单/双通道低频SAR/GMTI技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工作在VHF/UHF频段的低频合成孔径雷达(SyntheticAperture Radar,SAR)能够穿透叶簇进行探测成像,是隐蔽目标侦察与监视的重要手段。具备运动目标指示(Ground Moving Target Indication,GMTI)能力的低频SAR/GMTI系统能够探测开阔地带裸露和树林隐蔽目标、静止与运动目标,具备大范围侦察和监视能力,已成为当前SAR领域内的研究热点之一。与传统高频SAR/GMTI系统相比,低频SAR/GMTI系统信杂比低,多使用体积较大、成本较高的阵列天线。目前,对体积小、成本低的单/双通道低频SAR/GMTI技术研究相对较少。为推进低频SAR/GMTI系统的实用进程,本文结合工程实际,研究了单/双通道低频SAR/GMTI系统的若干理论和技术问题。
     本文的主要研究工作可概括如下:
     1.研究了低频SAR的运动目标及杂波特性,所得结论为本文后续研究提供了理论基础和假设依据。首先,基于SAR运动目标二维频谱,对各类运动目标成像算法进行了统一推导。基于推导结果,分析了方位子视下的运动目标特性,为提高实际系统中运动目标信杂比奠定了基础。其次,基于低频SAR/GMTI实测数据,研究了适合低频系统的杂波统计分布模型,完善了干涉图的G分布模型族,验证了树干随方位视角变化的电磁散射特性及叶簇杂波内部运动的相关结论。
     2.研究了基于大积累角的运动目标检测算法。针对现有运动目标检测算法存在计算量大或运动目标关联困难的问题,充分利用低频系统方位积累角大的特点,提出了基于多方位分辨率图像的运动目标检测算法、基于方位子视图像差的运动目标检测算法和低虚警的运动目标快速检测流程。所提算法具备较高的杂波抑制能力,提高了运动目标的信杂比,且算法计算量小,适用于机载低频SAR/GMTI系统。
     3.研究了基于部分多普勒信息的运动目标定位算法。首先,针对慢速运动目标,提出了适用于低信杂比的精确定位算法,解决了“方位位置不确定”问题,为实际系统完成运动目标在SAR图像上的高精度标定奠定了基础。其次,针对快速运动目标,提出了解多普勒模糊与抗干扰尖峰两种多普勒中心估计方法,提高了低频SAR/GMTI系统对空中目标的监视性能。
     4.研究了正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号在低频SAR/GMTI系统中的应用。首先,推导了OFDM SAR的模糊函数,从理论上证明了信号编码对成像分辨率影响不大。其次,研究了编码项在实际成像过程中的影响,提出了基于窗函数加权与距离向编码项补偿的方法,抑制了距离向旁瓣,提高了OFDM SAR方位压缩性能。仿真表明,所提方法能够使OFDM信号达到与传统线性调频信号相当的成像性能,解决了OFDM SAR成像的理论问题。最后,为了克服低频系统的低信杂比和树干引起的多径效应,提出了基于OFDMSAR的杂波抑制及运动目标检测模型,实现了单通道SAR在距离-多普勒域的杂波抑制。该方法计算量小、实时性高,适用于对地面目标进行快速检测及跟踪,检测性能优于线性调频信号。
     5.研究了适用于机载低频SAR/GMTI系统的通道预处理技术。首先,针对双通道低频SAR/GMTI系统干涉图特有的射频干扰(Radio Frequency Interference,RFI)抑制问题,提出了基于距离频率-方位时间域干涉图像的RFI抑制方法。该方法能消除实测数据中弱RFI对干涉图的影响,避免通道间独立操作引入的额外误差,弥补了现有RFI抑制方法的不足。其次,根据运动误差补偿技术、RFI抑制方法和低频系统通道误差特点,提出了适用于机载双通道低频SAR/GMTI系统干涉图像的通道预处理方法。该方法能显著改善双通道沿航向干涉图的相干性,利于沿航向干涉(Along Track Interferometric,ATI)取得良好的检测效果。
     本文研究成果已成功应用于某机载低频SAR/GMTI系统实测飞行试验数据处理,对推进低频SAR/GMTI系统实际应用与发展具有重要的参考价值。本文取得的研究成果不仅可应用于多通道低频SAR/GMTI系统,也可为高频SAR/GMTI系统研制提供参考。
The low frequency Synthetic Aperture Radar (SAR) working at VHF/UHF bandcan imaging targets under foliages, which is an important way for the detection andsurveillance of conceal targets. The low frequency SAR system with the capability ofGround Moving Target Indication (GMTI) can detect both static and moving targets inthe open or under foliages, which has become one of hot points of SAR research field.Comparing with conventional high frequency SAR/GMTI system, low frequencySAR/GMTI system has lower Signal to Clutter Ratio (SCR) and is common to use thearray antenna with larger size and higher cost. At present, there is little research on thesingle or dual-channel low frequency SAR/GMTI system, which has smaller size andlower cost. To promote the practical application of low frequency system, sometheoretical and technical problems of single or dual-channel low frequency SAR/GMTIsystem are studied with the real data in this dissertation. The main contents of thisdissertation are summarized as follows:
     1. The characteristics of moving target and clutter in low frequency SAR arestudied. The conclusions in this part provide both a theoretical basis and a basis ofassumptions for the following research in this dissertation. Firstly, based on the derivedtwo-dimensional spectrum of moving target in SAR image, the unified derivation ofmoving target imaging algorithms is deduced and the characteristic of moving target atdifferent azimuth sub-look images is studied. The research results show the potential toimprove SCR of moving target in practical system. Secondly, based on thelow-frequency SAR/GMTI measured data, the clutter statistical distribution model inlow-frequency system is studied, the interference pattern of the G distribution modelfamily is perfected, and the electromagnetic characteristics varying with azimuthsub-look of the trunk and the internal clutter motion of foliage clutter are verified.
     2. The moving target detection algorithms based on the wide accumulation angleare proposed. Heavy computation load and the associated difficulties of moving targetin a sequence of sub-look images are the problems of the practical processing with theexisting low-frequency moving target detection algorithms. Taking full advantage of thewide accumulated angle in low-frequency system, two moving target detectionalgorithms based on multi-resolution images and the difference of sub-look images areproposed respectively. A novel moving target fast detection flow with low false alarm isproposed in later. These proposed detection algorithms have the good capability ofclutter suppression and can enhance the SCR of moving target, which are suitable forthe practical application in the airborne low frequency SAR/GMTI system.
     3. The moving target positioning methods based on the part of Doppler informationare proposed. Firstly, a precise positioning method is proposed to locate slow moving targets in low SCR. It can solve the problem of azimuth position uncertainty and lay thefoundation for the practical system to achieve the high-precision calibration of themoving target in SAR images. Secondly, two velocity estimation methods are proposedto solve the ambiguity of Doppler spectrum and anti-peak interference for fast movingtargets. They can improve the potential performance of surveillance of air targets inlow-frequency SAR/GMTI system.
     4. The Orthogonal Frequency Division Multiplexing (OFDM) signals in thesingle-channel low-frequency SAR/GMTI system is studied. Firstly, the ambiguityfunction of OFDM SAR is derived, which shows that the signal encoding has littleinfluence on imaging resolution. Secondly, the impact of the OFDM encoding term inthe actual SAR imaging processing is studied, and two algorithms based on a weightedwindow and the encoding compensation are proposed respectively, to suppress thesidelobe in range and to improve the azimuth compression performance of OFDM SAR.The proposed latter algorithm can achieve the similar imaging performance with that ofthe traditional linear frequency modulation signal, which solves the theoretical problemsof OFDM SAR imaging. Thirdly, a model of clutter suppression and moving targetdetection is built to overcome the low SCR and the multipath effect from the trunk inlow frequency system. This model achieves high performance of clutter suppression inthe range Doppler domain by single channel SAR. The detection method has a lowcomputation load and is suitable for real-time processing, which can be used in rapiddetection and tracking of ground moving targets. The performance of detection is betterthan that of the linear frequency modulation signal.
     5. The pre-processing techniques for the airborne low frequency SAR/GMTIsystemare are studied. Firstly, a Radio Frequency Interference (RFI) suppressionmethod in the range-frequency azimuth-time domain of interferogram is proposed forthe RFI of along track interferogram in the dual-channel low-frequency SAR/GMTIsystem. This suppression method can eliminate the weak RFI in the interferogram fromthe real data, avoid the extra error from independent operation between channels andmake up for the drawback of existing RFI suppression methods. Secondly, combiningwith the motion error compensation techniques, the proposed RFI suppression methodand the characteristics of errors between low-frequency channels, a completepre-processing flow is proposed for the airborne dual-channel low-frequencySAR/GMTI system. This flow can greatly improve the coherence of along trackinterferogram in dual-channel system and help Along Track Interferometry (ATI)achieve good detection results.
     The satisfied research results in this dissertation have been testified by the flyingexperiment data from an airbone low frequency SAR/GMTI system, They haveimportant references value to advance the practical application and development oflow-frequency SAR/GMTI system. The proposed methods can be used not only in multiple channel low frequency SAR/GMTI system, but also as the references to thedesign of high frequency SAR/GMTI system.
引文
[1]张澄波.综合孔径雷达—原理、系统分析与应用[M].北京:科学出版社,1989.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [3] Franceschetti G, Lanari R, et al. Synthetic Aperture Radar Processing[M]. Italy:CRC press,1999.
    [4][美]Curlander J C, Mcdonough R N著,韩传钊等译(文江平审校).合成孔径雷达——系统与信号处理[M].北京:电子工业出版社,2006.
    [5][美]Gumming I G, Wong F H著,洪文,胡东辉等译(吴一戎审校).合成孔径雷达成像——算法与实现[M].北京:电子工业出版社,2007.
    [6] Daivs M E. Foliage Penetration Radar: Detection and Characterization of ObjectsUnder Trees [M]. SciTech Publising, Raleigh, NC, USA,2011.
    [7]匡纲要,高贵,蒋咏梅,等.合成孔径雷达目标检测理论、算法及应用[M].长沙:国防科技大学出版社,2007.
    [8] Richard J D, Price T, Charles A. Ground moving target indicator radar and thetransformation of warfighting[J]. http://www. northropgrumman.com/analysis-center/paper/assets/Ground-Moving-Target-Indicator.pdf.
    [9] Kramer H J. Observation of the Earth and its Environment-Survey of Missionsand Sensors[M]. Springer,2002.
    [10] Clarence A, Robinson J. Radar counters camouflage[J]. Signal online armed forcescommunications and electronics association,2007.
    [11] Libya: US confirms first Predator strike. http://www.bbc.co.uk/news/world-africa-13176645.
    [12] Aircraft J E: Analysis synthetic aperture radar (SAR) and moving target indication(MTI) radar. http://articles.janes.com/articles/Janes-Electronic-Mission-Aircraft/Analysis--Synthetic-Aperture-Radar-SAR-and-Moving-Target-Indication-MTI-radar.html.
    [13] Space war: DARPA begins advanced radar program. http://www.spacewar.com/news/radar-04s.html.
    [14] Amy Butler: USAF considers new direction for GMTI. http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=aerospacedaily&id=news/GMTI070709-1.xml&headline=USAF%20Considers%20New%20Direction%20For%20GMTI.
    [15] BBC: On board the RAF's Sentinel R1spy plane over Libya. http://www. bbc. co.uk/news/uk-13351715.
    [16] Airnewtime: NATO air forces learning lessons from Libyan air campaign.http://www.airnewtime.co.uk/nato-air-forces-learning-lessons-from-libya-11892-news.html.
    [17] Whelan D A, Filip A, Koss J J. Global space-based ground surveillance missionutility and performance of Discoverer II[A]. In: Proc. of the IEEE AerospaceConference Proceedings2000Big Sky[C], MT, USA,2000:1-11.
    [18] Herpel H J, Henrichs A. Traffic flow monitoring with spaceborne SAR fiction orvision[A]. In: Proc. of European Radar Conference2002[C], Cologne, Germany,2002:341-344.
    [19] Suchandt S, Eineder M, Meyer F. Development of a GMTI processing system forthe extraction of traffic information from TerraSAR-X data[A]. In: Proc. ofEuropean Radar Conference2006[C], Dresden, Germany,2006.
    [20] Suchandt S, Palubinskas G, Scheiber R. Results from an airborne SAR GMTIexperiment supporting TerraSAR-X traffic processor development[A]. In: Proc. ofthe IEEE Radar Conference, Radar2005[C], Arlington, Virginia, USA,2005:2949-2952.
    [21] Meyer F, Hinz S, Laika A, et al. A-priori information driven detection of movingobjects for traffic monitoring[A]. In: Proc. of the IEEE Radar Conference, Radar2005[C], Arlington, Virginia, USA,2005:2932-2936.
    [22] John N, Entzminger J, Fowler C A, et al. JointSTARS and GMTI: Past, present andfuture[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(2):748-761.
    [23] Yang C, Blasch E. Mutual-aided target tracking and identification[A]. In: Proc. ofSPIE[C], Orlando, FL, USA,2003,5099:152-163.
    [24] Northrop Grumman: Aerospace systems[EB/OL]. http://www.as. Northrop_grumman.com/index.html.
    [25] Thoma J, Dick S. Gray wolf S-3B demonstration of podded Norden AN/APG-76radar system[A]. In: Proc. of the IEEE Digital Avionics Systems Conference[C],Phoenix, AZ, USA,1994:328-333.
    [26] Tobin M E, Greenspan M. Smuggling interdiction using an adaptation of theAN/APG-76multimode radar[J]. IEEE Aerospace and Electronic SystemsMagazine,1996,11(11):19-24.
    [27] Welsh WVADER radar to thwart roadside bombers. http://defensesystems.com/articles/2010/04/27/new-radar-technology.
    [28] Northrop Grumman: Vehicle and Dismount Exploitation Radar (VADER).http://www.es.northropgrumman.com/solutions/vader/2011.
    [29] Hepburn J S A, Doyle C P. Motion compensation for ASTOR long range SAR[A].In: Proc. of the IEEE Position Location and Navigation Symposium, PLANS,1990[C], Las Vegas, NV, USA,1990:205-211.
    [30] Raytheon: ASTOR SAR Imagery[EB/OL]. http://www.raytheon.com/capabilities/products/astor/sar_imagery/index.html.
    [31] Bayma R W, Trujillo E. HISARTM COTS-based synthetic aperture radar[A]. In:Proc. of Digital Avionics Systems Conference[C], Atlanta, GA, USA,1996:319-325.
    [32] Tsunoda S I, Pace F. Lynx: A High-Resolution Synthetic Aperture Radar[A].In:Proc. of the IEEE Aerospace Conference2000[C], Big Sky, MT, USA,2000:51-58.
    [33] Sloan G R, Dubbert D F. Affordable miniaturized SAR for tactical UAVapplications[A]. In Proc. of SPIE[C], Chisinau, Moldova, USA,2004,5408:74-83.
    [34] Steyskal H, Schindler J K, Franchi P, et al. Pattern synthesis for TechSat21-Adistributed space based radar system[J]. IEEE Antennas and Propagation Magazine,2003,45(4):19-25.
    [35] Cerutti-Maori D, Klare J, Bürger W, et al. Wide area traffic monitoring with thePAMIR system[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(10):3019-3030.
    [36] Brenner A R, Ender J H G. First experiment results achieved with the new verywideband SAR system PAMIR[A]. In: Proc. of European Radar Conference2002,EuRAD2002[C], Cologne, Germany,2002:81-86.
    [37] Ender J H G., Brenner A R. PAMIR: a wideband phased array SAR MTI system[J].IEE Proceedings Radar, Sonar&Navigation,2003,150:165-172.
    [38] Brenner A R, Ender J H G. Very wideband radar imaging with the airborne SARsensor PAMIR[A]. In: Proc. of the IEEE International Geoscience and RemoteSensing Symposium, IGARSS2003[C], Toulouse, France,2003,1:533-535..
    [39] Lombardini F, Ender J, R βing L, et al. Experiments of interferometric layoversolution with the three-antenna airborne AER-II SAR system[A]. In: Proc. of theIEEE International Geoscience and Remote Sensing Symposium, IGARSS2004[C],Anchorag, Alaska, USA,2004:3341-3344.
    [40] Edrich, M. MiSAR Ultra-lightweight synthetic aperture radar based on a35GHzFMCW sensor concept and online raw data transmission[J]. IEE Proceedings Radar,Sonar&Navigation,2006.153(2):129-134.
    [41]张焕胜.机载SAR地面运动目标检测与成像技术研究[D].北京:中国科学院电子学研究所博士学位论文,2006.
    [42] Thalesonline: Aerospace product I-MASTER. http://www. thalesonline.fr/Portfolio/Defence/Aerospace_Product_I-Master/?pid=1568.
    [43] Kirscht M, Boukamp J, Hoffmann K, et al. SOSTAR-X system integration andflight trials[A]. In: Proc. of the38th European Microwave Conference (EuMA)[C],Amsterdam, Netherlands,2008:1663-1666.
    [44] Damini A, McDonald M, Haslam G E. X-band wideband experimental airborneradar for SAR. GMTI and maritime surveillance[J]. IEE Proceedings Radar, Sonar&Navigation,2003,150(4):305-312.
    [45] Damini A, Balaji B, Haslam G, et al. X-band experimental airborne radar-Phase II:synthetic aperture radar and ground moving target indication[J]. IEE ProceedingsRadar, Sonar&Navigation,2006,153(2):144-151.
    [46] Vant M, Livingstone C, Rey M. Canadian experience on Radarsat-1and Radarsat-2GMTI for surveillance[A]. In: Proc. AIAA/ICAS International Air and SpaceSymposium and Exposition: The Next100Year[C], Dayton, OH, USA,2003:1-10.
    [47] DLR: TerraSAR-X[EB/OL]. http://www.dlr.de/tsx/start_en.htm.
    [48] GSFC: TanDEM-X[EB/OL]. http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/tand_general.html.
    [49] Amiot T, Douchin F. The interferometric cartwheel: A multi-purpose formation ofpassive radar microsatellites[A]. In: Proc. of International Geoscience and RemoteSensing Symposium, IGARSS2002[C], Waterloo, Canada,2002,1:435-437.
    [50] Skymed: COSMO-SkyMed[EB/OL]. http://cosmos-skymed-ao.asi.it/asi/asi.
    [51] Almzt: Almaz-1[EB/OL]. http://www.russianspaceweb.com/almzt.htlm.
    [52] Etkin V, Litovchenko K, Ivanov A, et al. Comparison of ERS-1and ALMAZ-1SAR ocean wave imaging[A]. In: Proc. of the IEEE International Geoscience andRemote Sensing Symposium, IGARSS1993[C], Tokyo, Japan,1993,3:937-939.
    [53] Spaceonline: Mir-Priroda[EB/OL]. http://old.spaceonline.tv/priroda.htm.
    [54]中航工业雷电院展出小型机载合成孔径雷达. http://news.ifeng.com/mil/2/detail_2011_05/16/6414238_5.shtml.
    [55] Sheen D R, VandenBerg N L, Shackman S J, et al. The P-3ultra-wideband SAR:description and examples[J]. IEEE Aerospace and Electronic Systems Magazine,1996,11(11):25-30.
    [56] Soumekh M, Nobles D A, Wicks M C, et al. Signal processing of wide bandwidthand wide beamwidth P-3SAR data[J]. IEEE Transaction on Aerospace andElectronic Systems,2001,37(4):1122-1140.
    [57] Jao J. K. Theory of synthetic aperture radar imaging of a moving target[J]. IEEETransactions on Geoscience and Remote Sensing,2001,39(9):1984-1992.
    [58] Vickers R S, Gonzalez V H, Ficklin R W. Results from a VHF impulse syntheticaperture radar[A]. In: Proc. of SPIE[C], Los Angeles, CA, USA,1992,1631:219-225.
    [59] Walker B, Sander G, Thompson M, et al. A high-resolution four-band SAR testedwith real time image formation[A]. In: Proc. of the IEEE International Geoscienceand Remote Sensing Symposium, IGARSS1996[C], Lincoln, Nebraska,1996:1881-1885.
    [60] Ressler M A. Army research laboratory ultra wideband boomSAR[A]. In: Proc. ofthe IEEE International Geoscience and Remote Sensing Symposium, IGARSS1996[C], Lincoln, NE, USA,1996:1886-1888.
    [61] Scott G J, Michael L, Picciolo, et al. Griesbach3Detection of dismounts usingsynthetic aperture radar[A]. In: Proc. of the IEEE Radar Conference, Radar2008[C], Rome, Italy,2008:1-6.
    [62] Hersey R K, Melvin W L, Culpepper E. Dismount modeling and detection fromsmall aperture moving radar platforms[A]. In: Proc. of the IEEE Radar Conference,Radar2008[C], Rome, Italy,2008:1-6.
    [63] Elaine C, Chen C W. Along-track interferometry for ground moving targetindication[J]. IEEE Aerospace and Electronic Systems Magazine,2008,23(6):19-24.
    [64] Hensley S, Chapin E, Freedman A, et al. First P-band results using the GeoSARmapping system[A]. In: Proc. of the IEEE International Geoscience and RemoteSensing Symposium, IGARSS2001[C], Sydney, Australia,2001:126-128.
    [65] Wiki: DARPA FORESTER. http://en.wikipedia.org/wiki/DARPA_FORESTER.
    [66] Ulander L, Blom M. The VHF UHF-band LORA SAR and GMTI systems[A]. In:Proc. of SPIE[C], San Diego, CA, USA,2003,5095:206-215.
    [67] Vu V T, Sjogren T K, Pettersson M I. Moving target detection by focusing forfrequency domain algorithms in UWB low frequency SAR[A]. In: Proc. of theIEEE International Geoscience and Remote Sensing Symposium, IGARSS2008[C].Boston, MA, USA,2008:1161-1164.
    [68] Flood B, Fr lind P O, Gustavsson A, et al. SAR data collection over rain forests atVHF-and UHF-band[A]. In: Proc. of the IEEE International Geoscience andRemote Sensing Symposium, IGARSS2010[C]. Honolulu, HI, USA,2010:1394-1397.
    [69] DLR: E-SAR-The airborne SAR system of DLR. http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2326/3776_read-5679.
    [70] DLR: E-SAR data sheet. http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2326/3776_read-5679.
    [71] Horn R, Nottensteiner A, Scheiber R. F-SAR-DLR's advanced airborne SARsystem onboard DO228[A]. In: Proc. of European Synthetic Aperture RadarConference2008, EUSAR2008[C], Friedrichshafen, Germany,2008:1-4.
    [72] Baumgartner S V, Gerhard K. A priori knowledge based GMTI algorithm for trafficmonitoring application[A]. In: Proc. of European Radar Conference2010[C].Aachen, Germany,2010:1-4.
    [73] DLR: F-SAR-The new airborne SAR system. http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2326/3776_read-5691.
    [74] Oriot H, Dupuis X, Janez F, et al. Change detection using very high resolutoinAirborne Interferograms[A]. In: Proc. of the Radar2009[C], Bordeaux, France,2009.
    [75] Bonin G, Dreuillet P. The Airborne SAR-System: SETHI[A]. In: Proc. of EuropeanSynthetic Aperture Radar Conference2008, EUSAR2008[C], Friedrichshafen,Germany,2008:1-4.
    [76] Ruault O, Plessis D, Martineau P, et al. Potential of human detection with SAR[A].In: Proc. of the CIE[C]. Chengdu, China,2011:736-739.
    [77] Chen J, Wang Y, Kan H, et al. Research on multiple phase center-multiple delaytaps DPCA for airborne radar[A]. In: Proc. of the International Conference onComputational Electromagnetics and Its Applications[C], Changsha, China,1999:533-536.
    [78] Brennan L E, Reed I S. Theory of adaptive radar[J]. IEEE Transactions onAerospace and Electronic Systems,1973,9(2):237-252.
    [79] Brennan L E, Mallete J D, Reed I S. Adaptive arrays in airborne MTI radar[J].IEEE Transactions on Antennas and Propagation,1976,24(5):566-571.
    [80] Klemm R. Adaptive airborne MTI: An auxiliary channel approach[J]. IEEProceedings-F Communications, Radar and Signal Proceddings,1987,134(3),269-276.
    [81] Wang H. An adaptive spatial-temporal processing for airborne surveillance radarsystems[J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):660-670.
    [82] Cherniakov M, Antoniou M, Saini R, et al. Space-surface BSAR: analytical andexperimental study[A]. In: Proc. of the European Radar Conference[C], Manchester,UK,2006,5:1-4.
    [83] Klemm R. Space-Time Adaptive Processing: Principles and Applications[M]. TheInstitution of Electrical Engineers,1998.
    [84]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000.
    [85] Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronic SystemsMagazine,2004,19(1):19-34.
    [86]保铮,廖桂生.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报,1993,21(9):1-7.
    [87] Luke R, Matthew T, Doug G. Fast-time STAP performance in pre and post rangeprocessing adaption as applied to multichannel SAR[A]. In: Proc. of theInternational Radar Symposium, IRS2006[C], Krakow, Poland,2006.
    [88] Goldstein J S, Zulch P A, Reed I S. Reduced rank space-time adaptive radarprocessing[A]. In: Proc. of the IEEE International Conference on Acoustics, Speechand Signal Processing, ICASSP1996[C], Atlanta, GA1996:597-601.
    [89] Peckham C D, Haimovich A M, Ayoub T F, et al. Reduced-rank STAP performanceanalysis[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36:664-676.
    [90]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法[J].电子学报,1999,27:56-58.
    [91] Basler R P. Sparse array antennas and clutter suppression processing forspace-based radars[R]. In: Proc. of the Air Force Research Laboratory, In-HouseReport, New York,2000.
    [92]陈建文.机载雷达空时自适应处理方法研究[D].长沙:国防科学技术大学博士学位论文,2000.
    [93]谢文冲.非均匀杂波环境下的机载雷达STAP方法与目标检测技术研究[D].长沙:国防科技大学博士学位论文,2006.
    [94]陆必应.天基GMTI与解模糊方法研究[D].长沙:国防科技大学工学博士学位论文,2006.
    [95]吴洪.非均匀杂波环境下相控阵机载雷达STAP技术研究[D].长沙:国防科技大学工学博士学位论文,2007.
    [96] Stephen M K, Rabideau D J, Barnes R M. Clutter mitigation techniques forspace-based radar[A]. In: Proc. of the IEEE International Conference on Acoustics,Speech and Signal Processing[C], Phoenix, AZ,1999:2323-2326.
    [97] Wicks M C, Rangaswamy M, Adve R. Space-time adaptive processing: aknowledge-based perspective for airborne radar[J]. IEEE Signal ProcessingMagazine,2006:51-65.
    [98] Gerlach K, Picciolo M L. Airborne/spacebased radar STAP using a structuredcovariance matrix[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):269-281.
    [99]黄晓涛. UWB-SAR抑制RFI方法研究[D].长沙:国防科学技术大学博士学位论文,1999.
    [100]黎向阳. UWB-SAR接收技术研究[D].长沙:国防科学技术大学博士学位论文2000.
    [101]常文革. UWB SAR系统设计与实现[D].长沙:国防科学技术大学博士学位论文,2001.
    [102]刘光平.超宽带合成孔径雷达高效成像算法[D].长沙:国防科学技术大学博士学位论文,2003.
    [103]郭微光.机载超宽带合成孔径雷达运动补偿技术研究[D].长沙:国防科学技术大学博士学位论文,2003.
    [104]王亮.基于实测数据的机载超宽带合成孔径雷达信号处理技术研究[D].长沙:国防科学技术大学博士学位论文,2007.
    [105]薛国义.机载高分辨超宽带合成孔径雷达运动补偿技术研究[D].长沙:国防科学技术大学博士论文,2008.
    [106]方学立. UWB SAR图像中的目标检测与鉴别[D].长沙:国防科学技术大学博士学位论文,2005.
    [107]金添.超宽带SAR浅埋目标成像与检测的理论和技术研究[D].长沙:国防科学技术大学博士学位论文,2007.
    [108]杨志国.基于ROI的UWB SAR叶簇覆盖目标鉴别方法研究[D].长沙:国防科学技术大学博士学位论文,2007.
    [109]王建.车载前视超宽带SAR浅埋目标成像技术研究[D].长沙:国防科学技术大学博士学位论文,2008.
    [110]杨延光.基于车载FLGPSAR序列图像的浅埋目标检测技术研究[D].长沙:国防科学技术大学博士学位论文,2008.
    [111]王玉明.车载前视GPSAR杂波特性与目标特征研究[D].长沙:国防科学技术大学硕士学位论文,2009.
    [112]王广学. UWB SAR叶簇隐蔽目标变化检测技术研究[D].长沙:国防科技大学博士学位论文,2011.
    [113]李建阳.机载超宽带SAR实时成像处理技术研究[D].长沙:国防科技大学博士学位论文,2010.
    [114]安道祥.高分辨SAR成像处理技术研究[D].长沙:国防科学技术大学博士学位论文,2011.
    [115]常玉林.多通道低频超宽带SAR/GMTI系统长相干积累STAP技术研究[D].长沙:国防科学技术大学博士学位论文,2009.
    [116] Chang Y, Zhou H, Huang X, et al. The representation of moving targets inmulti-channel UWB SAR images and it’s application in the generalization domainGMTI methods[A]. In: Proc. of the9th International Conference on SignalProcessing, ICSP2008[C], Beijing, China,2008:2525-2528.
    [117] Chang Y, Zhou H, Huang X, et al. Moving target focusing and parameter estimationbased on ROI of multi-channel UWB SAR images[A]. In: Proc. of the9thInternational Conference on Signal Processing, ICSP2008[C], Beijing, China,2008:2529-2532.
    [118]常玉林,黄晓涛,周红等.可适应阵列误差和非均匀杂波环境的多通道SAR图像域STAP方法[J].遥感学报,2009,13(2):238-245.
    [119]常玉林,周红,黄晓涛等.多通道SAR频率多普勒域宽带长CPI STAP方法[J].电子学报,2011,39(6):1245-1252.
    [120]常玉林,黄晓涛,周红等.基于UWB SAR图像ROI切片的运动目标成像和参数估计方法[J].信号处理,2010,26(1):86-94.
    [121]常玉林,黄晓涛,周红等.基于ATI的双通道UWB SAR运动目标检测和距离向速度估计[J].信号处理,2008,5:742-746.
    [122]常玉林,黄晓涛,周红等.运动目标在阵列孔径UWB SAR图像上的表征及其在图像域GMTI方法中的应用[J].宇航学报,2009,30(3):1146-1153.
    [123]周红.基于子带子孔径的低频SAR成像及运动目标检测技术研究[D].长沙:国防科学技术大学博士学位论文,2011.
    [124]周红.基于UWB SAR子孔径图像的地面运动目标检测方法研究[D].国防科技大学硕士论文,2007.
    [125]周红,黄晓涛,常玉林等.基于三通道UWB SAR子孔径图像序列的ATI方法[J].电子学报,2009,37(5):930-936.
    [126]周红,黄晓涛,常玉林等.子带子孔径ATI地面运动目标检测及参数估计方法[J].电子与信息学报,2010,32(1):62-68.
    [127]周红,黄晓涛,常玉林等.单通道SAR地面运动目标变化检测[J].雷达科学与技术,2008,6(1):23-28.
    [128]周智敏,周红,雷鹏正等.低频车载超宽带SAR/GMTI系统[J].国防科技大学学报,2011,33(6):72-77.
    [129] Zhou H, Huang X, Chang Y, et al. Single-channel SAR ground moving targetsdetection method using change detection based on single-pass subapertureimages[A]. In: Proc. of20071st Asian and Pacific Conference on SyntheticAperture Radar[C], Huang shan, China,2007:266-270.
    [130] Zhou H, Chang Y, Huang X, et al. Moving target detection and velocity estimationusing multiple subband DPCA and ATI method for triple-channel SAR[A]. In: Proc.of the9th International Conference on Signal Processing, ICSP2008[C], Beijing,China,2008:2653-2656.
    [131]周红,黄晓涛,常玉林等.基于SAR单通道单航过子孔径图像序列的地面运动目标变化检测方法[A].第十届全国雷达学术年会[C],中国长沙2008.10:1070-1073.
    [132] Zhou H, Zhu M, Chang Y, et al. Performance analysis of subband STAP for SARsparse array[A]. In: Proc. of IET International Radar Conference2009[C], Guilin,China,2009:44-48.
    [133]周红,娄军,黄晓涛等.基于子孔径图像的低频SAR多通道均衡方法[J].国防科技大学学报,2010,32(4):78-83.
    [134] Yang J, Huang X, Thompson J, et al. Low frequency UWB SAR ground movingtarget imaging[J]. IET Radar, Sonar&Navigation,2011,5(9):994-1001.
    [135]单荣.非均匀环境下STAP方法研究[D].长沙:国防科学技术大学硕士论文,2009.
    [136]许忠良.低频多通道SAR/GMTI系统通道误差校正及杂波抑制方法研究[D].长沙:国防科学技术大学硕士论文,2010.
    [137] Ender J H G. Space-time processing for multichannel synthetic aperture radar[J].Electronics&Communication Engineering Journal,1998:29-38.
    [138] Jao J K, Murphy T J. Results of the foliage penetration radar and electroic supportmeasures synergy for targeting (FOREST) test bed point design study[R]. LincolnLaboratory project report FPR-9,2001.
    [139] Yegulalp A F. Wideband Long-CPI GMTI[R]. The12th Annual ASAP Workshop,Lincoln Laboratory, Lexington, Massachusetts,2004.
    [140] Jao J K, Yegulalp A F, Ayasli S. Unified synthetic aperture space time adaptiveradar (USASTAR) concept[R]. Project Report, NTI-4, Lincoln Laboratory,Massachusetts Institute of Technology, Lexington, Massachusetts,2004.
    [141] Pettersson M I. Detection of moving targets in wideband SAR[J]. IEEETransactions on Aerospace and Electronic Systems,2004.7,40:780-795.
    [142] Pettersson M I. Optimum relative speed discretisation for detection of movingobjects in wide band SAR[J]. IEE Proceedings Radar, Sonar&Navigation,2007,6(1):213-220.
    [143] Hélène O, Vaizan B. Preliminary results on ground moving target detection with Lband data acquired with RAMSES sensor[A]. In: Proc. of European RadarConference[C], Dresden, Germany,2006:16-18.
    [144]李真芳,保铮,杨凤凤.基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术[J].中国科学,E辑,信息科学,2005,35(6):597-609.
    [145]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安:电子科技大学工学博士论文,2006.
    [146]刘颖,廖桂生.基于图像域的多通道、多像素二维联合自适应处理的分布式SAR地面运动目标检测及测速定位方法[A].第十届全国遥感遥控学术研讨会
    [C],青岛,2006:168-175.
    [147] Guo B, Vu D, Xu L, et al Ground moving target indication via multichannel[J].IEEE Transactions on Geoscience and Remote Sensing,2011.10,49(10):3753-3764.
    [148] Friedlander B, Porat B. VSAR: a high-resolution radar system for moving target[J].IEE Proceedings Radar, Sonar&Navigation,1997,144(4):205-218.
    [149] Friedlander B, Porat B. VSAR: a high-resolution radar system for oceanimaging[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(3):755-776.
    [150] Xu J, Li G, Peng Y N, et al. Parametric velocity synthetic aperture radar: signalmodeling and optimal methods[J]. IEEE Transactions on Geoscience and RemoteSensing,2008,46(9):2463-2480.
    [151] Xu J, Li G, Peng Y N, et al. Parametric velocity synthetic aperture radar: multilookprocessing and its applications[J]. IEEE Transactions on Geoscience and RemoteSensing,2008,46(11):3488-3502.
    [152] Graf K A, Guthart H. Velocity effects in synthetic apertures[J]. IEEE Transactionson Antennas and Propagation,1969,17(5):541-546.
    [153] Raney R K. Synthetic aperture radar and moving targets[J]. IEEE Transactions onAerospace and Electronic System,1971,7:499-505.
    [154] Freeman A. Simple MTI using synthetic aperture radar[A]. In: Proc. of the IEEEInternational Geoscience and Remote Sensing Symposium, IGARSS1984[C],Strasbourg, France,1984, ESA SP-215.
    [155] Freeman A. A digital prefilter for MTI with SAR[A]. In: Proc. of InternationalConference on Digital Signal Processing[C], Firenze, Italy, l984.
    [156] Freeman A, Currie A. Synthetic aperture radar imaging of moving targets[J]. GECJoumal of Research,1987,5(2):106-115.
    [157] Chen H C, Mcgillm C D. Target motion compensation by spectrum shifting insynthetic aperture radar[J]. IEEE Transactions on Aerospace and ElectronicSystems,1992.7,28(3):895-9092.
    [158]刘畅.机载SAR/GMTI实时信号处理技术研究与实现[D].北京:中国科学院电子学研究所博士学位论文,2006.
    [159]赵迎辉,王岩飞.基于ChirpZ变换的分布式SAR地面运动目标检测方法[J].电子与信息学报,2008,30(5):1056-1059.
    [160] Moreira J R, Wolfgang Keydel. A new MTI-SAR approach using the reflectivitydisplacement method[J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(5):1238-1244.
    [161] Barbarossa S. Detection and imaging of moving objects with synthetic apertureradar-Part l: Optimal detection and parameter estimation theory[J]. IEEProceedings-F Communications, Radar and Signal Proceddings,1992,139(1):79-88.
    [162] Barbarossa S. Detection and imaging of moving objects with synthetic apertureradar-Part2: Joint time-frequency analysis by Wigner-Vile distribution[J]. IEEProceedings-F Communications, Radar and Signal Proceddings,1992,139(1):89-97.
    [163] Barbarossa S. Analysis of multicomponent LFM signals by a combinedWigner-Hough transform[J]. IEEE Transactions on Signal Processing,1995,6:1511-1515.
    [164]易航.单通道SAR地面运动目标定位的研究[D].长沙:国防科学技术大学硕士学位论文,2009.
    [165]邓彬.机载SAR地面运动目标检测方法研究[D].长沙:国防科学技术大学硕士学位论文,2006
    [166]孙泓波,顾红,苏卫民等.利用分数阶Fourier域滤波的机载SAR多运动目标检测[J].航空学报,2002,23(1):33-37.
    [167]王宏艳,吴彦鸿,叶伟等.分数阶Fourier变换在SAR动目标检测中的应用[J].装备指挥技术学院学报,2003,14(1):70-73.
    [168] Fienup J R. Detecting moving targets in SAR imagery by focusing[J]. IEEETransaction on Aerospace and Electronic Systems,2001,37(3):794-800.
    [169]蔡骏.基于相位误差估计的SAR动目标检测技术研究[D].南京:南京航空航天大学硕士学位论文,2003.
    [170]盛蔚,毛士艺.一种合成孔径雷达对地面运动目标成像和精确定位的算法[J].电子与信息学报,2004,26(4):598-606.
    [171]蔚婧,廖桂生.一种多通道运动目标重聚焦及运动参数估计方法[J].西安电子科技大学学报,2009,36(4):624-628.
    [172] Perry R P, Dipietro R C, Fante R L. SAR imaging of moving targets[J]. IEEETransaction on Aerospace and Electronic Systems,1999,35(1):188-200.
    [173]周峰,李亚超,邢孟道等.一种单通道SAR地面运动目标成像和运动参数估计方法[J].电子学报,2007,35(3):543-548.
    [174] Vu V T, Sj gren T K, Pettersson M I, et al. Detection of moving targets byfocusing in UWB SAR-theory and experimental results[J]. IEEE Transcations onGeoscience Remote Sensing,2010,48(10):3799-3815.
    [175] Ouchi K. On the multilook images of moving targets by synthetic apertureradars[J]. IEEE Transactions on Antennas and Propagation,1985,33(8):823-827.
    [176]高飞,周锐.孙进平.复杂背景下单通道SAR运动目标检测方法[J].哈尔滨工程大学学报,201,3:304-308.
    [177] Chapman R D, Hawes C M, Nord M E. Target motion ambiguities insingle-aperture synthetic aperture radar[J]. IEEE Transaction on AerospaceElectronic Systems,2010,46(1):1142-1156.
    [178] Kirscht M. Detection velocity estimation and imaging of moving targets withsingle-channel SAR[A]. In: Proc. of the European Conference on SyntheticAperture Radar, EUSAR1998[C], Friedrichshafen, Germany,1998:587-590.
    [179] Marques D P, Multiple moving target detection and trajectory parametersestimation using a single SAR sensor[J]. IEEE Transaction on AerospaceElectronic Systems,2003,39(2):604-624.
    [180]陈广东,聂志彪,朱兆达,等. SAR图像中恒速动目标定位[J].南京航空航天大学学报,2007,39(4):520-523.
    [181] Minardi M J, Gorham L A, Zelnio E G. Ground moving target detection andtracking based on generalized SAR processing and change detection[A]. In: Proc.of SPIE[C], Dublin, Ireland,2005,5808:156-165.
    [182] Jahangir M. Moving target detection for synthetic aperture radar via shadowdetection[A]. In: Proc. of2007IET International Conference on Radar Systems[C],Edinburgh, UK,2007:1-5.
    [183] Wang G, Xia X, Chen V. Dual-speed SAR imaging of moving targets[J]. IEEETransactions on Aerospace and Electronic Systems,2006,42(1):368-379.
    [184] Rüegg M, Meier E, Nüesch D. Capabilities of dual-frequency millimeter waveSAR with monopulse processing for ground moving target indication[J]. IEEETranscations on Geoscience Remote Sensing,2007,45(3):539–553.
    [185] Stuff M A, Sullivan R C, Thelen, B J, et al. Automated two and three dimensional,fine resolution, radar imaging of rigid targets with arbitrary unknown motion[A].In Proceedings of SPIE[C], San Francisco, CA, USA,1994,2230:180-189.
    [186] Stockburger E, Orwig L. Autofocusing of ground moving target imagery[A]. InProceedings of SPIE[C], Orlando. FL, USA,1995,2487:315-324.
    [187] Zhu S Q, Liao G S, Qu Y, et al. A new slantrange velocity ambiguity resolvingapproach of fast moving targets for SAR system[J]. IEEE Transactions onGeoscience and Remote Sensing,2010,48(1):432–451.
    [188] Goldstein R M, Zebker H A. Interferometric radar measurement of ocean surfacecurrents[J]. Nature,1987,328(6132):707-709.
    [189] Chritoph H G, Ishuwa C S. Raw data based two-aperture SAR ground movingtarget indication[A]. In:Proc. of the IEEE International Geoscience and RemoteSensing Symposium, IGARSS2003[C], Toulouse, France,2003,2:1032-1034.
    [190] Christoph H G. Ground moving target parameter estimation for two-channelSAR[J]. IEE Proceeding Radar&Sonar Navigation,2006,153(3):224-233.
    [191] Sikaneta I C, Gierull C H. Ground moving target detection for along-trackinterferometric SAR data[A]. In: Proc. of the IEEE Aerospace ConferenceProceedings[C], Big Sky, Montana, USA,2004,4:2227-2235.
    [192] Sikaneta I C. Detection of ground moving objects with synthetic aperture radar[D].University of Ottawa,2002.
    [193] Gierull C H. Azimuth positioning of moving targets in two-channel SAR bydirection-of-arrival estimation[J]. Electronics Letters,2004,40(21):1380-1381.
    [194] Chiu S, Gierull C H, Durak A. Clutter effects on ground moving targetsinterferometric phase[A]. In: Proc. of the IEEE International Geoscience andRemote Sensing Symposium, IGARSS2005[C], Seoul, Korea,2005,4:2928-2931.
    [195] Chiu S. SAR along-track interferometry with application to RADARSAT-2groundmoving target indication[A]. In: Proc. of SPIE on Image and Signal processing forRemote Sensing[C], Agia Pelagia, Greece,2003,4885:246-255.
    [196] Chiu S. An Analysis of RADARSAT2SAR-GMTI Performance for StandardBeam Mode[R]. Ottawa, Canada: Defense R&D Canada, Defense ResearchEstablishment Ottawa,2000.
    [197] Gierull C H. Moving target detection with along-track SAR interferometry[R].Ottawa, Canada: Defense R&D Canada, Defense Research Establishment Ottawa,2002.
    [198] Sikaneta I C, Gierull C H. Parameter estimation for the phase statistics inInterferometric SAR[A]. In: Proc. of the IEEE International Geoscience andRemote Sensing Symposium, IGARSS2002[C], Toronto, Canada,2002,3:1735-1737.
    [199] Chiu S. Performance Analysis of RADARSAT-2Multi-Channel MODEXModes[A]. In: Proc. of European Microwave Conference[C], Munich, Germany,2007:1449-1452.
    [200] Gierull C H. Statistical Analysis of multilook SAR interferograms for CFARdetection of ground moving targets[J]. IEEE Transactions on Geoscience andRemote Sensing,2004,42(4):691-701.
    [201] Fischer J, Baumgartner S, Reigber A, et al. Geometric,radiometric, polarimetricand along-track interferometric calibration of the new F-SAR system of DLR inX-band[A]. In: Proc. of the7th European Conference on Synthetic Aperture Radar,EUSAR2008[C], Friedrichshafen, Germany,2008:1-4.
    [202] Dawidowicz B, Kulpa K S, Misiurewicz J. Detection of slow moving targets inSAR images using STAP processing with two channel Sigma-Delta antenna[A],European Radar Conference[C], Paris, France,2005:125-128.
    [203] Sherman S M. Monopulse Principles and Techniques[M]. Boston: Artech HousePublishers,1984.
    [204] Soumekh M. Moving target detection and imaging using an X-band along-trackmonopulse SAR[J]. IEEE Transactions Aerospace and Electronic Systems,2002,38(1):15-333.
    [205] Scbimpf H, Essen H, Bbihmsdorff S,et al. MEMPHIS-A fully polarimetricexperimental radar[A]. In: Proc. of the IEEE International Geoscience and RemoteSensing Symposium, IGARSS2002[C], Toronto, Canada,2002,3:1714-1716.
    [206]高飞,毛士艺,袁运能,等.一种在双通道SAR图像域实现地面运动目标检测的方法[J].电子学报,2006,34(4):755-760.
    [207] Oliver C J, Quegan S. Understanding Synthetic Aperture Radar Images[M]. ArtechHouse, Boston,1998.
    [208]高飞,毛士艺,玉振明,等.一种全自动的检测方法用于SAR-ATI的GMTI[J].航空学报,2005,26(1):84-88.
    [209]时公涛.基于干涉图的多通道SAR地面慢动目标自动检测技术[D].长沙:国防科学技术大学博士学位论文,2009.
    [210] Kapfer R, Davis M E. Along track interferometry for foliage penetration movingtarget indication[A]. In: Proc. of the IEEE Radar Conference, Radar2008[C], Italy,Rome,2008:321-326.
    [211] Calderbank R, Howard S D, Moran B. Waveform diversity in radar signalprocessing: a focus on the use and control of degrees of freedom [J]. IEEE SignalProcessing Magazine,2009,26(1):32-41.
    [212] Wu X H, Kishk A A, Glisson A W. MIMO-OFDM radar for direction estimation [J].IET Radar, Sonar&Navigation,2010,4(1):28-36.
    [213] Wang W Q. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(8):3094-3104.
    [214] Poullin D. Passive detection using digital broadcasters (DAB, DVB) with COFDMmodulation [J]. IET Radar, Sonar&Navigation,2005,152(3):143-152.
    [215] SBerger C. R, Demissie B, Heckenbach J, et al. Signal processing for passive radarusing OFDM waveforms[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(1):226-238.
    [216] Stralka J P, Gerard G L. OFDM-based wideband phased array radar architecture[A].In: Proc. of the IEEE Radar Conference, Radar2008[C], Rome, Italy,2008:26-30.
    [217] Surender S C, Narayanan R M. UWB noise-OFDM netted radar: physical layerdesign and analysis [J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):1380-1400.
    [218] Levanon N. Multi-frequency radar signals [A]. Records of the IEEE2000International Radar Conference[C], Alexandria, VA, USA,2000:683-688.
    [219] Garmatyuk D. Ultra-wideband imaging radar based on OFDM: system SimulationAnalysis [A]. In: Proc. of SPIE[C], San Jose, CA, USA,2006:1-11.
    [220] Garmatyuk D, Brenneman M. Adaptive multicarrier OFDM SAR signalprocessing[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3780-3790.
    [221] Garmatyuk D, Morton Y, Mao X L. Radar and GPS system inter-operability withUWB-OFDM signals[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):265-274.
    [222] Garmatyuk D, Brenneman M. Slow-time SAR signal processing for UWB OFDMradar system[A]. In: Proc. of the IEEE Radar Conference, Radar2010[C],Arlington, VA, USA,2010:853-858.
    [223] Sen S, Nehorai A. Adaptive OFDM radar for target detection in multipathscenarios [J]. IEEE Transactions on Signal Processing,2011,59(1):78-90.
    [224] Sen S, Nehorai A. Target detection in clutter using adaptive OFDM radar[J]. IEEESignal Processing Letters,2009,16(7):592-595.
    [225] Paichard Y, Castelli J C, Dreuillet P, et al. A RCS measurement and analysissystem for time-varying targets [A]. In: Proc. of Instrumentation and MeasurementTechnology Conference, IMTC2006[C], Sorrento, Italy,2006:921-925.
    [226] Hossain M A, Elshafiey I, Alkanhal M A, et al. Adaptive UWB-OFDM syntheticaperture radar[A]. In: Proc. of the2011Saudi International Electronics,Communications and Photonics Conference, SIECPC[C], Riyadh, Saudi Arabia,2011:1-6.
    [227]雷仲魁,陈广东,朱兆达,等. SAR图像中动目标自聚焦检测的方法改进[J].南京航天航空大学学报,2008,12(1):790-793.
    [228]林幼权.机载合成孔径成像与地面动目标检测技术研究[D].西安:西安电子科技大学博士学位论文,2001.
    [229]盛蔚.合成孔径雷达对地面运动目标检测和成像的关键技术研究[D].北京:北京航空航天大学博士学位论文,2003.
    [230]牛晓锋.单通道SAR运动目标检测方法研究[D].北京:中国科学院电子学研究所硕士学位论文,2006.
    [231]高贵. SAR图像目标ROI自动获取技术研究[D].长沙:国防科技大学博士学位论文,2007.
    [232] Joughin I R, Winebrrenner D P, Percival D B. Probability density functions formultilook polarimetric signatures[J]. IEEE Transactions on Geoscience andRemote Sensing,1994,32(3):562-574.
    [233] Freitas C C, Frery A C, Correia A H. The polarimetric G distribution for SAR dataanalysis[J]. Environmetrics,2005,16(1):13-31.
    [234] Frery A C, Muller H J, Yanasse C F, et al. A model for extremely heterogeneousclutter[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):648-659.
    [235] Touzi R, Lopes A, Bruniquel J, et al. Coherence estimation for SAR imagery[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):135-149.
    [236] Abdelfattah R, Nicolas J M. Interferometric SAR coherence magnitude estimationusing second kind statistics[J]. IEEE Transactions on Geoscience and RemoteSensing,2006,44(7):1942-1953.
    [237] Ward K D. Compound representation of high resolution sea clutter[J]. ElectronicsLetters,1981,7:561-565.
    [238] Muller H J. Modeling of extremely heterogeneous radar backscatter[A]. In: Proc.of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS1997[C], Singapore,1997,4:1603-1605.
    [239] Soumekh M. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms[M]. New York: Wiley,1999.
    [240] Vu V T, Sj gren T K, Pettersson M I. Moving target detection by focusing forfrequency domain algorithms in UWB low frequency SAR[A]. In: Proc. of theIEEE International Geoscience and Remote Sensing Symposium, IGARSS2008[C], Boston, MA,2008:161–164.
    [241] Frey O, Magnard C, Rüegg M, et al. Focusing SAR data acquired from non-linearsensor trajectories[A]. In:Proc. of the IEEE International Geoscience and RemoteSensing Symposium, IGARSS2008[C], Boston, MA,2008,4:415-418.
    [242] Yegulalp A. F. Fast backprojection algorithm for synthetic aperture radar[A]. In:Proc. of the IEEE Radar Conference, Radar1999[C], Waltham, MA,1999:60–65.
    [243] Ulander L M H, Hellsten H, Stenstrom G. Synthetic-aperture radar processingusing fast factorized back-projection[J]. IEEE Transactions on Aerospace andElectronic Systems,2003,39(3):760–776.
    [244] Ulander L, Bolm M, Flood B, et al. The VHF/UHF-band LORA SAR and GMTIsystem[A]. In: Proc. of SPIE[C], San Diego, CA, USA,2003:206-215.
    [245] Palubinskas G, Runge H, Reinartz P. Radar signatures of road vehicles: airborneSAR experiments[A]. In: Proc. of SPIE[C], Dublin, Ireland,2005:1-11.
    [246] Bethke K H, Baumgartner S, Gabele M, et al. Air-and spaceborne monitoring ofroad traffic using SAR moving target indication[J]. Project TRAMRAD ISPRSJournal of Photogrammetry&Remote Sensing2006,61:243–259.
    [247] Goodman N R. Statistical analysis based on a certain multivariate complexgaussian distribution (an introduction)[J]. Annals of Mathematical Statistics,1963,34(1):152-177.
    [248] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products[M]. SanDiego, CA: Academic Press,2007.
    [249]黄纪军. FOPEN SAR地面目标散射特性分析及检测研究[D].长沙:国防科学技术大学博士学位论文,2005.
    [250] Sullivan A. Electromagnetic modeling of FOPEN targets and clutter in a lossyhalf-space Radar Sensor Technology[A]. Proceedings of SPIE[C], San Jose, CA,USA,2001,4373:49-59.
    [251] Billingsley J B. Low Angle RADAR Land Clutter Measurements and EmpiricalModels[M], SciTech. Pub, Norwich, NY,2001.
    [252] Franz J, Jao J K. UHF windblown clutter measure and modeling[A]. In: Proc. ofthe IEEE Radar Conference, Radar2006[C], Verona, NY,2006:39-43.
    [253]孙吉祥,等.现代模式识别[M].长沙:国防科技大学出版社,2001.
    [254] Lombardo P, Fedele G, Pastina D. Performance analysis of SAR change detectiontechnique[A] In: Proc. of EUROPTO conference on image and Signal Processingfor Remote Sensing SPIE[C], Barcelona, Spain,1998.
    [255] Wang T, Bao Z, Zhang Z H, et al. Improving coherence of complex image pairsobtained by along-track bistatic SARs using range-azimuth prefiltering[J]. IEEETransactions on Geoscience and Remote Sensing,2008,46(1):3-13.
    [256][美]Richards M A.著,邢孟道,王彤等译.雷达信号处理基础[M].北京:电子工业出版社,2008.
    [257]邓斌.多载频相位编码雷达信号设计与处理技术研究[D].长沙:国防科技大学博士学位论文,2011.
    [258] Vu V T, Sj gren T K, Pettersson M I, et al. An impulse response function forevaluation of UWB SAR imaging[J]. IEEE Transactions on Signal Processing,2010,58(7):3927-3932.
    [259]熊张亮.基于超近程主动防护系统的雷达关键技术研究[D].南京:南京理工大学博士学位论文,2006.
    [260]霍凯基于OFDM新体制雷达信号的微动目标特征提取研究[D].长沙:国防科技大学博士学位论文,2011.
    [261] Goodman N A. Radar satellite constellations: SAR characterization and analysis
    [A]. In: Proc.2003Advanced SAR Workshop[C], Canada,2003:1-10.
    [262][美] Kay S M著,罗鹏飞等译.统计信号处理基础——估计与检测理论[M].北京:电子工业出版社,2003.
    [263] Sturm C, Pancera E, Zwick T, et al. Anovel approach to OFDM radar processing[A].In: Proc. of the IEEE Radar Conference, Radar2009[C], Pasadensa, CA, USA,2009:4-8.
    [264] Mozeson E, Levanon N. Removing autocorrelation sidelobes by overlayingorthogonal coding on any train of identical pulses[J]. IEEE Transactions onAerospace and Electronic Systems,2003,39(2):583-603.
    [265] Dogandzic A, Nehorai A. Generalized multivariate analysis of variance: A unifiedframework for signal processing in correlated noise[J]. IEEE Signal ProcessingMagazine,2003,20(5):39-54.
    [266] Anderson T W. An Introduction to Multivariate Statistical Analysis,3rd ed[M].Hoboken, NJ: Wiley,2003.
    [267] Lv X, Xing M, Bao Z, et al. Coherence improving algorithm for airbornemultichannel SAR-GMTI[J]. IEE Proceedings Radar Sonar&Navigation,2010,4(3):336-347.
    [268] Ma L, Li Z F, Liao G S. System error analysis and calibration methods formulti-channel SAR[J]. Progress in Electromagnetic Research,2011,112:309-327.
    [269] Gierull, C H. Digital channel balancing of along-track interferometric SAR data[R].DRDC Canada, Ottawa,2003.
    [270] Lei, P Z, Zhou H, Huang X T. Multi-channel equalization for SAR/GMTI systemwith small time-bandwidth chirp signal[A].2011IEEE CIE InternationalConference on Radar[C], Chengdu, China,2011:707-710.
    [271] Miller T, Potter L, McCorkle J. RFI suppression for ultra wideband radar[J] IEEETransactions on Aerospace and Electronic Systems,1997,33(4):1142-1156.
    [272] Luo X, Ulander L M H, Askne J, et al. RFI suppression in ultra-wideband SARsystems using LMS filters infrequency domain[J]. Electronic Letter,2001,37(4):241-243.
    [273] Vu V T, Sj gren T K, Pettersson M I, et al. RFI suppression in ultrawideband SARusing an adaptive line enhancer[J]. IEEE Geoscience and Remote Sensing Letters,2010,7(4):694-698.
    [274] Tian J, Zhou Z, Song Q. Subaperture wiener filter construction for time-varyingRFI suppression in UWB SAR[A]. In: Proc. of the1St Asian and PacificConference on Synthetic Aperture Radar2007, APSAR2007[C], Huangshan, China,2007:71-75.
    [275]周峰.机载SAR运动补偿和窄带干扰抑制及其单通道GMTI的研究[D].西安:西安电子科技大学博士论文,2007.
    [276] Yu C, Zhang Y, Dong Z, et al. Eigen-decomposition method for RFI SuppressionApplied to SAR data[A]. In: Proc. of the2010International Conference onMultimedia Technology, ICMT[C], Ningbo, China,2010:1-4.
    [277] Potsis A, Reigber A, Papathanassiou K P. A phase preserving method for RFinterference suppression in P-band synthetic aperture radar interferometric data[A].In: Proc. of the IEEE International Geoscience and Remote Sensing Symposium,IGARSS1999[C], Hamburg, Germany,1999:2655-2657.
    [278] Rosen P A, Hensley S, Le C. Observations and mitigation of RFI in ALOSPALSAR SAR data: Implications for the DESDYNI mission[A]. In: Proc. of theIEEE Radar Conference, Radar2008[C], Rome, Italy,2008:1-6.
    [279]董臻,梁甸农,黄晓涛. VHF/UHF UWB SAR基于通道均衡的RFI抑制方法[J].电子与信息学报,2008,30(3):550-553.
    [280] Reigber A, Ferro-Famil L. Interference suppression in synthesized SAR images[J].IEEE Geoscience and Remote Sensing Letters,2005,2(1):45-49.
    [281]张立峰,王彤,邢孟道,等.多通道SAR/GMTI通道均衡和动目标检测定位方法[J].西安电子科技大学学报(自然科学版),2009,36(1):11-16.
    [282]吕孝雷,苏军海,邢孟道,等.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [283]刘向阳,周争光.一种基于回波数据的机载雷达通道均衡的方法[J].电子学报,2009,37(3):658-663.
    [284]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法[J].自然科学进展,2008,18(12):1484-1490.
    [285]杨斌,武剑辉,向敬成.谱修正数字旁瓣抑制滤波器设计[J].系统工程与电子技术,2000,22(9):90-94.
    [286]龚清勇,朱兆达.通道幅相误差快速校正算法在空时自适应处理中的应用[J].南京航空航天大学学报,2008,40(5):655-659.
    [287] Li S, Xu H P, Zhang, L Q. An advanced DSS-SAR InSAR terrain height estimationapproach based on baseline decoupling[J]. Progress in Electromagnetics Research,2011,119:207-224.
    [288] Feng L, Xu H P, Li C S, et al. A novel estimation approach of dynamic andcoupling baseline for distributed satellite SAR[J]. Progress in ElectromagneticsResearch,2012,123,467-484.
    [289]邵永杰.多通道SAR-GMTI中的图像配准研究[D].西安:西安电子科技大学硕士学位论文,2006.
    [290] Capozzoli A, Curcio C, Liseno A. GPU-based w-k tomographic processing by1DNon-Uniform FFTs[J]. Progress in Electromagnetics Research M,2012,23:279-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700