应用层组播稳定性提高技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网组通信应用的日益普及和传统IP组播发展面临的困境导致应用层组播技术逐步受到广泛关注。将组播功能从路由器迁移到主机虽然有效解决不少与IP组播相关的问题,但也面临新的挑战。不同于将路由器作为组播树内部节点的IP组播,应用层组播由主机构成组播树的全部节点,它会因为单个节点的退出或失效,而被迫调整多个其它节点在组播树中的位置,从而导致多个组播连接被迫中断,因此需要重新构造组播树。通常称这种问题为应用层组播稳定性问题。应用层组播稳定性问题严重影响用户接收组播数据的连续性,因此提高稳定性成为提高组播服务质量的必然要求,本文主要研究如何提高应用层组播稳定性。
     本文首先阐述应用层组播稳定性问题产生的原因,提出衡量应用层组播稳定性的指标,分析影响应用层组播稳定性的因素,根据影响因素将应用层组播稳定性提高技术分为降低节点离开事件发生频率、缩小节点离开事件影响范围和缩短节点离开后组播树恢复时间等三类技术,综合分析了目前各种提高应用层组播稳定性的技术。针对现有研究存在的主要不足,对应用层组播稳定性提高技术展开深入研究,主要研究工作包括以下四个方面:
     组播树构造算法是决定应用层组播性能的关键,而现有研究还没有明确提出以应用层组播稳定性为优化目标的组播树生成问题及其算法。针对该问题,本文首先提出瞬态稳定度模型ISDM,该模型定义了衡量组播树在组播会话某一时刻稳定性的指标。利用组播用户动态行为的统计学特性,提出一种评估ISDM模型中节点相对离开概率的方法。基于ISDM模型,本文进而提出延迟受限最大瞬态稳定度组播树生成问题DDSD及其退化问题DSD,证明了它们是NP-Hard问题,并分别给出集中式算法DDSD-H和分布式算法DSD-D。仿真结果表明,DDSD-H算法和DSD-D算法能够有效缩小节点离开事件的平均影响范围。
     节点失效检测是恢复因节点失效而造成分割的组播树的前提,提高失效检测性能是缩短组播树恢复时间的重要措施之一。可以从两个方面提高失效检测性能,一是设计高效的失效检测机制,二是优化失效检测机制的参数配置方法。针对前者,本文提出合作式探测机制CPS,该机制将各个节点的父子节点组成检测环,并在环内共享探测丢失信息。针对现有参数配置方法难以适应节点对检测性能需求的差异性问题,本文提出基于节点影响度的参数配置模型,基于该模型进而提出层次化参数配置方法HPC。理论分析和仿真结果表明,通过HPC方法合理地配置参数,CPS能够以较低的额外开销,同时降低节点失效检测时间和误检概率。
     组播树重构是检测出节点失效和节点主动退出后都需要的过程,加快组播树重构过程是缩短组播树恢复时间的重要措施之一。相对于后向式树重构策略,前向式树重构策略通过在父节点离开前预先计算备用节点,能够有效缩短非结构型应用层组播树的重构时间。本文将前向式重构策略扩展应用于基于Chord DHT的结构型应用层组播树,提出路径备用机制,该机制在父节点离开前预先为每个节点寻找一条用于重新加入组播树的备用路径。本文设计了支持快速重构组播树的应用层组播协议ChordM-FR。仿真结果表明,在重构组播树的速度方面,ChordM-FR协议比采用后向式重构策略的ChordM-SR协议平均快约2.5倍。
     代理型应用层组播是一种通过降低节点离开事件发生频率和缩小节点离开事件影响范围而提高应用层组播稳定性的技术,然而传统代理节点的组播转发机制存在重复复制报文的缺陷,这将浪费代理节点有限的带宽和计算资源。针对该问题,本文提出基于硬件的组播转发机制,该机制有效降低了应用层组播报文从主机内存到网卡缓冲区之间的复制次数,并降低了主机CPU处理开销。理论分析表明,该机制不但可以降低应用层组播延迟,而且可以提高应用层组播代理节点的组播转发服务容量。通过修改网卡驱动并向协议栈增加相应的API,本文实现了基于硬件的组播转发机制。实际环境测试表明该机制具有可行性和有效性。
Application Layer Multicast (ALM) has attracted more and more research community’s attention due to the increasing prevalence of group communication applications in the Internet and the hardness in the deployment of IP multicast. While the migration of multicast function from routers to hosts has the potential to address most problems associated with IP multicast, it also faces many new challenges. In an ALM tree, when a parent node quits or fails, all its descendent nodes must adjust their locations, which leads to the interruption of multicast connections. This problem is called stability problem of ALM, and it may impact the continuity of multicast data transmission and then degrade user experience severely. Therefore, it is necessary to improve the quality of ALM service by enhancing the stability. This thesis focuses on the design of approaches to enhancing the stability of ALM.
     In this thesis, we first analyze the root causes for the stability problem and propose the criterion for evaluating the stability of ALM. We analyze the factors which affect the ALM stability. The factors include the node leaving frequency, the affected region of node leaving event, and the time used to recover ALM tree after node leaves. Accordingly, we categorize the techniques to enhance the stability of ALM into three classes: reducing the node leaving frequency, reducing the affected region of node leaving event, and shortening the time used to recover ALM tree after node leaves. Based on the classification, all the techniques of stability enhancement are overviewed and compared. Aiming at addressing some of shortcomings in current techniques, this thesis makes an in-depth study on the techniques of enhancing the stability of ALM. The remaining contributions of the thesis are as follows.
     The key to the performance of ALM is the construction algorithm for multicast tree. However, the current research has not given a clear definition of the problem with the goal of optimizing the stability of ALM. To define this problem clearly, we propose the Instantaneous Stability Degree Model (ISDM), which characterizes the stability of ALM tree in a moment of multicast session and defines the criterion to evaluate the instantaneous stability of ALM tree. An approach that takes advantage of the statistical properties of member’s join-leave behavior is proposed to evaluate the relative leaving probability of ALM node. Based ISDM, the DDSD (the Degree- and Delay-bounded maximum Stability Degree ALM tree) problem and its degenerated DSD (the Delay-bounded maximum Stability Degree ALM tree) problem are presented and proved to be NP-Hard. Therefore, we propose two kinds of algorithms which include a centralized algorithm (DDSD-H) and a distributed algorithm (DSD-D). Our simulations demonstrate that our proposed algorithms can efficiently reduce the average affected region of node leaving event during the whole ALM session.
     Node failure detection is the prerequisite of the recovery of partitioned multicast tree caused by node failures. And the performance of failure detection is critical to shorten the time used to recover ALM tree. We can use two measures to improve the performance of failure detection, one is to design efficient failure detection scheme, and the other is to optimize the approach to configuring the parameter for failure detection scheme. For the former, we propose a Cooperative-Probe based failure detection Scheme (CPS), in which the detecting ring of each node is formed by its parent node and child nodes. The information about probe loss is shared among the nodes in each detecting ring. For the later, as the current parameter configuration approaches are difficult to adapt to the diversity with respect to the performance requirements, we propose a node-impact-degree based parameter configuration model. Then a Hierarchical Parameter Configuration (HPC) approach is proposed by applying the model. By utilizing the HPC approach to configuring parameter appropriately, CPS can reduce both the detecting time and the probability of false positive.
     Usually, once the node failures are detected, the remaining process of reconstructing ALM tree is the same as the one after node quitting. And quickening the reconstruction process of ALM tree is important to shorten the time used to recover ALM tree after node leaves. The proactive policy is effective in reconstructing ALM tree compared to reactive policy, but all the current studies are limited in the context of unstructured ALM tree. Therefore, we extend the proactive policy to ALM tree which is based on Chord DHT and propose a backup-path scheme with which each node pre-calculates a backup path for itself. When the non-leaf node leaves, all its child nodes can switch to the respective backup path immediately. Moreover, we develop the ChordM-FR protocol, which is derived from Chord and adopts the backup-path scheme. Our simulations demonstrate that the ChordM-FR can reconstruct ALM tree about 2.5 times faster on average than the ChordM-SR which adopts the reactive policy in reconstructing multicast tree.
     The proxy-based ALM is a technique to enhance stability of ALM by reducing the node leaving frequency and reducing the affected region of node leaving event. However, in the traditional ALM forwarding process, if end-host is to send data packets to N different receivers, then the N copies of each packet have to be sent from host memory to Network Interface Card (NIC) buffer, making poor use of the limited bandwidth and computing resource. To address this problem, we propose a hardware-based multicast forwarding scheme, by which the CPU overhead and the number of times that data packets are copied from host memory to NIC buffer are reduced dramatically. Theoretical analysis indicates that the new scheme can notably decrease the multicast delay and improve the service capability of ALM proxies. We modified the NIC driver and added some corresponding APIs to network protocol stack to implement the proposed scheme. Experimental results show the feasibility and validity of this scheme.
引文
[1]第17次中国互联网络发展状况统计报告,技术报告: CNNIC中国互联网络信息中心, 2006.
    [2]第23次中国互联网络发展状况统计报告,技术报告: CNNIC中国互联网络信息中心, 2009.
    [3] 2008年中国网民奥运媒体消费行为研究报告,技术报告: CNNIC中国互联网络信息中心, 2008.
    [4] Netguide2008中国互联网调查报告,技术报告: DCCI互联网数据中心, 2008.
    [5] S. E. Deering, D. R. Cheriton. Multicast routing in internetworks and extended LANs. ACM Transactions on Computer System(TOCS), 1990, 8(2): 85-110.
    [6] S. E. Deering. Host extensions for IP multicasting. RFC 1112, 1989.
    [7] D. Waitzman, C. Partridge, S. Deering. Distance Vector Multicast Routing Protocol, RFC 1075, 1988.
    [8] H. Eriksson. MBONE: the multicast backbone, Communications of the ACM, 1994, 37(8):54-60.
    [9] W. Fenner. Internet Group Management Protocol, Version 2. RFC 2236, 1997.
    [10] MANTRA: Monitoring Multicast on a Global Scale. http://www.caida.org/tools/measurement/Mantra.
    [11] CERNET2. http://www.edu.cn/internet_2_1339/index.shtml.
    [12] C. Diot, B. N. Levine, B. Lyles, H. Kassem, D. Balensiefen. Deployment issues for the IP multicast service and architecture. IEEE Network. 2000, 14(1):78-88.
    [13] K. Almeroth. Keynote: Multicast Help Wanted: From Where and How Much? Proc. of Workshop on Peer-to-Peer Multicasting (P2PM) at IEEE Consumer Communications and Networking Conference (CCNC), 2007.
    [14] S. Ratnasamy, A. Ermolinskiy, S. Shenker. Revisiting IP Multicast. Proc. of ACM SIGCOMM, 2006. 15-26.
    [15] J. Saltzer, D. Reed, D. Clark. End-to-end arguments in system design. ACM Transactions on Computer System, 1984, 2(4):195-206.
    [16] P. Francis. Yoid: Extending the Internet Multicast Architecture. Technical Report, ACIRI, 2000. http://www.icir.org/yoid/docs/index.html.
    [17] Y. Chu, S. G. Rao, S. Seshan, H. Zhang. A case for end system multicast. IEEE Journal on Selected Areas in Communications. 2002, 20(8):1456-1471.
    [18] S. S. Xie, B. Li, G. Y. Keung, X. Zhang. Coolstreaming: Design, Theory and Practice. IEEE Transactions on Multimedia. 2007, 9(8):1661-1671.
    [19] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, X. Zhang. Inside the New Coolstreaming: Principles, Measurements and Performance Implications. Proc.of IEEE INFOCOM, 2008. 1031-1039.
    [20] X. Hei, C. Liang, J. Liang, Y. Liu, K. W. Ross. A Measurement Study of a Large-Scale P2P IPTV System. IEEE Transactions on Multimedia. 2007, 8(9):1672-1687.
    [21] PPStream. http://www.ppstream.com.
    [22]悠视网.http://www.uusee.com.
    [23] QQLive. http://tv.qq.com.
    [24] X. F. Liao, H. Jin, Y. H. Liu, L. M. Ni, D. Deng. AnySee: Peer-to-Peer Live Streaming. Proc. of IEEE INFOCOM, 2006. 1-10.
    [25] Sopcast. http://www.sopcast.com.
    [26] S. Fahmy, M. Kwon. Characterizing Overlay Multicast Networks and their Costs. Proc. of IEEE International Conference on Network Protocols(ICNP), 2003. 61-70.
    [27]叶保留,李春洪,姚键,顾铁成,陈道畜.应用层组播研究进展.计算机科学, 2005, 32(6): 6-10.
    [28] C. Gkantsidis, G. Goel, M. Mihail, A. Saberi. Towards Topology Aware Networks. Proc. of IEEE INFOCOM, 2007. 2591-2595.
    [29] Y. Liu, X. Liu, L. Xiao, L. M. Ni. A Distributed Approach to Solving Overlay Mismatching Problem. Proc. of the 24th International Conference on Distributed Computing System(ICDCS), 2004. 132-139.
    [30] Y. Liu, X. Liu, L. Xiao, L. M. Ni. Building a Scalable Bipartite P2P Overlay Network. IEEE Transactions on Papallel and Distributed Systems. 2007, 18(9):1296-1306.
    [31] Y. Liu, X. Liu, L. Xiao, L. M. Ni, X. Zhang. Location-Aware Topology Matching in Unstructured P2P Systems. Proc. of IEEE INFOCOM, 2004. 2220-2230.
    [32] S. Ratnasamy, M. Handley, R. Karp, S. Shenker. Topologically-aware overlay construction and server selection. Proc. of IEEE INFOCOM, 2002. 1190-1199.
    [33] S. Ratnasamy, S. Shenker, I. Stoica. Routing Algorithms for DHTs: some Open Questions. Proc. of the 1st International Peer-to-Peer Systems Workshop at IPTPS, 2002. 45-52.
    [34] P. Dhungel, X. J. Hei, K. W. Ross, N. Saxena. The Pollution Attack in P2P Live Video Streaming: Measurement Results and Defenses. Proc. of the workshop on Peer-to-Peer streaming and IP-TV, 2007. 323-328.
    [35] C. Abad, W. Yurcik, R. H. Campbell. A Survey and Comparison of End-System Overlay Multicast Solutions Suitable for Network Centric Warfare. Proc. of SPIE, 2004. 1-12.
    [36] J. R. Douceur. The Sybil attack. Proc. of the 1st International Peer-to-PeerSystems Workshop at IPTPS, 2002. 251-260.
    [37] H. Rowaihy, W. Enck, P. McDaniel, T. L. Porta. Limiting Sybil Attacks in Structured Peer-to-Peer Networks. Proc. of IEEE INFOCOM, 2007. 2596-2600.
    [38] L. R. Dondeti, S. Mukherjee, A. Samal. Survey and comparison of secure group communication protocols. Technical Report, University of Nebraska-Lincoln, 1999.
    [39] R. Torres, X. Sun, A. Walters, C. Nita-Rotaru, S. Rao. Enabling Confidentiality of Data Delivery in an Overlay Broadcasting System. Proc. of IEEE INFOCOM, 2007.
    [40]李丹,吴建平,崔勇.应用层组播用户的自私性研究.软件学报, 2007, 18(3):625-635.
    [41] N. Laoutaris, G. Smaragdakis, A. Bestavros, J. W. Byers. Implications of Selfish Neighbor Selection in Overlay Networks. IEEE Journal on Selected Area in Communications (JSAC). 25(9): 1732-1744.
    [42] D. Li, J. Wu, Y. Cui, J. Liu. QoS-aware Streaming in Overlay Multicast Considering the Selfishness in Construction Action. Proc. of IEEE INFOCOM, 2007. 1154-1162.
    [43] S. Yuen, B.C. Li. Strategyproof Mechanisms for Dynamic Multicast Tree Formation in Overlay Networks. Proc. of IEEE INFOCOM, 2005. 961-970.
    [44] W. Z. Wang, X. Y. Li, Z. Sun, Y. Wang. Design multicast protocols for non-cooperative networks. Proc. of IEEE INFOCOM, 2005. 1596-1607.
    [45] W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Finance, 1961, 16(1):8-37.
    [46] Z. Li. Min-Cost Multicast of Selfish Information Flows. Proc. of IEEE INFOCOM, 2007. 231-239.
    [47] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel. ALMI: an application level multicast infrastructure. Proc. of the 3rd USENIX Symposium on Internet Technologies and Systems, 2001. 5-15.
    [48] V. Roca, A. El-Sayed. A host-based multicast (HBM) Solution for group communications. Proc. of the First International Conference on Networking, 2001. 610-619.
    [49] C. Yatin. Scattercast: An Architecture for Internet Broadcast Distribution as an Infrastructure Service. Ph.D. Thesis, Univ. of California, Berkeley, 2002.
    [50] J. Sushant, M. Ratul, W. David, B. Gaetano. Scalable self-organizing overlays. Technical Report: UW-CSE 02-06-04, Univ. of Washington, 2002.
    [51] D. Kostic, A. Rodriguez, J. Albrecht, A. Vahdat. Bullet: high bandwidth data dissemination using an overlay mesh. Proc. of the 19th ACM SOSP, 2003. 282-297.
    [52] V. N. Padmanabhan, H. J. Wang, P. A. Chou, K. Sripanidkulchai. Distributing streaming media content using cooperative networking. Proc. of the 12th ACM NOSSDAV, 2002. 177-186.
    [53] A. J. Demers, D. H. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. E. Sturgis, D. C. Swinehart, D. B. Terry. Epidemic algorithms for replicated database maintenance. Proc. of the 6th ACM Symposium on Principles of Distributed Computing (SPDC), 1987. 1-12.
    [54] X. Zhang, J. Liu, B. Li, T. P. Yum. CoolStreaming/DONet: a data-driven overlay network for efficient live media streaming. Proc. of IEEE INFOCOM, 2005. 2102-2111.
    [55] R. Rejaie, S. Stafford. A framework for architecting peer-to-peer receiver-driven overlay. Proc. of the 14th ACM NOSSDAV, 2004. 42-47.
    [56] N. Magharei, R. Rejaie. Prime: peer-to-peer receiver-driven mesh-based streaming. Proc. of IEEE INFOCOM, 2007. 1415-1423.
    [57] B. Zhang, S. Jamin, L. Zhang. Host Multicast: A framework for delivering multicast to end users. Proc. of IEEE INFOCOM, 2002. 1366-1375.
    [58] L. Mathy, R. Canonico, D. Hutchison. An overlay tree building control protocol. Proc. of the Networked Group Communication (NGC), 2001. LNCS 2233, 76-87.
    [59] D. A. Helder, S. Jamin. End-host multicast communication using switch-trees protocols. Proc. of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2002. 419-429.
    [60] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, W. O. Toole. Overcast: reliable multicast with an overlay network. Proc. of the 4th USENIX symposium on OSDI, 2000. 64-72.
    [61] K. Minseok, F. Sonia. Topology-aware overlay networks for group communication. Proc. of the 12th International Workshop on ACM NOSSDAV, 2002. 127-136.
    [62] Z. Li, P. Mohapatra. Hostcast: A new overlay multicasting protocol. Proc. of the IEEE International Conference on Communications (ICC), 2003. 702-706.
    [63] M. Heffeeda, A. Habib, B. Botev, D. Xu, B. Bhargava. PROMISE: peer-to-peer media streaming using CollectCast. Proc. of the 11th ACM International Conference on Multimedia, 2003. 45-54.
    [64] S. Banerjee, B. Bhattacharjee, C. Kommareddy. Scalable application layer multicast. Proc. of ACM SIGCOMM, 2002. 205-217.
    [65] D. A. Tran, K. A. Hua, T. T. Do. A peer-to-peer architecture for media streaming. IEEE Journal on Selected Areas in Communications (JSAC). 2004, 1(22):121-133.
    [66] L. Jorg, N. Michael. Application-layer multicast with delaunay triangulations.IEEE Journal on Selected Areas in Communications (JSAC). 2002, 20(8):1472-1488.
    [67] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, G. D. Kubiatowicz. Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemination. Proc. of the International Workshop on ACM NOSSDAV, 2001. 11-20.
    [68] M. Castro, P. Druschel, A. M. Kermarrec, A. Rowstron. Scribe: a large-scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Communications (JSAC). 2002, 20(8):1489-1499.
    [69] S. Ratnasamy, M. Handley, R. Karp, S. Shenker. Application-level multicast using content-addressable networks. Proc. of the Networked Group Communication (NGC), 2001. LNCS 2233, 14-29.
    [70] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, A. Singh. Splitstream: high-bandwidth multicast in cooperative environments. Proc. of the 19th ACM SOSP, 2003. 298-313.
    [71] K. Sripanidkulchai, A. Ganjam, B. Maggs, H. Zhang. The feasibility of supporting large-scale live streaming applications with dynamic application end-points. Proc. of ACM SIGCOMM, 2004. 107-120.
    [72] M. Bishop, S. Rao, K. Sripanidkulchai. Considering priority in overlay multicast protocols under heterogeneous environments. Proc. of IEEE INFOCOM, 2006. 1-13.
    [73]罗建光,赵黎,杨士强.基于用户行为分析的应用层组播树生成算法.计算机研究与发展, 2006, 43(9):1557-1563.
    [74] L. Lao, J. H. Cui, M. Gerla, D. Maggiorini. A Comparative Study of Multicast Protocols: Top, Bottom, or In the Middle? Proc. of IEEE INFOCOM, 2004. 2809-2814.
    [75] Y. Chawathe, S. McCanne, E. A. Brewer. RMX: Reliable Multicast for Heterogeneous Networks. Proc. of IEEE INFOCOM, 2000. 795-804.
    [76] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, S. Khuller. Construction of an efficient overlay multicast infrastructure for real-time applications. Proc. of IEEE INFOCOM, 2003:1521-1531.
    [77] L. Lao, J. H. Cui, M. Gerla. TOMA: A viable solution for large-scale multicast service support. Proc. of IFTP NETWORKING, 2005. LNCS 3462, 906-917.
    [78] V. Eveline, A. Virgilio, M. Wagner, B. Azer, J. Shudong. A Hierarchical Characterization of a Live Streaming Media Workload. Proc. of ACM SIGCOMM, 2002. 117-130.
    [79] G. Tan, S. A. Jarvis. Improving the fault resilience of overlay multicast for media streaming. IEEE Transactions on Parallel and Distributed Systems, 2007, 18(6):721-734.
    [80] G. Tan, S. A. Jarvis. Stochastic analysis and improvement of the reliability of DHT-based multicast. Proc. of IEEE INFOCOM, 2007. 1423-1432.
    [81] V. K. Goyal. Multiple Description Coding: compression meets the network. IEEE Signal Processing Magazine. 2001, 18(5):74-93.
    [82] M. K. Yang, Z. M. Fei. Cooperative Failure Detection in Overlay Multicast. Proc. of IFIP NETWORKING, 2005. LNCS 3462, 881-892.
    [83] S. Q. Zhuang, D. Geels, I. Stoica, R. H. Katz. On failure detection algorithm in overlay networks. Proc. of IEEE INFOCOM, 2005. 2112-2123.
    [84] S. Banerjee, S. Lee, B. Bhattacharjee, A. Srinivasan. Resilient multicast using overlays. IEEE/ACM Sigmetrics Performance Evaluation Review. 2003, 31(1):102-113.
    [85] M. K. Yang, Z. M. Fei. A proactive approach to reconstructing overlay multicast trees. Proc. of IEEE INFOCOM, 2004. 2743-2753.
    [86] Z. M. Fei, M. K. Yang. Restoring delivery tree from node failure in overlay multicast. IEICE Transaction on Communication. 2005, E88-B(5): 2046-2053.
    [87] T. Kusumoto, Y. Kunichika, J. Katto, S. Okubo. Tree-Based application layer multicast using proactive route maintenance and its implementation. Proc. of ACM workshop on Advances in Peer-to-Peer Multimedia Streaming (P2PMMS), 2005. 49-58.
    [88] E. S. Ayman. Applcation-Level Multicast Transmission Techniques over the Internet Ph.D. Thesis, INRIA Rhones-Aples, 2004.
    [89] W. J. Wang, D. Helder, S. Jamin, L. X. Zhang. Overlay optimizations for end-host multicast. Proc. of the 4th International Workshop on Networked Group Communication (NGC), 2002. 121-129.
    [90] F. Shi, J. Wu, K. Xu. Stability of a multicast tree in cumulative layered multicast congestion control. Proc. of IEEE International Performance Computing, and Communication Conference (IPCCC), 2003. 725-731.
    [91] K.-F. S. Wong, S.-H.G. Chan, W. C. Wong, Q. Zhang, Y.Q. Zhang. Lateral error recovery for application-level multicast. Proc. of IEEE INFOCOM, 2004. 2708-2718.
    [92] M. Bawa, H. Deshpande, H. G. Molina. Transience of peers & streaming media. ACM SIGCOMM Computer Communication Review. 2003, 33(1)107-112.
    [93] H. Deshpande, M. Bawa, H. G. Molina. Streaming live media over a peer-to-peer network. Technical Report: CS-2001-31, Stanford Univ., 2001.
    [94] S. Ahmed, Y. William, J. Hou. VRing: A case for building application-layer multicast rings (rather than trees). Proc. of the IEEE Computer Society’s 12th Annual International Symposium on MASCOTS, 2004. 437-446.
    [95] J. Wang, W. Yurcik. A survey and comparison of multi-ring techniques for scalable battlespace group communications. Proc. of SPIE, 2005. 139-151.
    [96] M. Guo, M. H. Ammar. Scalable live video streaming to cooperative client using time shifting and video patching. Proc. of IEEE INFOCOM, 2004. 1501-1511.
    [97] M. Guo, M. H. Ammar, E. W. Zegura. Cooperative patching: a client based P2P architecture for supporting continuous live streaming. Proc. of the 13th International Conference on Computer Communications and Networks (ICCCN), 2004. 481-486.
    [98] X. Zhang, K. G. Shin. Statistical analysis of feedback-synchronization signaling delay for multicast flow control. Proc. of IEEE INFOCOM, 2001. 1152-1161.
    [99] F. Shi, J. Wu, K. Xu. Impact of congestion on the stability of a multicast tree in cumulative layered multicast. IEE Communications Proceedings. 2003, 150(5): 371-376.
    [100] B. Long, L. Sun, W. Chen, Y. Zhong. Improving the Stability of Spanning Trees for Application-layer Multicast. Proc. of IEEE Symposium on Computers and Communications (ISCC), 2004. 1071-1076.
    [101] K. Xu, J. C. Liu, L. Z. Fu, C. Liu. On the stability of application-layer multicast tree. Proc. of the 19th International Symposium on. Computer and Information Sciences (ISCIS), 2006. LNCS 3280, 401-412.
    [102] J. Konemann, R. Ravi. A Matter of Degree: Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees. Proc. of 32nd Annual ACM Symposium on Theory of Computing (STOC), 2000. 537-546.
    [103] S. Shi, J. Turner, M. Waldvogel. Dimensioning Server Access Bandwidth and Multicast Routing in Overlay Networks. Proc. of the 11th International Workshop on NOSSDAV, 2001. 83-92.
    [104] S. Shi, J. Turner. Multicast Routing and Bandwidth Dimensioning in Overlay Networks. IEEE Journal on Selected Areas in Communications (JSAC), 2002, 20(8):1444-1455.
    [105] E. Broach, Y. Shavitt. Approximation and Heuristic Algorithms for Minimum Delay Application-layer Multicast Trees. Proc. of IEEE INFOCOM, 2004. 2697-2707.
    [106]曹佳,鲁士文.应用层组播的最小延迟生成树算法.软件学报, 2005, 16(10):1766-1773.
    [107] H. F. Salama, D. S. Reeves, Y. Viniotis. The Delay-Constrained Minimum Spanning Tree Problem. Proc. of the 2nd IEEE Symposium on Computers and Communications, 1997. 699-703.
    [108] B. X. Zhang, M. Krunz, C. J. Chen. A fast Delay-Constrained Multicast Routing Algorithm. Proc. of IEEE International Conference on Communications (ICC), 2001. 2676-2680.
    [109] M. F. Mokbel, W. A. El-Haweet, M. N. El-Derini. A Delay-ConstrainedShortest Path Algorithm for Multicast Routing in Multimedia Applications. Proc. of the IEEE Middle East Workshop on Networking, 1999. 1-6.
    [110]曹继军,苏金树.用遗传算法求解应用层多播路由问题.计算机工程与科学, 2008, 30(5):49-52.
    [111] K. Sripanidkulchai, B. Maggs, H. Zhang. An Analysis of Live Streaming Workloads on the Internet. Proc. of ACM SIGCOMM, 2004. 41-54.
    [112] M. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan. The Minimum Latency Problem. Proc. of the 26th annual ACM Symposium on Theory of Computing, May 1994.163-171.
    [113] OMNeT++: Discrete Event Simulation System. http://www.omnetpp.org.
    [114] V. András. OMNeT++: Discrete Event Simulation System, Version 3.2, User Manual. Technical Report, University of Budapest, 2005.
    [115] Modeling Topology of Large Internetworks. http://www-static.cc.gatech.edu/projects/gtitm.
    [116] E. W. Zegura, K. L. Calvert, S. Bhattacharjee. How to model and Internetwork. Proc. of IEEE INFOCOM, 1996. 594-602.
    [117] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithm. MIT Press, 1990. 558-565.
    [118] Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao. K. Sripanidkulchai, J. Zhan, H. Zhang. Early Experience with an Internet Broadcast System Based on Overlay Multicast. Proc. of USENIX, 2004. 1-15.
    [119] D. A. Helder, S. Jamin. Banana Tree Protocol: An End-host Multicast Protocol, Technical Report: CSE-TR-429-00, University of Michigan, 2000.
    [120] Y. Rekhter, T. Li. A border gateway protocol 4 (BGP-4). RFC 1771, 1995.
    [121] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, C. Diot. Analysis of link failure in an IP backbone. Proc. of the 2nd ACM SIGCOMM Workshop on Internet Measurement (IMC), 2002. 237-242.
    [122] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142, 1990.
    [123] M. Yajnik, M. Sue, J. Kurose, D. Towsley. Measurement and modeling of the temporal dependence in packet loss. Proc. of IEEE INFOCOM, 1999. 345-352.
    [124] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, H. Yu. OpenDHT: A Public DHT Service and Its Uses. Proc. of ACM SIGCOMM, 2005. 73-84.
    [125] B. Stefan, E. B. Fabián. The Feasibility of DHT-based Streaming Multicast. Proc. of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication System (MASCOTS), 2005. 288-298.
    [126] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Seshan, H. Zhang. Theimpact of heterogeneous bandwidth constraints on DHT-based multicast protocols. Proc. of IPTPS, 2005. LNCS 3640, 115-126.
    [127] RSSDHT Project . http://sourceforge.net/projects/rssdht.
    [128] Bamboo DHT Project. http://bamboo-dht.org.
    [129] I. Stoica, R. Morris, D. Karger, M. F. Kassahoek, H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. Proc. of ACM SIGCOMM, 2001. 1-12.
    [130] D. Eastlake, P. Jones. US Secure Hash Algorithm 1 (SHA-1). RFC 3174, 2001.
    [131] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, R. Panigrahy. Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Sport on the World Wide Web. Proc. of the 29th Annual ACM Symposium on Theory of Computing, 1997. 654-663.
    [132] I. Gupta, K. Birman, P. Linga, A. Demers, R. van Renesse. Kelips: Building an Efficient and Stable P2P DHT through Increased Memory and Background Overhead. Proc. of IPTPS, 2003. LNCS 2735, 160-169.
    [133] A. Gupta, B. Liskov, R. Rodrigues. Efficient Routing for Peer-to-Peer Overlays. Proc. of the 1st conference on Symposium on Networked Systems Design and Implementation(NSDI), 2004. 9-19.
    [134] J. Li, J. Stribling, R. Morris, M. F. Kaashoek. Bandwidth-Efficient Management of DHT Routing Tables. Proc. of the 2nd conference on Symposium on Networked Systems Design and Implementation (NSDI), 2005. 99-114.
    [135] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker. A Scalable Content-Addressable Network. Proc. of ACM SIGCOMM, 2001. 161-172.
    [136] Y. K. Dalal, R. M. Metcalfe. Reverse Path Forwarding of Broadcast Packets. Communications of the ACM, 1978, 21(12): 1040-1048.
    [137] A. Rowstron, P. Druschel. Pastry: Scalable, Decentralized Object Location and Routing for Large-scale Peer-to-Peer Systems. Proc. of IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), 2001. LNCS 2218, 329–350.
    [138] B. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, J. D. Kubiatowicz. Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE Journal on Selected Areas in Communications (JSAC), 2004, 22(1):41-53.
    [139] S. Saroiu, P. K. Gummadi, S. D. Gribble. Sprobe: A fast technique for measuring bottleneck bandwidth in uncooperative environments. Proc. of IEEE INFOCOM, 2002. 1-11.
    [140] K. Lai, M. Baker. Nettimer: A Tool for Measuring Bottleneck Link Bandwidth. Proc. of the 3rd conference on USENIX Symposium on Internet Technologies and Systems, 2001. 11-22.
    [141] R. Prasad, C. Dovrolis, M. Murray, K. Claffy. Bandwidth estimation: metrics,measurement techniques, and tools. IEEE Network. 2003, 17(6):27-35.
    [142]周辉,李丹,王永吉.可用带宽度量系统中的若干基本问题.软件学报, 2008, 19(5): 1234-1255.
    [143] OverSim: The Overlay Simulation Framework. http://www.oversim.org.
    [144] I. Baumgart, B. Heep, S. Krause. OverSim: A Flexible Overlay Network Simulation Framework. Proc. of IEEE Global Internet Symposium, 2007. 79-84.
    [145] P. Maymounkov, D. Mazieres. Kademlia: A Peer-to-Peer Information System Based on the XOR Metric. Proc. of IPTPS, 2002. 53–65.
    [146] F. Kaashoek, D. Karger. Koorde: A Simple Degree-Optimal Distributed Hash Table. Proc. of IPTPS, 2003. 98–107.
    [147] J. J. Cao, J. S. Su, C. Q. Wu. Modeling and Analyzing the Instantaneous Stability for Application Layer Multicast. Proc. of the 2008 IEEE Asia-Pacific Services Computing Conference (APSCC), 2008. 217-224.
    [148] G. I. Kwon, J. W. Byers. ROMA: Reliable Overlay Multicast with Loosely Coupled TCP Connections. Proc. of IEEE INFOCOM, 2004. 385-395.
    [149] F. Baccelli, A. Chaintreau, Z. Liu. A. Riabov. The One-to-Many TCP Overlay: A Scalable and Reliable Multicast Architecture. Proc. of IEEE INFOCOM, 2005. 1629-1640.
    [150] G. Urvoy-Keller, E. Biersack. A Congestion Control Model for Multicast Overlay Networks and its Performance. Proc. of International Workshop on Networked Group Communication (NGC), 2002. 1-7.
    [151] Spirent Communications. http://www.spirent.com/index.cfm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700