materials and Structures,2006,15(4):1190-1196.
    [92] Rajagopalan J, Balasubramaniam K, Krishnamurthy C V. A phase reconstruction algorithm forLamb wave based structural health monitoring of anisotropic multilayered composite plates.Journal of Acoustic Society of American,2006,119(2):871-878.
    [93] Yu L, Giurgiutiu V. In situ2-D piezoelectric wafer active sensor arrays for guided wavedamage detection. Ultrasonics,2008,48(2):117-134.
    [94]庄天戈. CT原理与算法.上海:上海交通大学出版社,1992.
    [95] Jansen D P, Hutchins D A, Mottram J T. Lamb wave tomography of advanced compositelaminates containing damage. Ultrasonics,1994,32(2):83-89.
    [96] Malyarenko E V, Hinders M K. Fan beam and double crosshole Lamb wave tomography formapping flaws in aging aircraft structures. Journal of Acoustic Society of American,2000,108(4):1631-1639.
    [97]张海燕,他得安,刘镇清.层状各向异性复合板中的兰姆波.北京:科学出版社,2008.
    [98] Malyarenko E V, Hinders M K. Ultrasonic Lamb wave diffraction tomography. Ultrasonics,2001,39(4):269-281.
    [99] Rose L R F, Wang C H. Mindlin plate theory for damage detection I: source solutions. Journalof the Acoustical Society of America,2004,116(1):154-171.
    [100] Wang C H, Chang F K. Scattering of plate waves by a cylindrical inhomogeneity. Journal ofSound and Vibration,2005,282(1-2):429-451.
    [101] Rohde A H, Veidt M, Rose L R F, et al. A computer simulation study of imaging flexuralinhomogeneities using plate-wave diffraction tomography. Ultrasonics,2008,48(1):6-15.
    [102]李大勇,高桂丽,董静薇.非线性声学和时间反转声学在材料缺陷识别中的应用现状评述.机械工程学报,2009,45(1):1-8.
    [103] Fink M. Time reversal mirror. Journal of Physics D: Applied Physics,1993,26:1333-1350.
    [104] Charkroun N, Fink M, Wu F. Time reversal processing in ultrasonic nondestructive testing.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1995,42(6):1087-1098
    [105] Ing R K, Fink M. Time-reversed Lamb waves. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,1998,45(4):1032-1043.
    [106] Derveaux G, Papanicolaou G, Tsogka C. Time reversal imaging for sensor networks withoptimal compensation in time. Journal of Acoustical Society of America,2007,121(4):2071-2085.
    [107]贺振华,反射地震资料偏移处理与反演方法.重庆:重庆大学出版社,1989.
    [108] Chien L S. In-situ damage detection of plates by the migration technique. Proceedings of38thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,Kissimmee, FL, April1997.
    [109] Lin X, Yuan F G. Damage detection of a plate using migration technique. Journal of IntelligentMaterial Systems and Structures,2001,12(7):469-482.
    [110] Lin X, Yuan F G. Detection of multiple damages by prestack reverse-time migration. AIAAJournal,2001,39(11):2206-2215.
    [111] Lin X, Yuan F G. Experimental study applying a migration technique in structural healthmonitoring. Structural Health Monitoring,2005,4(4):341-353.
    [112] Wang L, Yuan F G. Damage identification in a composite plate using prestack reverse-timemigration technique. Structural Health Monitoring,2005,4(3):195-211.
    [113] Zhou L, Yuan F G, Meng W J. A pre-stack migration method for damage identification incomposite structures. Smart Structures and Systems,2007,3(4):439-454.
    [114] Chang F K, Markmiller J F C, Ihn J B, et al. A potential link from damage diagnostics to healthprognostics of composite through built-in sensors. ASME Journal of Vibration and Acoustic,2007,129(12):719-729.
    [115] Mueller I, Larrosa C, Roy S, et al. An integrated health management and prognostic technologyfor composite airframe structures. Annual Conference of the Prognostics and HealthManagement Society, San Diego, CA, September2009.
    [116] Malkin M, Leonard M, Derriso M M, et al. Hot spot monitoring: development of a frameworkfor SHM system design. Proceedings of6thInternational Workshop on Structural HealthMonitoring, Stanford, CA, September2007.
    [117] Scott M, Bannister M, Herszberg I, et al. Structural health monitoring-the future of advancedcomposite structures. Proceedings of5thInternational Workshop on Structures HealthMonitoring, Stanford, CA, September2005.
    [118] Horace L. On Waves in an Elastic Plate. Proceedings of the Royal Society of London. Series A,Containing Papers of a Mathematical and Physical Character,1917,114-128
    [119] Giurgiutiu V, Cuc A. Embedded NDE for structural health monitoring, damage detect ion, andfailure prevention. The Shock and Vibration Digest,2005,37(2):83-105.
    [120] Su Z, Ye L, L u Y. Guided Lamb waves for identification of damage in compo site structures: areview. Journal of Sound and Vibration,2006,295(4):753-780.
    [121]严刚,周丽.应用遗传算法和散射Lamb波的板结构损伤识别.振动工程学报,2007,20(3):291-296.
    [122]陆明万,罗学富.弹性理论基础.北京:清华大学出版社,2001.
    [123]陶宝祺.智能材料与结构.北京:国防工业出版社,1997.
    [124] The Institute of Electrical and Electronics Engineers. ANSI/IEEE Standard176. IEEE Standardon Piezoelectricity,1987.
    [125] Derlincourt D, Krueger H H A and Near C. Properties of piezoelectricity ceramics. Tech. Rep.TP-226, Morgan Electro Ceramics.
    [126] Nieuwenhuis J H, Neumann J J, Greve D W, et al. Generation and detection of guided wavesusing PZT wafer transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl,2005,52(11):2103-2111.
    [127] Giurgiutiu V, Zagrai A and Bao J J. Damage identification in aging aircraft structures withpiezoelectric wafer active sensors. Journal of Intelligent Material Systems and Structures,2004,15:673-687.
    [128] Sirohi J and Chopra I. Fundamental understanding of piezoelectric stain sensors. In Proceedingsof the SPIE, Part of the SPIE Conference on Smart Structures and Integrated Systems, NewportBeach, California,1999:528-542.
    [129] Mahapatra D R and Gopalakrishnan S. Spectral finite element analysis of coupled wavepropagation in composite beams with multiple delaminations and strip inclusions. InternationalJournal of Solids and Structures,2004,41(5-6):1173-1208.
    [130] Sun H, Zhou L. Analysis of damage characteristics for cracked composite structures usingspectral element method, Journal of Vibroengineering,2012,14(1):430-439.
    [131] Fink M. Time reversal of ultrasonic fields, Part I: basic principles. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,1992,39(5):555-565.
    [132] Wang C H, Rose J T, Chang F K. A synthetic time reversal imaging method for structural healthmonitoring. Smart Materials and Structures,2004,13(2):415-423.
    [133] Xu B, Giurgiutiu V. Single mode tuning effects on Lamb wave time reversal with piezoelectricwafer active sensors for structural health monitoring. J Nondestruct Eval,2007,26:123-134.
    [134] Park H W, Sohn H, Kincho H, et al. Time reversal active sensing for health monitoring of acomposite plate. Journal of Sound and Vibration,2007,302:50-66.
    [135]严刚,周丽.基于Lamb波的复合材料结构损伤成像研究.仪器仪表学报,2007,28(4):583-589.
    [136] Wang C H, Rose J T, Chang F K. A synthetic time-reversal imaging method for structuralhealth monitoring. Smart Materials and Structures,2004,13(2):415-423.
    [137] Ihn J B, Chang F K, Huang J, et al. Diagnostic imaging technique for structural healthmonitoring. Proceedings of2ndEuropean Workshop on Structural Health Monitoring, Munich,Germany, July2004.
    [138] Hay T R, Royer R L, Gao H D, et al. A comparison of embedded sensor Lamb wave ultrasonictomography approaches for materials loss detection. Smart Materials and Structures,2006,15(5):946-951.
    [139] Niethammer M, Jacobs L J. Time-frequency representation of Lamb waves using the reassignedspectrogram. The Journal of Acoustical society of American,2000,107(5): L19-L24.
    [140] Deng X M, Wang Q, Giurgiutiu V. Structural health monitoring using active sensors andwavelet transforms. Proceedings of the SPIE, Smart Structures and Integrated Systems.Newport Beach, USA,1999:363-370.
    [141] Quek S T, Tua P S and Wang Q. Detecting anomalies in beams and plate based on theHilbert-Huang transform of real signals. Smart Materials and Structures,2003,12(3):447-460.
    [142] Prosser W H, Seale M D and Smith B T. Time-frequency analysis of the dispersion of Lambmodes. Journal of the Acoustical Society of America,1999,105(5):2669-2676.
    [143] Hong J C, Sun K H and Kim Y Y. The matching pursuit approach based on the modulatedGaussian pulse for efficient guided wave inspection. Smart Materials and Structures,2005,14(4):548-560.
    [144] Zhang G, Zhang S and Wang Y. Application of adaptive time-frequency decomposition inultrasonic NDE of highly scattering materials. Ultrasonics,2000,38(10):961-964.
    [145] Gabor D. Theory of communication. J. Inst. Elec. Eng.,1946,93:429-457.
    [146] Wigner E P. On the quantum correction for thermodynamic equilibrium. Phys.Rev.,1932,40:749-759.
    [147] Ville J. Theorie et applications de la notion de signal analytique. Cables et transm.,1948,2A(1):61-74.
    [148] Cohen L. Time-Frequency Analysis. Englewood Cliffs, NJ: Prentice-Hall,1995.
    [149] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE TransactionsOn Signal Processing,1993,41(12):3397-3415.
    [150] Qian S, Chen D. Signal representation via adaptive normalized Gaussian functions. SignalProcessing,1994,36:1-11.
    [151] Kwok H K and Jones D L. Improved FM demodulation in a fading environment. In Proc. IEEEConf. Time-Freq., Time-Scale Anal., Paris, France, June1996:9-12..
    [152]刘洋,王乘,张峰.基于压电晶体传感器的椭圆损伤定位算法.传感器学报,2005,18(3):596-600.
    [153] Ihn J B, Chang F K, Huang J, et al. Diagnostic imaging technique for structural healthmonitoring. Proceedings of2ndEuropean Workshop on Structural Health Monitoring,2004.
    [154]严刚,周丽.基于Lamb波的复合材料结构损伤成像研究.仪器仪表学报,2007,28(4):583-589.
    [155] Su Z, Ye L, Lu Y. Guided Lamb waves for identification of damage in composite structures: areview. Journal of Sound and Vibration,2006,295(4):753-780
    [156] Salamone S, Bartoli I, Scalea F L D, et al. Guided-wave health monitoring of aircraft compositepanels under changing temperature. Journal of Intelligent Material Systems and Structures,2009,20(3):1079-1090.
    [157] Kessler S S, Agrawal P. Application of pattern recognition for damage classification incomposite laminates. Proceedings of6thInternational Workshop on Structural HealthMonitoring, Stanford, CA, September2007.
    [158] Staszewski W J. Intelligent signal processing for damage detection in composite materials.Composites Science and Technology,2002,62(7-8):941-950.
    [159] Monnier T. Lamb waves-based impact damage monitoring of a stiffened aircraft panel usingpiezoelectric transducers. Journal of Intelligent Material Systems and Structures,2006,17(5):411-421.
    [160] Lallart M, Monier T, Guyomar D. Energy-efficient method for embedded in situ structuralhealth monitoring. Sturctural Health Monitoring OnlineFirst, Published on August10,2009,doi:10.1177/1475921708341015.
    [161] Banerjee S, Ricci F, Monaco E, et al. A wave propagation and vibration-based approach fordamage identification in structural components. Journal of Sound and Vibration,2009,332(1-2):167-183.
    [162] Monaco E, Franco F. Experimental and numerical activities on damage detection usingmagnetostrictive actuators and statistical analysis. Journal of Intelligent Material Systems andStructures,2000,11:567-578.
    [163]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,2007:441-442.
    [164] Wang D, Ye L, Lu Y. et al. Probability of the presence of damage estimated from an activesensor network in a composite panel of multiple stiffeners. Composite Science and Technology,2009,69(13):2054-2063

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700