甘蓝型油菜种子高油酸和低亚麻酸含量的分子标记辅助选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是世界重要的植物油脂来源。油菜种子各种脂肪酸的相对含量很大程度上决定了菜籽油的营养价值和经济价值。在低芥酸的基础上进一步提高油酸的含量和降低亚麻酸的含量,是油菜品质育种的重要内容。本研究旨在通过标记辅助选择(MAS)加快回交转育甘蓝型油菜高油酸、低亚麻酸优良品系的进程,获得具有高油酸、低亚麻酸目的性状且遗传背景回复为轮回亲本程度高的优良品系。
     本研究利用三个回交组合,针对油菜种子高油酸、低亚麻酸含量进行分子标记辅助选择。利用基因池筛选与油酸、亚麻酸含量相关的分子标记;运用气相色谱仪对油酸、亚麻酸含量进行表型鉴定;主要结果如下:
     1.与甘蓝型油菜种子油酸、亚麻酸含量相关的标记筛选
     在组合甲A177×甲A254中,利用集团分离分析法,筛选出与油酸含量相关的SSR分子标记SSR373、BRGMS630;与亚麻酸含量相关的分子标记BM135、SSR698、BM44-2、SSR128-3。对目的性状进行QTL扫描,得到一个与油酸含量相关的主效QTL。该QTL LOD值为66.1,贡献率为85.61%。其中标记BRGMS630距QTL峰值位置4.4cM,SSR373距QTL峰值位置15.01cM。两标记分别位于主效QTL的两侧。
     2.前景标记的功能验证
     利用组合甲A177×甲A254的DH分离群体,针对油酸含量性状,对标记SSR373、BRGMS630进行前景选择效果验证。结果SSR373的错选率为24.73%,BRGMS630的错选率为10.22%。而两标记一起使用错选率为5.88%。
     3.最终优良入选单株的获得
     利用分子标记与气相色谱仪表型选择相结合的手段对分离单株进行前景选择,再用分子标记进行背景选择。最终在组合甲A177×甲A254 BC_3F_2代获得优良单株08CW183。08CW183油酸含量达到73.95%,遗传背景回复率达到了94.12%。
Brassica napus is a very important source of plant edible oil. The nutritional and economic value of rapeseed oil is largely determined by its relative contents of fatty acids in the seed. Therefore, it has become an important aspect of quality breeding in rapeseed to further increase oleic acid content and decrease linolenic acid content. In this study, the course of backcross breeding was accelerated to obtain the fin lines with high oleic acid and low linolenic acid through marker-assisted selection(MAS). And the genetic background of fine lines got a high recovery of recurrent parent.
     In this study, we used marker-assisted selection for high-oleic, low linolenic acid content rapeseed in three backcross combinations. Molecular markers related to oleic and linolenic acid content were developed by bulk segregation analysis. Gas chromatography was used for the phenotype identification of oleic and linolenic acid content. The main results are as follows.
     1. Screening of markers related to oleic and linolenic acid
     In the combination of甲A177×甲A254, we detected SSR markers SSR373 and BRGMS630 which were related to oleic acid content according to bulked segregation analysis. In the same way,wo identified SSR markers of BM135、SSR698、BM44-2、SSR128-3 which were related to linolenic acid content. We used the markers to scan correlative QTLs, and got a major QTL related to oleic acid content with the max LOD of 66.1, accounting for 85.61% of the total variance. Genetic distance between the marker BRGMS630 and the max QTL position was 4.4cM, and the genetic distance between the marker SSR373 and the max QTL position was 15.04cM. The two marker were located at both sides of the main-effect QTL.
     2. Functional verification of the foreground markers
     We used DH lines of甲A177×甲A254 to validate the effect of foreground selection by marker SSR373 and BRGMS630. The ratio of false selection of SSR373 was 24.73%, and the ratio of false selection of BRGMS630 was 10.22%.While, we used the SSR373 and BRGMS630 together, the ratio was 5.88%.
     3. Selection of genotypes with target characters and highest percentage of background from recurrent parent
     The foreground selection was carried out by MAS and gas chromatography. And then, we used SSR and AFLP markers to give background selection of the whole genome. Finally, we got the fine individual 08CW183 in the BC_3F_2 of甲A177×甲A254. The oleic acid content of 08CW183 is 73.95%, and its recovering ratio of genetic background was 94.12%.
引文
1.董娜,林良斌,马占强.农杆菌介导反义油酸脱饱和酶基因转化甘蓝型油菜[J].分子植物育种,2004,2(5):655-659
    2.段红梅,王文秀,常汝镇.大豆SSR标记辅助遗传背景选择的效果分析.植物遗传资源学报,2003,4(1):36-42
    3.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].科学出版社,2001
    4.傅廷栋,杨光圣,涂金星,马朝芝.中国油菜生产的现状与展望.中国油脂,2003,28(1):11-13
    5.傅廷栋.油菜品种改良的现状与展望.华中农业大学学报,2004,34(增刊):1-7
    6.官春云.油菜高油酸遗传育种研究进展[J].作物研究,2006
    7.官春云.油菜品质改良和分析方法[M].长沙湖南科学技术出版社,1985
    8.官梅,李枸.高油酸油菜品系农艺性状研究.中国油料作物学报,2008
    9.和江明,王敬乔,陈薇,等.用EMS诱变和小抱子培养快速获得甘蓝型油菜高油酸种质材料的研究[J].西南农业学报,2003,16(2):34-36
    10.黄永菊,李云昌,陈军,等.新疆野生油菜芥酸含量的遗传分析.中国油料作物学报,1999,21(4):15-16
    11.孔祥瑞.必需微量元素的营养生理及临床意义.合肥:安徽科学出版社.1982:3-60
    12.李佳,沈斌章,韩继祥,甘莉.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13:521-52
    13.刘定福,刘后利.甘蓝型油菜脂肪酸成分的基因作用形式和效应.作物学报,1990,3:193-199
    14.刘列钊,林呐.油菜简单重复序列SSR研究进展.生命科学,2004,16:173-176
    15.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    16.刘志文,王英,刘雪平,傅廷栋,薛永常,涂金星,马朝芝.甘蓝型黄籽油菜分子标记辅助选择的效果分析.华北农学报,2006,21(2):57-61
    17.龙艳,牛应泽.我国油菜品质育种研究的进展与展望.四川农业大学学报,2002
    18.卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报,2000,17(6):481-491
    19.陆光远,杨光圣,傅廷栋.一个简便的适合于分析油菜中SSR位点的检测体系.中国油料作物学报,2003,25:79-81
    20.戚存扣,盖钧锐,章元明.甘蓝型油菜芥酸含量的主基因+多基因遗传[J].遗传学报,2001,28(2):182-187
    21.文雁成,王汉中,沈金雄,刘贵华,张书芬.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学,2006,39:246-256
    22.席章营,朱芬菊,台国琴,李志敏.作物QTL分析的原理与方法.中国农学通报,2005,21:88-92
    23.夏军红,郑用琏.玉米恢复系的分子标记辅助回交选育与效益分析.作物学报,2002,28(30):339-344
    24.肖能遑.世界油料及制品产销动态[J].中国油料作物学报,1997,19(3):77-81
    25.熊兴华,官春云,李枸,等.甘蓝型油菜fad2基因片段的克隆和反义表达载体的构建[J].中国油料作物学报,2002,24(2):1-4
    26.徐云碧.分子标记在数量基因定位中的应用.遗传,1992,14:45-48.
    27.张书芬,傅廷栋,马朝芝,朱家成,王建平.3种分子标记分析油菜品种间的多态性效率比较.中国油料作物学报,2006,27(2):19-23
    28.张书芬.甘蓝型油菜农艺及品质性状杂种优势和遗传分析.[博士学位论文].华中农业大学,2005
    29.张阵阵,郭美丽,张军东,张汉明.红花RAPD和AFLP分子标记技术多态性效率比较.中草药,2007,38(3):449-451
    30.周永明,刘后利.甘蓝型油莱种子中几种主要脂肪酸含量的遗传[J].作物学报,1987,13(1):1-9
    31.Agricola N,Fernandez Martinez A,Velasco L J-M.Inheritance of mid and high oleic acid content in Ethiopian Mustard[J].Crop Science,2006,46(6):2361-2367.
    32.Bartkowiar,Broda I.Inheritance of fat content and fatty acid composition in seed of zero erucic winter rape [M].proc5~(th)Interna.Rapeseed conf,1978,1:119-123
    
    33. Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations. Theor Appl Genet 2007, 115:849-858
    
    34. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M,Rafalski AJ . SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2002
    
    35. Delourme R , Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S,Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content in oilseed rape (Brassica napus L.) .Theor Appl Genet, 2006,113:1331-1345
    
    36. Doerge RW, Churchill GA. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996, 142:285-294
    
    37. F.Javidfar, V.L.Ripley, V.Roslinsky, H.Zeinali, et al. Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape (Brassica napus). Plant Breeding,2006,125:65-71
    
    38. Guan CY, Chen SY, Li X, et al. Preliminary report of breeding for high oleic acid content in Brassica nupus[C]. In:Liu HL, Fu TD. Procedings of International Symposium on Rapeseed Science. New York: Science Press,2001
    
    39. Guan Mei. High oleic acid oilseed rape breeding in Germany[J]. Life Science Research, 2004, 8 (4): 28-32.
    
    40. Harwood JL. Recent advances in the biosynthesis of plant fatty. Biochim Biophys Acta,1996,1301:7-56
    
    41. Hittalmani S, Parco A, Mew TV , Zeigler RS, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice.Theoretical and Applied Genetics,2000, 100: 1121-1128
    
    42. Hospital F, C Chevalet and P Mulsant. Using markers in gene introgression breeding programs. Genetics, 1992,132: 1199-1210
    
    43. Hu J., Li G, Struss D. and Quiros C.F. SCAR and RAPD marker associated with 18-carbon fatty acids in rapeseed, Brassica nupus.PlantBreeding, 1999,118:145-150
    
    44. J. Piquemal, E. Cinquin, et al. Construction of an oilseed rape(Brassica nupus L.)genetic map with SSR markers.Theor Apel Genet.,,2005,111: 1514-1523
    
    45. Jourdren C, Barret P, Bruel D, et al. Specific molecular marker of the genes controlling the linoleic acid level in rapeseed [J]. Theor Appl Genet,1996,93(4):512-518
    
    46. Jourdren C, Barret P, Brunei D, Delourme R, Renard M. Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet, 1996b, 93:512-518
    
    47. Kosambi DD. The estimation of map distances from recombination values. Ann Eugen, 1944, 12:172-175
    
    48. Laurent P, Huang AHC. Organ and development specific acyl coenzyme a lyso-phos phatidates in palm and meadowfoam[J]. Plant physical, 1992,99:1711-1775
    
    49. Liu X P, Tu J X, Liu Z W , et al. Construction a linkage map with molecular makers and using it to analyze QTL for erucic acids in Brassica napus[J]. Acta Agro Sinica, 2005, 31(3): 275-282
    
    50. Lowe AJ, Moule C, Trick M, Edwards KJ. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species.Theor Appl Genet, 2004, 108:1103-1112
    
    51. Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR. RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor Appl Genet, 2003, 107:283-290
    
    52. Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet 2006,113:1211-1220
    
    53. Okuley J, Lightner J, Feldmann K, et al. Arbidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipidsynthesis[J]. Plant Cell,1994,6147-6158
    
    54. P iazza GJ , Foglia TA. Ragaseed oil for oleo chemical uses[J ]. Eur J Lipid Sci Techno 1,2001, 103: 405-454.
    
    55. Qi X, Pittaway TS, Lindup S, Liu H, Waterman E, Padi FK, Hash CT, Zhu J,Gale MD, Devos KM. An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet, 2004, 109:1485 -1493
    
    56. Rajcan I.,Kasha K.J.S.,Beverdorf W.D. Evaluation of cytoplasmic effects on agronomic and seed quality traits in two doubled haploid populations of Brassica nupus L. Euphytica,2002,123:401-409
    
    57. Reyna N, Sneller CH. Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Sci, 2001,41:1317-1321
    
    58. RW Michelmore, I Paran, RV Kesseli. Identification of Markers Linked to Disease-Resistance Genes by Bulked Segregant Analysis: Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations.PNAS, 1991,88:9828-9832
    
    59. Scarth R, Tang J . Modification of Brassica oil using conventional and transgenic approaches. Crop Sci, 2006,46:1225-1236
    
    60. Schierholt A, Becker HC, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet, 2000,101:897-901
    
    61. Schierholt A,Becker H.C. Environmental variability and heritability of high oleic acid content in winter oilseed rape. Plant Breeding, 2001, 120:63-66
    
    62. Schmierer DA, Kandemir N, Kudrna DA, Jones BL, Ullrich SE, Kleinhofs A.Molecular marker-assisted selection for enhanced yield in malting barley. Mol Breed, 2004,14:463-473
    
    63. Servin B, Martin OC, Mezard M, Hospital F. Toward a theory of marker-assisted gene pyramiding. Genetics, (2004) 168:513-523
    
    64. Snowdon RJ, Friedt W. Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breeding 2004, 123:1-8
    
    65. Somers D J, Friesen K R D, Rakow G. Indentification of molecular markers associated with linoleic acid desaturation in Brassica nupus. Theor Apel Genet,1998,96:897-903
    
    66. Stontjosdijk PA, Hurlston C, Singh SP, et al .Genetic manipulation for altered oil quality in Brassicas[M].In: Wratten N,Salisbury PA. Proceedings of the 10~(th) International Rapeseed Congress Canberra:GCIRC,1999
    
    67. Stoutjesdijk PA, Hurlestone C, Singh SP et al. High- oleic acid Australian Brassica nupus and B. juncea varieties produeed by co-suppression of endog-enous Delta12 -desaturases.Biochem Soc Trans. 2000 Dee;28(6):938-40
    
    68. Temesgen B, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB. Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet, 2001, 102:664-675
    
    69. Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh,2003
    
    70. Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N,Mukai Y, Koike K, Yazaki J et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002,14:525-535
    
    71. Xueyi Hu, Mandy Sullivan, Gilbert, Manju Gupta, Steven A.Thompson. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 andfad3 allele-specific markers in canola(Brassica napus L.). Theor Apel Genet,2006,113:497-507
    
    72. Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W . Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006,113:33-38
    
    73. Zhao J, Dimov Z, Becker HC, Ecke W, Mollers C. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breed, 2008 , 21:115-125
    
    74. Zhou P, Tan Y, He Y, et al. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice by molecular marker-assisted selection[J]. Theor Appl Genet, 2003,106: 326-331
    
    75. Zhou W C, Kolb F L, Bai G H, et al. Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat[J]. Plant Breeding, 2003, 22(1): 40-44
    
    76. Zudong Sun, Zining Wang, Jinxing Tu,Jiefu Zhang, Fengqun Yu,Peter B.E.McVetty, Genyi Li. An ultradense genetic recombination map for Brassica nupus, consisting of 13551 SRAP markers. Theor Apel Genet,2007,114:1305-1317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700