可控环聚合体系的设计及其多响应性能与探针应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主链含有大环的线形聚合物相对于一般的线形聚合物大多具有特殊的性质与重要的用途,特别是大环作为超分子体系中的受体具有重要的研究意义。Butler等人在1949年发现了一种有效制备主链含有大环结构的方法—环聚合,通过这种方法可以一步高效地完成聚合物的合成与大环结构的构筑。近年来随着可控/活性聚合技术的发展,发展可控/活性环聚合的体系用于制备主链含有大环的聚合物成为了研究热点。然而目前,对于一般的柔性双官能团单体的可控/活性环聚合的实现还具有很大的挑战。另外,PEG作为一种无毒且生物相容的材料,特别是在医药类材料中具有广泛的用途,同时也是一类很重要的温敏材料,因此PEG接枝聚合物的研究也受到人们越来越多的关注。但是主链上含有大环结构(例如冠醚)的PEG接枝聚合物的响应性质还未被涉及。同时,这些冠醚单元作为离子识别基团的荧光探针也未见有报道。
     本论文主要发展了一种对于含有柔性连接链的双苯乙烯单体与马来酸酐的交替可控环聚合物体系,进而得到主链上含有冠醚单元的线形聚合物,然后再通过PEG与酸酐基团的化学反应将PEG接枝到这些聚合物上,进而来研究对于温度、离子、pH等的响应性质。同时我们在此基础上进一步把荧光基团标记到这些响应性聚合物上,利用其冠醚空腔对金属离子的识别,使之构成一个探针体系,进而研究其在检测金属离子方面的实际应用。论文具体分为如下几个部分展开:
     首先,研究了含有三或四聚乙二醇连接链的双苯乙烯单体与马来酸酐的可逆加成-断裂链转移(RAFT)环聚合。结果聚合高产率地得到了可溶性的环聚合物。动力学研究显示,该聚合过程是可控的。运用红外、核磁、热重分析以及MALDI-TOF质谱等手段对这些新型聚合物的结构进行了全面的表征。同时,通过核磁检测发现,所得聚合物主链上的冠醚单元对有机铵盐离子具有很好的识别作用。
     其次,通过将PEG单甲醚接枝到上述双苯乙烯单体与马来酸酐的环聚合物上,进而合成了PEG为侧链、主链含有冠醚单元的两亲性聚合物。这些聚合物对于温度、pH、以及一些金属离子具有很好的响应性质。研究发现,这些响应性聚合物的相变温度随着侧链分子量的增加以及pH值的升高而升高。无机盐氯化钾或氯化锂的加入能够使得聚合物的相变温度降低,即表现出盐析效应。然而当加入氯化钠时,由于冠醚与钠离子的络合,使得聚合物的相变温度表现为先升高再降低。即当加入的氯化钠为5或者10mM时,其相变温度会升高,而当浓度增加到100mM时,则会使其降低。这些所加氯化钠对于相变温度的影响通过光散射也得到了确认。
     最后,我们通过将胺甲基Pyrene和PEG单甲醚分步修饰到双苯乙烯单体与马来酸酐的环聚合物上,得到了荧光基团Pyrene标记、PEG为侧链、且主链含有冠醚单元的、对于温度和pH都响应的两亲性聚合物。利用冠醚对于离子的识别以及金属离子对Pyrene的猝灭,将该聚合物作为检测金属离子的荧光探针。发现该类探针对于铜离子和银离子具有很高的选择性和灵敏度,对于铜离子可以达到1.02微摩,银离子达到0.75微摩的检测限。在2至12微摩之间,荧光强度与金属离子的浓度呈线性关系。
     另外,通过可逆加成-断裂链转移聚合(RAFT)与酯基的水解而合成了侧链含有羧酸基团的双嵌段聚合物。随后利用这些嵌段聚合物中的羧基与n-Bu_2SnO的交联,进而制备了一系列含有机锡核与聚苯乙烯壳结构的纳米粒子。这些有机锡纳米粒子的结构通过透射电镜(TEM)、扫描电镜(SEM)以及X-射线光电子能谱(XPS)等手段予以了研究。结果发现,这些纳米粒子的尺寸随着有机锡酯单元的增加而减小,同时还发现了有趣的中空结构。
The polymers with the larger rings in the main chain have the special propertiesand applications, especially capturing some small molecules and ions based on thesupramolecular chemistry. The cyclopolymerization, discovered by Butler andco-workers in1949, has been considered as one of the most convenient method forthe preparation of the polymers with cyclic structures in the main chain. However, itstill remains a challenge to construct a cyclopolymerization system forming largerrings (such as crown ether) by using the flexible monomers. At the meantime,poly(ethylene glycol)(PEG) is a well-known thermo-responsive polymer and hasbeen applied for biomedical and pharmaceutical fields. And a great deal of studiesfocused on the crown ether cavities as a side pendant functional group of thepolymers since crown ethers are highly selective in the recognition of specific cations.However, it has not been studied about the responsive properties and sensorapplications of such polymers with crown ether units on the main chain and PEG asthe side chains.
     This thesis mainly focused on the developing a new controlled cyclopolymerizationprotocol for the common flexible monomers with maleic anhydride. Simultaneously,we also grafted PEG onto the anhydride groups of the copolymer chain andinvestigated the responsiveness of the resulting polymers. These multi-responsiveamphiphilic copolymers can also be used to detect Cu~(2+)and Ag~+as the sensor afterlabeled by the pyrene. The details are as following:
     Firstly, the cyclopolymerization of distyrenic flexible monomers with maleicanhydride via reversible addition fragmentation chain transfer (RAFT) has beeninvestigated. The reaction proceeded to yield gel-free copolymers soluble in organicsolvents. The kinetic study indicated that the cyclopolymerization proceeded in acontrolled manner. The structures of resulting crown ether cavity-containingcopolymers were characterized by the use of NMR spectroscopy and MALDI-TOFmass spectrometry. Additionally, it was found that the crown ether cavities of thecopolymers exhibited a selective recognition for certain dialkylammonium ions.
     Secondly, a series of amphiphilic copolymers were synthesized bycyclopolymerization of distyrenic monomers with maleic anhydride followed bygrafting methoxy poly(ethylene glycol) onto the anhydride groups. Theseamphiphilic graft copolymers exhibited multiple responsive toward temperature, pHand selected cations in aqueous solutions. The cloud points (CP) of the graftcopolymers increase with increasing length of the side chains and with increasing pHvalue of solution. The addition of KCl or LiCl to the solutions had a “salting-out”effect, lowering the CPs of the graft copolymers. The addition of NaCl, however,firstly raised the CP due to the complexation of the crown ether with Na+and thenlowered the CP. The light scattering results also confirmed the effect of Na+on theCP.
     Finally, a series of responsive copolymers (toward temperature and pH) with thecrown ether cavities in the main chain could be obtained by the labeling pyrene andgrafting PEG onto the copolymer of distyrenic monomers with maleic anhydride.These copolymers can act as metal sensors since the crown ether can capture someions and some transition metal ions can quench the fluorescence of pyrene. Thesesensors showed the highly selectivity and sensitivity toward to Cu~(2+)or Ag~+withoutinterference from other metal ions and can be used into the system of Cu~(2+)and Ag~+with the concentration of2-12μM. And the Cu~(2+)or Ag~+detection limit can be downto about1.02or0.75ppm, respectively.
     In addition, a series of new well-defined nanoparticles containing an organotincore and a polystyrene shell were obtained by cross-linking of n-Bu_2SnO withvarious chain-length amphiphilic copolymers. The structures of the nanoparticleswere studied by the transmission electron microscopy (TEM), scanning electronmicroscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. Notably,the morphology of the cross-linked copolymer showed individual nanoparticles withregularly spherical shape. And the nanoparticle diameters decreased with increasingnumber of organotin carboxylate units.
引文
[1] Pedersen C J. Cyclic Polyethers and Their Complexes with Metal Salts. J Am Chem Soc,1967,89:2495~2496.
    [2] Pedersen C J. Cyclic Polyethers and Their Complexes with Metal Salts. J Am Chem Soc,1967,89:7017~7036.
    [3] Pedersen C J, Frensdorff H K. Macrocyclic polyethers and their complexes. Angew Chem IntEd Engl,1972,11:16~25.
    [4] Villiers A. Sur la fermentation de la fécule par l'action du ferment butyrique. Compt Rend,1891,112:536~538.
    [5] Gutsche C. Calixarenes. Acc Chem Res,1983,16:161~170.
    [6] Yhaya F, Lim J, Kim Y, et al. Development of Micellar Novel Drug Carrier UtilizingTemperature-Sensitive Block Copolymers Containing Cyclodextrin Moieties.Macromolecules,2011,44:8433~8445.
    [7] Alexandratos S D, Natesan S. Synthesis and Ion-Binding Affinities of Calix[4]arenesImmobilized on Cross-Linked Polystyrene. Macromolecules,2001,34:206~210.
    [8] Lee M, Moore R B, Gibson H W. Supramolecular Pseudorotaxane Graft Copolymer from aCrown Ether Polyester and a Complementary Paraquat-Terminated Polystyrene Guest.Macromolecules,2011,44:5987~5993.
    [9] Butler G B, Bunch R L. Preparation and Polymerization of Unsaturated QuaternaryAmmonium Compounds. J Am Chem Soc,1949,71:3120~3122.
    [10] Butler G B. Cyclopolymerization and Cyclocopolymerization. New York, Dekker,1992.
    [11] Butler G B, Angelo R. Preparation and Polymerization of Unsaturated QuaternaryAmmonium Compounds. VIII. A Proposed Alternating Intramolecular-Intermolecular ChainPropagation. J Am Chem Soc,1957,79:3128~3131.
    [12] Sakai R, Satoh T, Kakuchi R, et al. Helicity Induction of Polyisocyanate with a CrownCavity on the Main Chain Synthesized by Cyclopolymerization of R,-Diisocyanate.Macromolecules,2004,37:3996~4003.
    [13] Rahman M S, Hashimoto T, Kodaira T. Cationic Cyclopolymerization of New DivinylEthers: The Effect of Ether and Ester Neighboring Functional Groups on TheirCyclopolymerization Tendency. J Polym Sci Part A: Polym Chem,2003,41:281~292.
    [14] Ochiai B, Ootani Y, Endo T. Controlled Cyclopolymerization through Quantitative19-Membered Ring Formation. J Am Chem Soc,2008,130:10832~10833.
    [15] Aso C, Tagami S. Cyclopolymerization of o-phthalaldehyde. J Polym Sci B: Polym Lett,1967,5:217~220.
    [16] Stille J K, Culbertson B M. Cyclopolymerization of diepoxides. J Polym Sci A: GeneralPapers,1964,2:405~415.
    [17] Kunitake T, Nakashima T, Aso C. Syntheses and reactions of ferrocene-containing polymers.III. Cyclopolymerization of1,1'-divinylferrocene. J Polym Sci A-1,1970,8:2853~2859.
    [18] Corfield G C, Brooks J S, Plimley S. Polym Prepr, Am Chem Soc, Div Polym Chem,1981,22:3.
    [19] Nishimura J, Yamashita S. Polym Prepr, Am Chem Soc, Div Polym Chem,1981,22:46.
    [20] Aso C, Tagami S, Kunitake T. Cationic Cyclopolymerization of o-Vinylbenzaldehyde.Polym J,1970,1:395~402.
    [21] Chu C S, Butler G B. Cyclopolymerization of conformationally controlled unsymmetricaldienes:2-(o-vinylphenoxy)ethyl methacrylate and acrylate. J Polym Sci Polym Lett Ed,1977,15:277~282.
    [22] Hashimoto T, Watanabe K, Kodaira T. Cationic cyclopolymerization of1,2-bis(2-vinyloxyethoxy)benzenes: Introduction of bulky substituents to increasecyclopolymerization tendency. J Polym Sci Part A: Polym Chem,2004,42:3373~3379.
    [23] Hashimoto T, Ohashi M, Kodaira T. Effect of central spacer chain structure on cationiccyclopolymerization tendency of divinyl ethers. J Polym Sci Part A: Polym Chem,2002,40:4002~4012.
    [24] Park S, Takeuchi D, Osakada K. Pd Complex-Promoted Cyclopolymerization ofFunctionalized r,-Dienes and Copolymerization with Ethylene to Afford Polymers withCyclic Repeating Units. J Am Chem Soc,2006,128:3510~3511.
    [25] Takeuchi D, Matsuura R, Park S, et al. Cyclopolymerization of1,6-Heptadienes Catalyzedby Iron and Cobalt Complexes: Synthesis of Polymers with Trans-or Cis-Fused1,2-Cyclopentanediyl Groups Depending on the Catalyst. J Am Chem Soc,2007,129:7002~7003.
    [26] Coluccini C, Metrangolo P, Parachini M, et al.“Push-pull” supramolecular chromophoressupported on cyclopolymers. J Polym Sci Part A: Polym Chem,2008,46:5202~5213.
    [27] Motokuni K, Okada T, Takeuchi D, et al. Double Cyclopolymerization of FunctionalizedTrienes Catalyzed by Palladium Complexes. Macromolecules,2011,44:751~756.
    [28]Costa A, Barata P, Prata J. Radical cyclopolymerization of a divinylbenzyl-p-tert-butylcalix[4]arene derivative. React Funct Polym,2006,66:465~470.
    [29] Kim T H, Dokolas P, Feeder N, et al. Cyclopolymerisation of an oriented4,6-bis(4-vinylbenzyl)-myo-inositol orthoformate. Chem Commun,2000,2419~2420.
    [30] Narumi A, Sakai R, Ishido S, et al. Enantiomer-Selective Radical Polymerization ofBis(4-vinylbenzoate)s with Chiral Atom Transfer Radical Polymerization Initiating Systems.Macromolecules,2007,40:9272~9298.
    [31] Kakuchi T, Narumi A, Kaga H, et al. Chirality Induction in Cyclocopolymerization.13.Structural Effect of1,3-Diol as Chiral Templates in the Cyclocopolymerization ofBis(4-vinylbenzoate)s with Styrene. Macromolecules,2000,33:3964~3969.
    [32] Edizer S, Veronesi B, Karahan O, et al. Efficient Free-Radical Cyclopolymerization ofOriented Styrenic Difunctional Monomers. Macromolecules,2009,42:1860~1866.
    [33] Sharma A K, Cornaggia C, Pasini D. Controlled RAFT Cyclopolymerization of OrientedStyrenic Difunctional Monomers. Macromol Chem Phys,2010,211:2254~2259.
    [34] Butler G B, Krests J E. ACS Symp Ser,1982,195:149~165.
    [35] Schaefer J. High-Resolution Pulsed Carbon-13Nuclear Magnetic Resonance Analysis ofthe Monomer Distribution in Acrylonitrile-Styrene Copolymers. Macromolecules,1971,4:107~110.
    [36] Kunitake T, Tsukino M. Radical cyclocopolymerization of divinyl ether and maleicanhydride. A carbon-13NMR study of the polymer structure. J Polym Sci Polym Chem Ed,1979,17:877~888.
    [37] Tsukino M, Kunitake T. Radical cyclocopolymerization of divinyl ether derivatives withmaleic anhydride. Structure determination of the alternating copolymers by carbon-13NMR spectroscopy. Polym J,1981,13:671~678.
    [38] Kakuchi T, Narumi A, Kaga H, et al. Chirality Induction in Cyclocopolymerization.14.Template Effect of1,2-Cycloalkanediol in the Cyclocopolymerization ofBis(4-vinylbenzoate)s with Styrene. Macromolecules,2001,34:38~43.
    [39] Matyjaszewski K. Advances in controlled/living radical polymerization. ACS Symp Ser854,Am Chem Soc: Washington, DC,2003, P10.
    [40] Georges M K, Veregin R P N, Kazmaier P M, et al. Narrow molecular weight resins by afree-radical polymerization process. Macromolecules,1993,26:2987~2988.
    [41] Hawker C J, Bosman A W, Harth E. New polymer synthesis by nitroxide mediated livingradical polymerizations. Chem Rev,2001,101:3661~3688.
    [42] Kato M, Kamigaito M, Sawamoto M, et al. Polymerization of Methyl Methacrylate with theCarbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(II)/MethylaluminumBis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living RadicalPolymerization. Macromolecules,1995,28:1721~1723.
    [43] Wang J-S, Matyjaszewski K. Controlled/"living" radical polymerization. atom transferradical polymerization in the presence of transition-metal complexes. J Am Chem Soc,1995,117:5614~5615.
    [44] Chiefari J, Chong Y K, Ercole F, et al. Living free-radical polymerization by reversibleaddition-fragmentation chain transfer: The RAFT process. Macromolecules,1998,31:5559~5562.
    [45] Moad G, Rizzardo E, Thang S H. Living radical polymerization by the RAFT process. AustJ Chem,2005,58:379~410.
    [46] Erkoc S, Mathias L J, Acar A E. Cyclopolymerization of tert-Butyl R-(Hydroxymethyl)Acrylate (TBHMA) Ether Dimer via Atom Transfer Radical Polymerization (ATRP).Macromolecules,2006,39:8936~8942.
    [47] Erkoc S, Acar A E. Controlled/Living Cyclopolymerization of tert-Butyl R-(Hydroxymethyl)Acrylate Ether Dimer via Reversible Addition Fragmentation Chain Transfer Polymerization.Macromolecules,2008,41:9019~9024.
    [48] Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discovery,2003,2:347~360.
    [49] Heskins M, Guillet J E, James E. Solution properties of poly(N-isopropylacrylamide). J.Macromol Sci Chem,1968,2:1441~1445.
    [50] Saeki S, Kuwahara N, Nakata M, et al. Upper and lower solution temperatures inpoly(ethylene glycol) solutions. Polymer,1976,17:685~689.
    [51] Neugebauer D. Graft copolymers with poly(ethylene oxide) segments. Polym Int,2007,56:1469~1498.
    [52] Hsieh H L, Quirk R P. Anionic polymerization: principles and practical applications. NewYork: Marcel Dekker;1996.
    [53] Matyjaszewski K, Davis T P. Handbook of radical polymerization. New York: Wiley;2002.
    [54] Matyjaszewski K, Xia J H. Atom transfer radical polymerization. Chem Rev,2001,101:2921~2990.
    [55] Kamigaito M, Ando T, Sawamoto M. Metal-Catalyzed Living Radical Polymerization.Chem Rev,2001,101:3689~3745.
    [56] Rodriguez-Hernandez J, Checot F, Gnanou Y, et al. Toward ‘smart’ nano-objects byself-assembly of block copolymers in solution. Prog Polym Sci,2005,30:691~724.
    [57] Jain S, Bates F S. On the Origins of Morphological Complexity in Block CopolymerSurfactants. Science,2003,300:460~464.
    [58] Discher D E, Eisenberg A. Polymer vesicles. Science,2002,297:967~973.
    [59] Mai Y, Eisenberg A. Controlled Incorporation of Particles into the Central Portion of VesicleWalls. J Am Chem Soc,2010,132:10078~10084.
    [60] Azzam T, Eisenberg A. Fully Collapsed (Kippah) Vesicles: Preparation and Characterization.Langmuir,2010,26:10513~10523.
    [61] Ma L, Eisenberg A. Relationship between Wall Thickness and Size in Block CopolymerVesicles. Langmuir,2009,25:13730~13736.
    [62] Han S, Hagiwara M, Ishizone T. Synthesis of Thermally Sensitive Water-SolublePolymethacrylates by Living Anionic Polymerizations of Oligo(ethylene glycol) MethylEther Methacrylates. Macromolecules,2003,36:8312~8319.
    [63] Ali M M, St ver H D H. Well-Defined Amphiphilic Thermosensitive Copolymers Based onPoly(ethylene glycol monomethacrylate) and Methyl Methacrylate Prepared by AtomTransfer Radical Polymerization. Macromolecules,2004,37:5219~5227.
    [64] Chemtob A, Heroguez V, Gnanou Y. Dispersion Ring-Opening Metathesis Polymerizationof Norbornene Using PEO-Based Stabilizers. Macromolecules,2002,35:9262~9269.
    [65] Xie H-Q, Xie D. Molecular design, synthesis and properties of block and graft copolymerscontaining polyoxyethylene segments. Prog Polym Sci,1999,24:275~313.
    [66] Hsu Y-H, Chiang W-H, Chen C-H, et al. Thermally Responsive Interactions between thePEG and PNIPAAm Grafts Attached to the PAAc Backbone and the CorrespondingStructural Changes of Polymeric Micelles in Water. Macromolecules,2005,38:9757~9765.
    [67] Halldén A, Deriss M J, Wesslén B, et al. Morphology of LDPE/PA-6blends compatibilisedwith poly(ethylene-graft-ethylene oxide)s. Polymer,2001,42:8743~8751.
    [68] Gaspar L J M, Baskar G, Mandal A B, et al. Solution structure of a modified comb-likepolymer from octadecyl methacrylate and acrylic acid. Chem Phys Lett,2001,348:395~402
    [69] Hou S-S, Kuo P-L. Synthesis and characterization of amphiphilic graft copolymers based onpoly(styrene-co-maleic anhydride) with oligo(oxyethylene) side chains and their GPCbehavior. Polymer,2001,42:2387~2394.
    [70] Chiu H-C, Chern C-S, Lee C-K, et al. synthesis and characterization of amphiphilicpoly(ethylene glycol) graft copolymers and their potential application as drug carriers.Polymer,1998,39:1609~1616.
    [71] Kudina O, Budishevska O, Voronov A, et al. Synthesis of New Amphiphilic Comb-LikeCopolymers Based on Maleic Anhydride and α-Olefins Macromol Symp,2010,298:79~84.
    [72] Yin X-C, St ver H D H. Thermosensitive and pH-Sensitive Polymers Based on MaleicAnhydride Copolymers. Macromolecules,2002,35:10178~10181.
    [73] Yin X-C, St ver H D H. Hydrogel Microspheres Formed by Complex Coacervation ofPartially MPEG-Grafted Poly(styrene-alt-maleic anhydride) with PDADMAC andCross-Linking with Polyamines. Macromolecules,2003,36:8773~8779.
    [74] Gorochovceva N, Makuska R. Synthesis and study of water-solublechitosan-O-poly(ethylene glycol) graft copolymers. Eur Polym J,2004,40:685~691.
    [75] Shantha K L, Harding D R K. Synthesis and characterization of chemically modifiedchitosan microspheres. Carbohydr Polym,2002,48:247~253.
    [76] Jian Du, Hsieh Y-L. PEGylation of chitosan for improved solubility and fiber formation viaelectrospinning. Cellulose,2007,14:543~552.
    [77] Mao S, Shuai X, Unger F, et al. Synthesis, characterization and cytotoxicity of poly(ethyleneglycol)-graft-trimethyl chitosan block copolymers. Biomaterials,2005,26:6343~6356.
    [78] Verdonck B, Goethals E J, Du Prez F E. Block Copolymers of Methyl Vinyl Ether andIsobutyl Vinyl Ether With Thermo-Adjustable Amphiphilic Properties. Macromol ChemPhys,2003,204:2090~2098.
    [79] Giguère G, Zhu X X. Functional Star Polymers with a Cholic Acid Core and theirThermosensitive Properties. Biomacromolecules,2010,11:201~206.
    [80] Liu H Y, Zhu X X. Lower critical solution temperatures of N-substituted acrylamidecopolymers in aqueous solutions. Polymer,1999,40:6985~6990.
    [81] Xie D, Ye X, Ding Y, et al. Multistep Thermosensitivity of Poly(N-n-propylacrylamide)-block-poly(N-isopropylacrylamide)-block-poly(N,N-ethylmethylacrylamide)TriblockTerpolymers in Aqueous Solutions As Studied by Static and Dynamic Light Scattering.Macromolecules,2009,42:2715~2720.
    [82] Horgan A, Saunders B, Vincent B, et al. Poly(butyl methacrylate-g-methoxypoly(ethyleneglycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers:preparation and aqueous solution properties. J Colloid Inter Sci,2003,262:548~559.
    [83] Zhu G. Micellization of polystyrene-graft-poly(ethylene oxide) and its mixtures withpolystyrene homopolymer in ethanol. Eur Polym J,2005,41:2671~2677.
    [84] Laukkanen A, Valtola L, Winnik F M, et al. Thermosensitive graft copolymers of anamphiphilic macromonomer and N-vinylcaprolactam: synthesis and solution properties indilute aqueous solutions below and above the LCST. Polymer,2005,46:7055~7065.
    [85] Hadjiyannakou S C, Vamvakaki M, Patrickios C S. Synthesis, characterization andevaluation of amphiphilic diblock copolymer emulsifiers based on methoxy hexa(ethyleneglycol) methacrylate and benzyl methacrylate. Polymer,2004,453681~3692.
    [86] Cheng Z, Zhu X, Fu G D, et al. Dual-Brush-Type Amphiphilic Triblock Copolymer withIntact Epoxide Functional Groups from Consecutive RAFT Polymerizations and ATRP.Macromolecules,2005,38:7187~7192.
    [87] Lu J, Shoichet M S. Self-Assembled Polymeric Nanoparticles of OrganocatalyticCopolymerizatedd,l-Lactide and2-Methyl2-Carboxytrimethylene Carbonate.Macromolecules,2010,43:4943~4953.
    [88] Zhu W, Xu Y, Qian X. Fluorescent Molecular Sensors for Heavy and Transition MetallicCations with Biological Interests. Prog Chem,2007,19:1229~1238.
    [89] Formica M, Fusi V, Giorgi L, et al. New fluorescent chemosensors for metal ions in solution.Coord Chem Rev,2012,256:170~192.
    [90] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling Recognition Events withFluorescent Sensors and Switches. Chem Rev,1997,97:1515~1566.
    [91] Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition.Coord Chem Rev,2000,205:3~40.
    [92] Beer P D, Gale P A. Anion Recognition and Sensing: The State of the Art and FuturePerspectives. Angew Chem Int Ed,2001,40:486~516.
    [93] Han J, Burgess K. Fluorescent Indicators for Intracellular pH. Chem Rev,2010,110:2709~2728.
    [94] Zelent B, Kusba J, Gryczynski I, et al. Time-resolved and steady-state fluorescencequenching of N-acetyl-L-tryptophanamide by acrylamide and iodide. Biophys Chem,1998,73:53~75.
    [95] Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials forchemical sensing. Chem Soc Rev,2007,36:993~1017.
    [96] Sagara Y, Kato T. Mechanically induced luminescence changes in molecular assemblies. NatChem,2009,1:605~610.
    [97] Cho D G, Sessler J L. Modern reaction-based indicator systems. Chem Soc Rev,2009,38:1647~1662.
    [98] de Silva A P, Uchiyama S. Molecular logic and computing. Nat Nanotechnol,2007,2:399~410.
    [99] de Silva A P, Uchiyama S, Vance T P, et al. A supramolecular chemistry basis for molecularlogic and computation. Coord Chem Rev,2007,251:1623~1632.
    [100] Yildiz I, Deniz E, Raymo F M. Fluorescence modulation with photochromic switches innanostructured constructs. Chem Soc Rev,2009,38:1859~1867.
    [101] Hawker C J, Hedrick J L, Malmstrom E E, et al. Dual Living Free Radical and RingOpening Polymerizations from a Double-Headed Initiator. Macromolecules,1998,31:213~219.
    [102] Zhu Z Y, Gonzalez Y I, Xu H X, et al. Polymerization of Anionic Wormlike Micelles.Langmuir,2006,22:949~955.
    [103] Shen L, Du J Z, Armes S P, et al. Kinetics of pH-Induced Formation and Dissociation ofPolymeric Vesicles Assembled from a Water-Soluble Zwitterionic Diblock Copolymer.Langmuir,2008,24:10019~10025.
    [104] Zhang J Y, Xu J, Liu S Y. Chain-Length Dependence of Diblock Copolymer MicellizationKinetics Studied by Stopped-Flow pH-Jump. J Phys Chem B,2008,112:11284~11291.
    [105] Blanazs A, Armes S P, Ryan A J. Self-Assembled Block Copolymer Aggregates: FromMicelles to Vesicles and their Biological Applications. Macromol Rapid Commun,2009,30:267~277.
    [106] Bae Y, Fukushima S, Harada A, et al. Design of Environment-Sensitive SupramolecularAssemblies for Intracellular Drug Delivery: Polymeric Micelles that are Responsive toIntracellular pH Change. Angew Chem Int Ed,2003,42:4640~4643.
    [107] Liu S, Maheshwari R, Kiick K L. Polymer-Based Therapeutics. Macromolecules,2009,42:3~13.
    [108] Dimitrov I, Trzebicka B, Müller A H E, et al. Thermosensitive water-soluble copolymerswith doubly responsive reversibly interacting entities. Prog Polym Sci,2007,32:1275~1343.
    [109] Cunningham M F. Living/controlled radical polymerizations in dispersed phase systems.Prog Polym Sci,2002,27:1039~1067.
    [110] Germain M E, Knapp M J. Optical explosives detection: from color changes tofluorescence turn-on. Chem Soc Rev,2009,38:2543~2555.
    [111] Adhikari B, Majumdar S. Polymers in sensor applications. Prog Polym Sci,2004,29:699~766.
    [112] Uchiyama S, Kawai N, de Silva A P, et al. Fluorescent Polymeric AND Logic Gate withTemperature and pH as Inputs. J Am Chem Soc,2004,126:3032~3033.
    [113] Hong S W, Kim D Y, Lee J U, et al. Synthesis of Polymeric Temperature Sensor Based onPhotophysical Property of Fullerene and Thermal Sensitivity ofPoly(N-isopropylacrylamide). Macromolecules,2009,42:2756~2761.
    [114] Li C, Zhang Y, Hu J, et al. Reversible Three-State Switching of Multicolor FluorescenceEmission by Multiple Stimuli Modulated FRET Processes within ThermoresponsivePolymeric Micelles. Angew Chem Int Ed,2010,49:5120~5124.
    [115] Peng H-S, Stolwijk J A, Sun L N, et al. A Nanogel for Ratiometric Fluorescent Sensing ofIntracellular pH Values. Angew Chem Int Ed,2010,49:4246~4249.
    [116] Yin J, Li C H, Wang D, et al. FRET-Derived Ratiometric Fluorescent K+SensorsFabricated from Thermoresponsive Poly(N-isopropylacrylamide) Microgels Labeled withCrown Ether Moieties. J Phys Chem B,2010,114:12213~12220.
    [117] Jiang Y, Hu X, Hu J, et al. Reactive Fluorescence Turn-On Probes for Fluoride Ions inPurely Aqueous Media Fabricated from Functionalized Responsive Block Copolymers.Macromolecules,2011,44:8780~8790.
    [118] Davis D A, Hamilton A, Yang J L, et al. Force-induced activation of covalent bonds inmechanoresponsive polymeric materials. Nature,2009,459:68~72.
    [119] Weder C. Polymers react to stress. Nature,2009,459:45~46.
    [120] Sakai R, Satoh T, Kakuchi R, et al. Helicity Induction of Polyisocyanate with a CrownCavity on the Main Chain Synthesized by Cyclopolymerization of R,-Diisocyanate.Macromolecules,2004,37:3996~4003.
    [121] Rahman M S, Hashimoto T, Kodaira T. Cationic Cyclopolymerization of New DivinylEthers: The Effect of Ether and Ester Neighboring Functional Groups on TheirCyclopolymerization Tendency. J Polym Sci Part A: Polym Chem,2003,41:281~292.
    [122] Ochiai B, Ootani Y, Endo T. Controlled Cyclopolymerization through Quantitative19-Membered Ring Formation. J Am Chem Soc,2008,130:10832~10833.
    [123] Edizer S, Veronesi B, Karahan O, et al. Efficient Free-Radical Cyclopolymerization ofOriented Styrenic Difunctional Monomers. Macromolecules,2009,42:1860~1866.
    [124] Sharma A K, Cornaggia C, Pasini D. Controlled RAFT Cyclopolymerization of OrientedStyrenic Difunctional Monomers. Macromol Chem Phys,2010,211:2254~2259.
    [125] Butler G B, Bunch R L. Preparation and Polymerization of Unsaturated QuaternaryAmmonium Compounds. J Am Chem Soc,1949,71:3120~3122
    [125] Butler G B. Cyclopolymerization and Cyclocopolymerization. Dekker: New York,1992.
    [127] Butler G B, Angelo R. Preparation and Polymerization of Unsaturated QuaternaryAmmonium Compounds. VIII. A Proposed Alternating Intramolecular-Intermolecular ChainPropagation. J Am Chem Soc,1957,79:3128~3131.
    [128] Park S, Takeuchi D, Osakada K. Pd Complex-Promoted Cyclopolymerization ofFunctionalized r,-Dienes and Copolymerization with Ethylene to Afford Polymers withCyclic Repeating Units. J Am Chem Soc,2006,128:3510~3511.
    [129] Okada T, Takeuchi D, Osakada K. Cyclopolymerization of Monoterminal1,6-DienesCatalyzed by Pd Complexes. Macromolecules,2010,43:7998~8006.
    [130] Park S, Okada T, Takeuchi D, et al. Cyclopolymerization and Copolymerization ofFunctionalized1,6-Heptadienes Catalyzed by Pd Complexes: Mechanism and Application toPhysical-Gel Formation. Chem Eur J,2010,16:8662~8678.
    [131] Takeuchi D, Matsuura R, Park S, et al. Cyclopolymerization of1,6-Heptadienes Catalyzedby Iron and Cobalt Complexes: Synthesis of Polymers with Trans-or Cis-Fused1,2-Cyclopentanediyl Groups Depending on the Catalyst. J Am Chem Soc,2007,129:7002~7003.
    [132] Takeuchi D, Matsuura R, Fukuda Y, et al. Selective cyclopolymerization of a,x-dienes andcopolymerization with ethylene catalyzed by Fe and Co complexes. Dalton Trans,2009,8955~8962.
    [133] Urushisaki M, Kodaira T, Furuta T, et al. Cyclopolymerization.25. Five-Membered RingFormation through Head-to-Head and Tail-to-Tail Additions in Radical and AnionicPolymerizations of R-(Allyloxymethyl)acrylates. Macromolecules,1999,32:322~327.
    [134] Costa A, Barata P, Prata J. Radical cyclopolymerization of a divinylbenzyl-p-tert-butylcalix[4]arene derivative. React Funct Polym,2006,66:465~470.
    [135] Kim T H, Dokolas P, Feeder N, et al. Cyclopolymerisation of an oriented4,6-bis(4-vinylbenzyl)-myo-inositol orthoformate. Chem Commun,2000,2419~2420.
    [136] Wulff G, Matussek A, Hanf C, et al. Template-induced, stereoselective cyclization in thecyclopolymerization. Angew Chem Int Ed,2000,39:2275~2277.
    [137] Nagai A, Ochiai B, Endo T. Cyclopolymerization of Bisacrylamide Derived from r-Pinenethrough Larger Chiral Ring Formation. Macromolecules,2005,38:2547~2549.
    [138] Kakuchi T, Narumi A, Kaga H, et al. Chirality Induction in Cyclocopolymerization.13.Structural Effect of1,3-Diol as Chiral Templates in the Cyclocopolymerization ofBis(4-vinylbenzoate)s with Styrene. Macromolecules,2000,33:3964~3969.
    [139] Kakuchi T, Narumi A, Kaga H, et al. Chirality Induction in Cyclocopolymerization.14.Template Effect of1,2-Cycloalkanediol in the Cyclocopolymerization ofBis(4-vinylbenzoate)s with Styrene. Macromolecules,2001,34:38~43.
    [140] Narumi A, Sakai R, Ishido S, et al. Enantiomer-Selective Radical Polymerization ofBis(4-vinylbenzoate)s with Chiral Atom Transfer Radical Polymerization Initiating Systems.Macromolecules,2007,40:9272~9298.
    [141] Butler G B, Krests J E. ACS Symp. Ser.1982,195:149~165.
    [142] Butler G B. Recent developments in polymerization by an alternating intra-intermolecularmechanism. J Polym Sci,1960,48:279~289.
    [143]Butler G B, Campus A F. Cyclocopolymerization. VI. Copolymerization oftrimethylvinylsilane and dimethyldivinylsilane with maleic anhydride. J Polym Sci A-1,1970,8:523~32.
    [144] Guilbault L J, Butler G B. Cyclocopolymerization. VII. Copolymerization ofchloromaleic anhydride with divinyl ether. J Macromol Sci Chem,1971,5:1219~1228.
    [145] Kunitake T, Tsukino M. Radical cyclocopolymerization of divinyl ether and maleicanhydride. A carbon-13NMR study of the polymer structure. J Polym Sci Polym ChemEd,1979,17:877~888.
    [146] Tsukino M, Kunitake T. Radical cyclocopolymerization of divinyl ether derivativeswith maleic anhydride. Structure determination of the alternating copolymers bycarbon-13NMR spectroscopy. Polym J,1981,13:671~678..
    [147] Seymour R B,Garner D P. Relationship of temperature to composition of copolymers ofα-methstyrene and maleic anhydidie. Polymer,1976,17:21~24.
    [148] Cowie J M G. Alternating Copolymers. Plenum Press: New York,1985.
    [149] Chiefari J, Chong Y K, Ercole F, et al. Living free-radical polymerization by reversibleaddition-fragmentation chain transfer: The RAFT process. Macromolecules,1998,31:5559~5562.
    [150] Moad G, Rizzardo E, Thang S H. Living radical polymerization by the RAFT process. AustJ Chem,2005,58:379~410.
    [151] Kato M, Kamigaito M, Sawamoto M, et al. Polymerization of Methyl Methacrylate withthe Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(II)/MethylaluminumBis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living RadicalPolymerization. Macromolecules,1995,28:1721~1723.
    [152] Wang J-S, Matyjaszewski K. Controlled/"living" radical polymerization. atom transferradical polymerization in the presence of transition-metal complexes. J Am Chem Soc,1995,117:5614~5615.
    [153] Georges M K, Veregin R P N, Kazmaier P M, et al. Narrow molecular weight resins by afree-radical polymerization process. Macromolecules,1993,26:2987~2988.
    [154] Hawker C J, Bosman A W, Harth, E. New polymer synthesis by nitroxide mediated livingradical polymerizations. Chem Rev,2001,101:3661~3688.
    [155] Erkoc S, Mathias L J, Acar A E. Cyclopolymerization of tert-Butyl R-(Hydroxymethyl)Acrylate (TBHMA) Ether Dimer via Atom Transfer Radical Polymerization (ATRP).Macromolecules,2006,39:8936~8942.
    [156] Erkoc S, Acar A E. Controlled/Living Cyclopolymerization of tert-ButylR-(Hydroxymethyl) Acrylate Ether Dimer via Reversible Addition Fragmentation ChainTransfer Polymerization. Macromolecules,2008,41:9019~9024.
    [157] McCairn M C, Tonge S R, Sutherland A J. Synthesis and evaluation of poly(oxyethyleneglycol) polymer (POP) supports. J Org Chem,2002,67:4847~4855.
    [158] Feng S J, Wang Q, Gao Y, et al. Synthesis and characterization of a novel amphiphiliccopolymer capable as anti-biofouling coating material. J Appl Polym Sci,2009,114:2071~2078.
    [159] Motoi M, Saito E, Kyoda S, et al. Synthesis, polymer reactions, and characterization ofpolystyrene-polyoxetane composite resins having a pendant terminal bromide of1-oxapolymethylene spacers bound to the styryl group at the para position. Polym J,1991,23:1225~1241.
    [160] Bogaschenko T, Basok S, Kulygina C, et al. A practical synthesis of benzocrown ethersunder phase-transfer catalysis conditions. Synthesis,2002,15:2266~2270.
    [161] Vosloo J J, De Wet-Roos D, Tonge M P, et al. Controlled Free Radical Polymerization inWater-Borne Dispersion Using Reversible Addition-Fragmentation Chain Transfer.Macromolecules,2002,35:4894~4902.
    [162] Xiong X Q, Chen Y M, Feng S, et al. Dendronized Copolymers Functionalized with CrownEthers and Their Reversible Modification Through Host–Guest Interaction. J Polym Sci PartA: Polym Chem,2010,48:3515~3522.
    [163] Hashimoto T, Watanabe K, Kodaira T. Cationic cyclopolymerization of1,2-bis(2-vinyloxyethoxy)benzenes: Introduction of bulky substituents to increasecyclopolymerization tendency. J Polym Sci Part A: Polym Chem,2004,42:3373~3379.
    [164] Hashimoto T, Takagi H, Hasegawa Y, et al. Living/controlled cationic cyclopolymerizationof divinyl ether with a cyclic acetal moiety: Synthesis of poly(vinyl ether)s with high glasstransition temperature based on incorporation of cyclized main chain and cyclic side chains.J Polym Sci Part A: Polym Chem,2010,48:952~958.
    [165] Odian G. Principles of Polymerization, Wiley,4th Ed.,2004, Chap.6.
    [166] Zou Y, Brooks D E, Kizhakkedathu J N. A Novel Functional Polymer with Tunable LCST.Macromolecules,2008,41:5393~5405.
    [167] Chong Y K, Krstina J, Le T P T, et al. Thiocarbonylthio Compounds [SdC(Ph)S-R] in FreeRadical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFTPolymerization). Role of the Free-Radical Leaving Group (R). Macromolecules,2003,36:2256~2272
    [168] Coote M L. Ab Initio Study of the Addition-Fragmentation Equilibrium in RAFTPolymerization: When Is Polymerization Retarded? Macromolecules,2004,37:5023~5031.
    [169] Thomas D B, Convertine A J, Myrick L J, et al. Kinetics and Molecular Weight Control ofthe Polymerization of Acrylamide via RAFT. Macromolecules,2004,37:8941~8950.
    [170] Clemente-León M, Pasquini C, Hebbe-Viton V, et al. Ion-Pairing Effects in theSelf-Assembly of a Fluorescent Pseudorotaxane. Eur J Org Chem,2006,2006:105~112.
    [171] Jiang W, Sch fer A, Mohr P C, et al. Monitoring Self-Sorting by Electrospray IonizationMass Spectrometry: Formation Intermediates and Error-Correction during theSelf-Assembly of Multiply Threaded Pseudorotaxanes. J Am Chem Soc,2010,132:2309~2320.
    [172] Pedersen C J, Frensdorff H K. Macrocyclic polyethers and their complexes. Angew ChemInt Ed Engl,1972,11:16~25.
    [173] Ganta S, Devalapally H, Shahiwala A, et al. A review of stimuli-responsive nanocarriersfor drug and gene delivery. J Control Release,2008,126:187~204.
    [174] Kumar A, Srivastava A, Galaev I Y, et al. Smart polymers: Physical forms andbioengineering applications. Prog Polym Sci,2007,32:1205~1237.
    [175] Alarcón C, de las H, Pennadam S, et al. Stimuli responsive polymers for biomedicalapplications. Chem Soc Rev,2005,34:276~285.
    [176] Kikuchi A, Okano T. Intelligent thermoresponsive polymeric stationary phases for aqueouschromatography of biological compounds. Prog Polym Sci,2002,27:1165~1193.
    [177] Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Adv DrugDeliver Rev,2006,58:1655~1670.
    [178] Heskins M, Guillet J E, James E. Solution properties of poly(N-isopropylacrylamide). J.Macromol Sci Chem,1968,2:1441~1445.
    [179] Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discovery,2003,2:347~360.
    [180] Cui Q, Wu F, Wang E. Thermosensitive Behavior of Poly(ethylene Glycol)-Based BlockCopolymer (PEG-b-PADMO) Controlled via Self-Assembled Microstructure. J Phys ChemB,2011,115:5913~5922.
    [181] Saeki S, Kuwahara N, Nakata M, et al. Upper and lower solution temperatures inpoly(ethylene glycol) solutions. Polymer,1976,17:685~689.
    [182] Housni A, Zhao Y. Gold Nanoparticles Functionalized with Block Copolymers DisplayingEither LCST or UCST Thermosensitivity in Aqueous Solution. Langmuir,2010,26:12933~12939.
    [183] Han S, Hagiwara M, Ishizone T. Synthesis of Thermally Sensitive Water-SolublePolymethacrylates by Living Anionic Polymerizations of Oligo(ethylene glycol) MethylEther Methacrylates. Macromolecules,2003,36:8312~8319.
    [184] Ali M M, St ver H D H. Well-Defined Amphiphilic Thermosensitive Copolymers Basedon Poly(ethylene glycol monomethacrylate) and Methyl Methacrylate Prepared by AtomTransfer Radical Polymerization. Macromolecules,2004,37:5219~5227.
    [185] Weiss J, Li A, Wischerhoff E, et al. Water-soluble random and alternating copolymers ofstyrene monomers with adjustable lower critical solution temperature. Polym Chem,2012,3:352~361.
    [186] Halldén A, Deriss M J, Wesslén B, et al. Morphology of LDPE/PA-6blends compatibilisedwith poly(ethylene-graft-ethylene oxide)s. Polymer,2001,42:8743~8751.
    [187] Wesslén B, Wesslén K B. Chromatography of amphiphilic graft copolymers. J Polym SciPart A: Polym Chem,1992,30:355~362.
    [188] Xie H-Q, Xie D. Molecular design, synthesis and properties of block and graft copolymerscontaining polyoxyethylene segments. Prog Polym Sci,1999,24:275~313.
    [189] Gaspar L J M, Baskar G, Mandal A B, et al. Solution structure of a modified comb-likepolymer from octadecyl methacrylate and acrylic acid. Chem Phys Lett,2001,348:395~402
    [190] Chiu H-C, Chern C-S, Lee C-K, et al. synthesis and characterization of amphiphilicpoly(ethylene glycol) graft copolymers and their potential application as drug carriers.Polymer,1998,39:1609~1616.
    [191] Kudina O, Budishevska O, Voronov A, et al. Synthesis of New Amphiphilic Comb-LikeCopolymers Based on Maleic Anhydride and α-Olefins. Macromol Symp,2010,298:79~84.
    [192] Tang C, Ye S, Liu H. Electrospinning of poly(styrene-co-maleic anhydride)(SMA) andwater-swelling behavior of crosslinked/hydrolyzed SMA hydrogel nanofibers. Polymer,2007,48:4482~4491.
    [193] Dérand H, Wesslén B, Wittgren B, et al. Poly(ethylene glycol) Graft CopolymersContaining Carboxylic Acid Groups: Aggregation and Viscometric Properties in AqueousSolution. Macromolecules,1996,29:8770~8775.
    [194] Yin X-C, St ver H D H. Thermosensitive and pH-Sensitive Polymers Based on MaleicAnhydride Copolymers. Macromolecules,2002,35:10178~10181.
    [195]Hou S-S, Kuo P-L. Synthesis and characterization of amphiphilic graft copolymers basedon poly(styrene-co-maleic anhydride) with oligo(oxyethylene) side chains and their GPCbehavior. Polymer,2001,42:2387~2394.
    [196]Yin X-C, St ver H D H. Hydrogel Microspheres Formed by Complex Coacervation ofPartially MPEG-Grafted Poly(styrene-alt-maleic anhydride) with PDADMAC andCross-Linking with Polyamines. Macromolecules,2003,36:8773~8779.
    [197] Liu Y, Zhang H. Supramolecular chemistry. Nankai University Press,2001, Chapter2.
    [198] Yamaguchi T, Ito T, Sato T, et al. Development of a Fast Response Molecular RecognitionIon Gating Membrane. J Am Chem Soc,1999,121:4078~4079.
    [199] Ito T, Hioki T, Yamaguchi T, et al. Development of a Molecular Recognition Ion GatingMembrane and Estimation of Its Pore Size Control. J Am Chem Soc,2002,124:7840~7846.
    [200] Jia Y G, Liu L Y, Lei B, et al. Crown Ether Cavity-Containing Copolymers via ControlledAlternating Cyclocopolymerization. Macromolecules,2011,44:6311~6317.
    [201] Feng S J, Wang Q, Gao Y, et al. Synthesis and characterization of a novel amphiphiliccopolymer capable as anti-biofouling coating material. J Appl Polym Sci,2009,114:2071~2078.
    [202] Vosloo J J, De Wet-Roos D, Tonge M P, et al. Controlled Free Radical Polymerization inWater-Borne Dispersion Using Reversible Addition-Fragmentation Chain Transfer.Macromolecules,2002,35:4894~4902.
    [203] Verdonck B, Goethals E J, Du Prez F E. Block Copolymers of Methyl Vinyl Ether andIsobutyl Vinyl Ether With Thermo-Adjustable Amphiphilic Properties. Macromol ChemPhys,2003,204:2090~2098.
    [204] Giguère G, Zhu X X. Functional Star Polymers with a Cholic Acid Core and theirThermosensitive Properties. Biomacromolecules,2010,11:201~206.
    [205] Xie D, Ye X, Ding Y, et al. Multistep Thermosensitivity of Poly(N-n-propylacrylamide)-block-poly(N-isopropylacrylamide)-block-poly(N,N-ethylmethylacrylamide) TriblockTerpolymers in Aqueous Solutions As Studied by Static and Dynamic Light Scattering.Macromolecules,2009,42:2715~2720.
    [206] Liu H Y, Zhu X X. Lower critical solution temperatures of N-substituted acrylamidecopolymers in aqueous solutions. Polymer,1999,40:6985~6990
    [207] Cao Y, Zhao N, Wu K, et al. Solution Properties of a Thermosensitive Triblock Copolymerof N-Alkyl Substituted Acrylamides. Langmuir,2009,25:1699~1704.
    [208] Gao M, Jia X, Kuang G, et al. Thermo-and pH-Responsive Dendronized Copolymers ofStyrene and Maleic Anhydride Pendant with Poly(amidoamine) Dendrons as Side Groups.Macromolecules,2009,42:4273~4281.
    [209] Zhang Y, Furyk S, Bergbreiter D E, et al. Specific Ion Effects on the Water Solubility ofMacromolecules: PNIPAM and the Hofmeister Series. J Am Chem Soc,2005,127:14505~14510.
    [210] Maeda Y, Higuchi T, Ikeda I. Change in Hydration State during the Coil-GlobuleTransition of Aqueous Solutions of Poly(N-isopropylacrylamide) as Evidenced by FTIRSpectroscopy. Langmuir,2000,16:7503~7509.
    [211] Freitag R, Garret-Flaudy F. Salt Effects on the Thermoprecipitation ofPoly-(N-isopropylacrylamide) Oligomers from Aqueous Solution. Langmuir,2002,18:3434~3440.
    [212] Pedersen C J, Frensdorff H K. Macrocyclic polyethers and their complexes. Angew ChemInt Ed Engl,1972,11:16~25.
    [213] Inoue Y, Hakushi T, Liu Y, et al. Molecular Design of Crown Ethers.12ComplexationThermodynamics of12-to16-Crown-4: Thermodynamic Origin of High LithiumSelectivity of14-Crown-4. J Org Chem,1993,58:5411~5413.
    [214] Michaux G, Reisse J. Solution thermodynamic studies. Part6. Enthalpy-entropycompensation for the complexation reactions of some crown ethers with alkaline cations: aquantitative interpretation of the complexing properties of18-crown-6. J Am Chem Soc,1982,104:6895~6899.
    [215] Shamsipur M, Rounaghi G, Popov A I. Sodium-23, Cesium-133and Thallium-205NMRStudy of Sodium, Cesium and Thallium Complexes with Large Crown Ethers inNonaqueous Solutions. J Solution Chem,1980,9:701~714.
    [216] Bae J W, Lee E, Park K M, et al. Vinyl Sulfone-Terminated PEG-PLLA DiblockCopolymer for Thiol-Reactive Polymeric Micelle. Macromolecules,2009,42:3437~3442.
    [217] Morinaga H, Morikawa H, Wang Y, et al. Amphiphilic Copolymer Having Acid-LabileAcetal in the Side Chain as a Hydrophobe: Controlled Release of Aldehyde byThermoresponsive Aggregation-Dissociation of Polymer Micelles. Macromolecules,2009,42:2229~2235.
    [218] Motokawa R, Morishita K, Koizumi S, et al. Thermosensitive Diblock Copolymer ofPoly(N-isopropylacrylamide) and Poly(ethylene glycol) in Water: Polymer Preparation andSolution Behavior. Macromolecules,2005,38:5748~5760.
    [219] Yan J, Ji W, Chen E, et al. Association and Aggregation Behavior of Poly(ethyleneoxide)-b-Poly(N-isopropylacrylamide) in Aqueous Solution. Macromolecules,2008,41:4908~4913.
    [220] Li C, Lavigueur C, Zhu X X. Aggregation and Thermoresponsive Properties of New StarBlock Copolymers with a Cholic Acid Core. Langmuir,2011,27:11174~11179.
    [221] von Burg R, Greenwood M R. Metals and Their Compounds in the Environment.Weinheim: VCH,1999.1045~1091.
    [222]Clarkson T. Environmental contaminants in the food chain. Am J Clin Nutrit,1995,61:682~690.
    [223]Magos L. Selective atomic-absorption determination of inorganic mercury andmethylmercury in undigested biological samples. Analyst,1971,96:847~856.
    [224]Jackson K W, Mahmood T M. Atomic Absorption, Atomic Emission, and Flame EmissionSpectrometry. Anal Chem,1994,66:252R~279R.
    [225]Shukor Y, Baharom N A, Rahman F A, et al. Development of a heavy metals enzymatic-based assay using papain. Anal Chim Acta,2006,566:283~289.
    [226]Kong D. G-四链体-氯化血红素DNA酶在传感器设计中的应用. Prog Chem,2011,23:2011~2031.
    [227]Liao V H C, Chein M T, Tseng Y Y, et al. Assessment of heavy metal bioavailability incontaminated sediments and soils using green fluorescent protein-based bacterial biosensors.Environ Pollut,2006,142:17~23.
    [228]Haupt K, Mosbach K. Molecularly Imprinted Polymers and Their Use in B iomimeticSensors. Chem Rev,2000,100:2495~2504.
    [229]Sun W, Hu D, Wu Z, et al. Research Progress of Fluorescent Molecular Probes for Heavyand Transition Metallic Cations Based on Rhodamine Fluorophore. Chinese J Org Chem,2011,31:997~1010.
    [230]Formica M, Fusi V, Giorgi L, et al. New fluorescent chemosensors for metal ions insolution. Coord Chem Rev,2012,256:170~192.
    [231]Zhu W, Xu Y, Qian X. Fluorescent Molecular Sensors for Heavy and Transition MetallicCations with Biological Interests. Prog Chem,2007,19:1229~1238.
    [232] Trautwein X A. Bioinorganic Chemistry. Weiheim: Wiley-VCH,1997.
    [233]Prodi L, Bolletta F, Montalti M, et al. Luminescent chemosensors for transition metal ions.Coord Chem Rev,2000,205:59~83.
    [234]Lakowicz J R. Probe Design and Chemieal Sensing: Topics in Fluorescence Spectroscopy.Plenum, NewYork,1994.
    [235]Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition.Coord Chem Rev,2000,205:3~40.
    [236]Bergonzi R, Fabbrizzi L, Licchelli M, et al. Molecular switches of fluorescence operatingthrough metalcentred redox couples. Coord Chem Rev,1998,170:31~46.
    [237]Nolan E M, Lippard S J. Small-Molecule Fluorescent Sensors for Investigating ZincMetalloneurochemistry. Acc Chem Res,2009,42193~203.
    [238]Wong B A, Friedle S, Lippard S J. Solution and Fluorescence Properties of SymmetricDipicolylamine-Containing Dichlorofluorescein-Based Zn2+Sensors. J Am Chem Soc,2009,131:7142~7152.
    [239]Xu Z, Qian X, Cui J. Colorimetric and Ratiometric Fluorescent Chemosensor with a LargeRed-Shift in Emission: Cu(II)-Only Sensing by Deprotonation of Secondary Amines asReceptor Conjugated to Naphthalimide Fluorophore. Org Lett,2005,7:3029~3032.
    [240]Xu Z, Xiao Y, Qian X, et al. Ratiometric and Selective Fluorescent Sensor for CuII Basedon Internal Charge Transfer (ICT). Org Lett,2005,7:889~892.
    [241]Xu Z, Qian X, Cui J, et al. Exploiting the deprotonation mechanism for the design ofratiometric and colorimetric Zn2+fluorescent chemosensor with a large red-shift in emission.Tetrahedron,2006,62:10117~10122.
    [242]Yildiz I, Deniz E, Raymo F M. Fluorescence modulation with photochromic switches innanostructured constructs. Chem Soc Rev,2009,38:1859~1867.
    [243]Hu J, Dai L, Liu S. Analyte-Reactive Amphiphilic Thermoresponsive Diblock CopolymerMicelles-Based Multifunctional Ratiometric Fluorescent Chemosensors. Macromolecules,2011,44:4699~4710.
    [244]Grabchev I, Sali S, Betcheva R, et al. New green fluorescent polymer sensors for metalcations and protons. Eur Polym J,2007;43:4297~4305.
    [245]Li J, Wu Y, Song F, et al. A highly selective and sensitive polymer-based OFF-ONfluorescent sensor for Hg2+detection incorporating salen and perylenyl moieties. J MaterChem,2012,22:478~482.
    [246]Hu J, Liu S. Responsive Polymers for Detection and Sensing Applications: Current Statusand Future Developments. Macromolecules,2010,43:8315~8330.
    [247]Liu T, Hu J, Yin J, et al. Enhancing Detection Sensitivity of Responsive Microgel-BasedCu(II) Chemosensors via Thermo-Induced Volume Phase Transitions. Chem Mater,2009,21:3439~3446.
    [248]Jun Yin, Changhua Li, Di Wang, et al. FRET-Derived Ratiometric Fluorescent K+SensorsFabricated from Thermoresponsive Poly(N-isopropylacrylamide) Microgels Labeled withCrown Ether Moieties. J Phys Chem B,2010,114:12213~12220.
    [249]Jia Y G, Zhu X X, Liu L Y, et al. Multi-Responsive Properties of Poly(ethyleneglycol)-grafted Alternating Copolymers of Distyrenic Monomer with Maleic Anhydride.Langmuir,2012,28:4500~4506.
    [250]Jia Y G, Liu L Y, Lei B, et al. Crown Ether Cavity-Containing Copolymers via ControlledAlternating Cyclocopolymerization. Macromolecules,2011;44:6311~6317.
    [251]Xu Z, Li H, Chang X, et al. Study on a New Nano Fluorescence Probe Towards Silver Ions.J Anal Sci,2007,23:453~456.
    [252]Gaggelli E, Kozlowski H, Valensin D, et al. Copper homeostasis and neurodegenerativedisorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis.Chem Rev,2006,106:1995~2044.
    [253]Feng S J, Wang Q, Gao Y, et al. Synthesis and characterization of a novel amphiphiliccopolymer capable as anti-biofouling coating material. J Appl Polym Sci,2009,114:2071~2078.
    [254]Vosloo J J, De Wet-Roos D, Tonge M P, et al. Controlled Free Radical Polymerization inWater-Borne Dispersion Using Reversible Addition-Fragmentation Chain Transfer.Macromolecules,2002,35:4894~4902.
    [255]Choi I H, Park M, Lee S-S, et al. Pyrene-containing polystyrene segmented copolymerfrom nitroxide mediated polymerization and its application for the noncovalentfunctionalization of as-prepared multiwalled carbon nanotubes. Eur Polym J,2008,44:3087~3095.
    [256]Wang D, Ji W-X, Li Z-C, et al. A Biomimetic “Polysoap” for Single-Walled CarbonNanotube Dispersion. J Am Chem Soc,2006,128:6556~6557.
    [257]Dérand H, Wesslén B, Wittgren B, et al. Poly(ethylene glycol) Graft CopolymersContaining Carboxylic Acid Groups: Aggregation and Viscometric Properties in AqueousSolution. Macromolecules,1996,29:8770~8775.
    [258]Yin X-C, St ver H D H. Thermosensitive and pH-Sensitive Polymers Based on MaleicAnhydride Copolymers. Macromolecules,2002,35:10178~10181.
    [259]Verdonck B, Goethals E J, Du Prez F E. Block Copolymers of Methyl Vinyl Ether andIsobutyl Vinyl Ether With Thermo-Adjustable Amphiphilic Properties. Macromol ChemPhys,2003,204:2090~2098.
    [260]Liu H Y, Zhu X X. Lower critical solution temperatures of N-substituted acrylamidecopolymers in aqueous solutions. Polymer,1999,40:6985~6990.
    [261]Cao Y, Zhao N, Wu K, et al. Solution Properties of a Thermosensitive Triblock Copolymerof N-Alkyl Substituted Acrylamides. Langmuir,2009,25:1699~1704.
    [262]Xie D, Ye X, Ding Y, et al. Multistep Thermosensitivity of Poly(N-n-propylacrylamide)-block-poly(N-isopropylacrylamide)-block-poly(N,N-ethylmethylacrylamide)TriblockTerpolymers in Aqueous Solutions As Studied by Static and Dynamic Light Scattering.Macromolecules,2009,42:2715~2720.
    [263]Ocak ü, Ocak M, Parlayan S, et al. Azathia crown ethers carrying pyrene pendant asreceptor molecules for metal sensor systems. J Lumin,2011,131:808~814.
    [264]Ocak ü, Ocak M, Ba o lu A, et al. Complexation of metal ions with the novel diazadithiacrown ethers carrying two pyrene pendants in acetonitrile-tetrahydrofuran. J Incl PhenomMacrocycl Chem,2009,67:19~27.
    [265]Pan X, Wang Y, Jiang H, et al. Benzo-15-crown-5functionalized polydiacetylene-basedcolorimetric self-assembled vesicular receptors for lead ion recognition. J Mater Chem,2011,21:3604~3610.
    [266]Luo Q-F, Guan Y, Zhang Y-J, et al. Lead-Sensitive PNIPAM Microgels Modified withCrown Ether Groups. J Polym Sci Part A: Polym Chem,2010,48:4120~4127.
    [267]Lakowicz J R. Principles of Fluorescence Spectroscopy.2nd ed.; Kluwer Academic/PlenumPress: New York,1999.
    [268]Lakowicz J, Malicka J, D'Auria S, et al. Release of the self-quenching of fluorescence nearsilver metallic surfaces. Anal Biochem,2003,320:13~20.
    [269]Zhang Y, Furyk S, Bergbreiter D E, et al. Specific Ion Effects on the Water Solubility ofMacromolecules: PNIPAM and the Hofmeister Series. J Am Chem Soc,2005,127:14505~14510.
    [270]Maeda Y, Higuchi T, Ikeda I. Change in Hydration State during the Coil-Globule Transitionof Aqueous Solutions of Poly(N-isopropylacrylamide) as Evidenced by FTIR Spectroscopy.Langmuir,2000,16:7503~7509.
    [271]Zhang J, Luo J, Zhu X X, et al. Molecular Pockets Derived from Cholic Acid asChemosensors for Metal Ions. Langmuir,2010,26:2958~2962.
    [272]Hong S W, Kim D Y, Lee J U, et al. Synthesis of Polymeric Temperature Sensor Based onPhotophysical Property of Fullerene and Thermal Sensitivity ofPoly(N-isopropylacrylamide). Macromolecules,2009,42:2756~2761.
    [273]Winnik F M. Fluorescence Studies of Aqueous Solutions of Poly(N-isopropylacrylamide)below and above Their LCST. Macromolecules,1990,23:233~242.
    [274] Liu Y, Zhang H-Y. Supramolecular chemistry. Nankai University Press,2001, Chapter2.
    [275]Shannon R D. Revised effective ionic radii and systematic studies of interatomic distancesin halides and chalcogenides. Acta Cryst A,1976,32:751~767.
    [276] Hawker C J, Wooley K L. The Convergence of Synthetic Organic and Polymer Chemistries.Science,2005,309:1200~1205.
    [277] Bates F S, Fredrickson G H. Block Copolymer Thermodynamics: Theory and Experiment.Annu Rev Phys Chem,1990,41:525~557.
    [278] Massey J A, Winnik M A, Manners I, et al. Fabrication of Oriented Nanoscopic CeramicLines from Cylindrical Micelles of an Organometallic Polyferrocene Block Copolymer. J AmChem Soc,2001,123:3147~3148.
    [279] Yan X H, Liu G J, Li Z. Preparation and Phase Segregation of Block Copolymer NanotubeMultiblocks. J Am Chem Soc,2004,126:10059~10066.
    [280] Silva G A, Czeisler C, Niece K L, et al. Selective differentiation of neural progenitorcells by high-epitope density nanofibers. Science,2004,303:1352~1355.
    [281] Kataoka K, Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design,characterization and biological significance. Adv Drug Deliver Rev,2001,47:113~131.
    [282] Savic R, Luo L B, Eisenberg A., et al. Micellar nanocontainers distribute to definedcytoplasmic organelles. Science,2003,300:615~618.
    [283] Moad G, Rizzardo E, Thang S H. Living radical polymerization by the RAFT process. AustJ Chem,2005,58:379~410.
    [284] Kamigaito M, Ando T, Sawamoto M. Metal-Catalyzed Living Radical Polymerization.Chem Rev,2001,101:3689~3745.
    [285] Sciannamea V, Jerome R, Detrembleur C. In-Situ Nitroxide-Mediated RadicalPolymerization (NMP) Processes: Their Understanding and Optimization. Chem Rev,2008,108:1104~1126.
    [286] Matyjaszewski K, Xia J H. Atom transfer radical polymerization. Chem Rev,2001,101:2921~2990.
    [287] Whittell G R, Manners I. Metallopolymers: New Multifunctional Materials. Adv Mater,2007,19:3439~3468.
    [288] Williams K A, Boydston A J, Bielawski C W. Main-chain organometallic polymers:synthetic strategies, applications, and perspectives. Chem Soc Rev,2007,36:729~744.
    [289] Manners I. Polymers and the Periodic Table: Recent Developments in Inorganic PolymerScience. Angew Chem Int Ed,1996,35:1602~1621.
    [290] Manners I. Putting Metals into Polymers. Science,2001,294:1664~1666.
    [291] Manners I. Synthetic metal-containing polymers: Wiley-VCH, Weinheim,2004(Chapter5).
    [292] Du J, Chen Y. Preparation of organic/inorganic hybrid hollow particles based on gelationof polymer vesicles. Macromolecules,2004,37:5710~5716.
    [293] Du J, Chen Y. Atom-transfer radical polymerization of a reactive monomer:3-(Trimethoxysilyl)propyl methacrylate. Macromolecules,2004,37:6322~6328.
    [294] Du J, Chen Y. Organic–Inorganic Hybrid Nanoparticles with a Complex Hollow Structure.Angew Chem Int Ed,2004,43:5084~5087.
    [295] Zhang K, Yu X, Gao L, et al. Mesostructured spheres of organic/inorganic hybrid fromgelable block copolymers and arched nano-objects thereof. Langmuir,2008,24:6542~6548.
    [296] Angiolini L, Caretti D, Salatelli E, et al. Synthesis and Characterization of New FunctionalPolystyrenes Containing Tributyltin Carboxylate Moieties Linked to the Aromatic Ring by aTrimethylene Spacer. J Inorg Organomet Polym,2008,18:236~245.
    [297] Angiolini L, Caretti D, Mazzocchetti L, et al. Synthesis and Characterization ofPoly(ethylene glycol) Polymers Functionalized by Terminal Tributyltin CarboxylateMoieties. J Polym Sci Part A: Polym Chem,2005,43:3091~3104.
    [298] Angiolini L, Caretti D, Mazzocchetti L, et al. Cross-linked polystyrene resins containingtriorganotin4-vinylbenzoates: Assessment of their catalytic activity in transesterificationreactions. J Organomet Chem,2006,691:3043~3052.
    [299] Angiolini L, Caretti D, Mazzocchetti L, et al. Cross-linked resins functionalized withtriorganotin carboxylates: synthesis, characterization and preliminary catalytic screening intransesterification. Appl Organomet Chem,2005,19:841~847.
    [300] Pinoie V, Biesemans M, Willem R. Scope and Limitations of the Use of Grafted UndecyltinTrichloride As a Catalyst for Transesterifications: Effect of Tin Loading on Catalytic Activity,Recyclability, and Leaching. Organometallics,2010,29:193~198.
    [301] Pinoie V, Biesemans M, Willem R. Organotin catalysts grafted onto cross-linkedpolystyrene supports through polar spacers. Appl Organometal Chem,2010,24:135~141.
    [302] Xu Z, Yin S, Lei B, et al.1,3-Dichlorotetra-n-Butyl distannoxane as a Novel ATRP Initiator:Property, Catalysis Ability, and Mechanism. J Polym Sci Part A: Polym Chem,2007,45:942~948.
    [303] Feng G, Jia Y, Liu L, et al. Novel Organotin-Containing Shell-Cross-Linked Knedel andCore-Cross-Linked Knedel: Synthesis and Application in Catalysis. J Polym Sci Part A:Polym Chem.2010,48:5992~6002.
    [304] Lei B, Jiang J, Jia Y. et al. Novel organotin-containing diblock copolymer with tunablenanostructures: Synthesis, self-assembly and morphological change. J Organomet Chem,2011,696:1416~1424.
    [305] Chemin A., Deleuze H, Maillard B. Influence of the support structure on the activity,stability, and metal leaching of a polymer-supported organotin chloride catalyst. J ApplPolym Sci,2001,79:1297~1308.
    [306] Ingham R K, Rosenberg S D, Gilman H. Reaction of Di-isobutyl Aluminium Hydride withStannic Chloride. Chem Rev,1960,60:459~539.
    [307] Pellerito L, Nagy L, Organotin (IV) n+complexes formed with biologically active ligands:equilibrium and structural studies, and some biological aspects. Coord Chem Rev,2002,224:111~155.
    [308] García-Zarracino R, H pfl H. A3D hybrid network containing large spherical cavitiesformed through a combination of metal coordination and hydrogen bonding. Angew ChemInt Ed,2004,43:1507~1511.
    [309] García-Zarracino R, H pfl H. Self-Assembly of Diorganotin(IV) Oxides (R=Me, nBu, Ph)and2,5-Pyridinedicarboxylic Acid to Polymeric and Trinuclear Macrocyclic Hybrids withPorous Solid-State Structures: Influence of Substituents and Solvent on the SupramolecularStructure. J Am Chem Soc,2005,127:3120~3130.
    [310] Holmes R R. Organotin cluster chemistry. Acc Chem Res,1989,22:190~197.
    [311] Dharia J R, Pathak C P, Babu G N, et al. Organotin polymers: Copolymerization ontributyltin methacrylate with (hydroxy) alkyl methacrylates. J Polym Sci Part A: PolymChem,1988,26:595~599.
    [312] Liu J, Shang H, Zheng Y, et al. Synthesis and evaluation of poly(dioctyltinmaleate-styrene-methyl acrylate) as a stabilizer for poly(vinyl chloride). J Appl Polym Sci,2009,113:1216~1222.
    [313] Gielen M, Biesemans M, de Vos D, et al. Synthesis, characterization and in vitro antitumoractivity of di-and triorganotin derivatives of polyoxa-and biologically relevant carboxylicacids. J Inorg Biochem,2000,79:139~145.
    [314] Tsagatakis J K, Chaniotakis N A, Jurkschat K, et al. Tributyl-and Triphenyltin Benzoates,Phenylacetates, and Cinnamates as Anion Carriers: an Electrochemical Assessment Coupledto Structural NMR Studies and AM1Calculations. Helv Chim Acta,1999,82:531~542.
    [315] Otera J. Transesterification. Chem Rev,1991,93:1449~1470.
    [316] Vosloo J J, De Wet-Roos D, Tonge M P, et al. Controlled Free Radical Polymerization inWater-Borne Dispersion Using Reversible Addition-Fragmentation Chain Transfer.Macromolecules,2002,35:4894~4902.
    [317]Cammidge A N, Downing S, Ngaini Z. Surface-functionalised nano-beads as novel supportsfor organic synthesis. Tetrahedron Lett,2003,44:6633~6634.
    [318] Epple R, Kudirka R, Greenberg W A. Solid-Phase Synthesis of Nucleoside Analogues. JComb Chem,2003,5:292~310.
    [319] Szorcsik A., Nagy L, Gajda-Schrantz K, et al. Structural studies on organotin(IV)complexes formed with ligands containing {S,N,O} donor atoms. J Radioanal Nucl Chem,2002,252:523~530.
    [320] Yoshida T, Tarigabil R, Hillmyer M A., et al. Viscoelastic Synergy in Aqueous Mixtures ofWormlike Micelles and Model Amphiphilic Triblock Copolymers. Macromolecules,2007,40:1615~1623.
    [321] Discher D E, Eisenberg A. Polymer vesicles. Science,2002,297:967~973.
    [322] Zhang L, Eisenberg A. Multiple Morphologies of "Crew-Cut" Aggregates ofPolystyrene-b-poly(acrylic acid) Block Copolymers. Science,1995,268:1728~1731.
    [323] Fenouillot F, Cassagnau P, Majesté J C. Uneven distribution of nanoparticles in immisciblefluids: Morphology development in polymer blends. Polymer,2009,50:1333~1350.
    [324] Deepak V D, Asha S K. Random and AB Diblock Copolymers of TricyclodecanemethanolUrethane Methacrylate with Styrene: Synthesis and Morphology Characterization. J PolymSci Part A: Polym Chem,2008,46:1278-1288.
    [325] Deepak V D, Asha S K. Self-Organization-Induced Three-Dimensional HoneycombPattern in Structure-Controlled Bulky Methacrylate Polymers: Synthesis, Morphology, andMechanism of Pore Formation. J Phys Chem B,2006,110:21450~21459.
    [326] Babin J, Lepage M, Zhao Y.“Decoration” of Shell Cross-Linked Reverse PolymerMicelles Using ATRP: A New Route to Stimuli-Responsive Nanoparticles. Macromolecules,2008,41:1246~1253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700