主—客体分子间相互作用的光电分析及人工神经网络预估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主客体识别是指主体(受体)对客体(底物)选择性的结合并产生某种特定功能的过程。发展到今天,主-客体化学的研究内容已不再仅仅局限于以研究冠醚,环糊精等为基础的包合物化学,只要研究的内容涉及两个或者多个化学物种通过分子间的弱相互作用力形成的实体或聚集体的化学,均可看成主-客体化学研究的范畴。主-客体化学现已成为化学中发展迅速、极富挑战性的新领域之一,主-客体化学为我们展示了一个丰富多彩的世界,它在催化,分子或离子的分离,环境科学,生命科学以及材料科学等方面的应用及研究对人类的发展具有极其深远的意义。
     药物小分子与生物大分子之间的相互作用主要依靠范德华力、静电力、疏水作用和氢键等非共价键力相结合,隶属于主-客体化学研究的范畴。研究药物小分子与生物大分子之间的相互作用,对于阐明生物反应的机理,揭示生命现象的本质,以及在药物体外筛选、先导化合物的合成优化等相关领域具有非常重要的意义。
     目前,研究药物小分子与生物大分子之间相互作用的方法主要有光谱分析法,电化学分析法,核磁共振分析法,质谱分析法以及色谱分析法等。其中以光谱分析及其电学分析法最为普遍。
     论文对主-客体相互作用的研究现状,发展,以及各种研究方法等方面进行了综述,特别是对近年来各种药物分子与蛋白及其核糖核酸两种生物大分子间相互作用的研究工作进行了较为详细的介绍。在此基础上,主要开展的工作如下:
     1.应用光谱技术研究药物分子与牛血清白蛋白的相互作用
     论文采用荧光光谱技术,紫外-可见吸收光谱技术等在模拟人体生理条件下研究了水飞蓟素,刺芒柄花素,橙皮素,染料木素,白杨素,大豆甙元,木犀草素,芹菜素等8种黄酮药物分子;芦丁、橙皮甙、柚皮苷、葛根素和黄芩苷等5种黄酮苷药物分子以及新合成的2种白杨素磺化衍生物------白杨素-8-磺酸钠,白杨素-8-磺酸钙和十多种非黄酮类药物双嘧达莫,大黄酸,吲哚美辛,羟基喜树碱等共计30余种药物小分子分别与牛血清白蛋白之间的相互作用。获得了在相同实验条件下这30余种药物分子与BSA相互作用过程中的荧光猝灭类型,相互作用力方式,结合位点数,结合距离等信息。此外,实验采用△λ=15 nm和△λ=60 nm的同步荧光光谱技术研究了这些药物小分子的加入对牛血清白蛋白微观构象的影响。在此基础上对结构相似或相近的药物小分子与牛血清白蛋白相互作用信息的差异进行了对比与分析,探索了不同官能团以及官能团位置对相互作用信息的影响;对药物分子与牛血清白蛋白相互作用的机理进行了简单的探讨与分析。
     2.应用电化学方法研究药物分子与牛血清白蛋白的相互作用
     论文采用线性扫描伏安法等电化学分析技术研究了白杨素,大豆甙元两种药物小分子分别与牛血清白蛋白之间的相互作用信息。实验探讨了不同缓冲体系,pH值,反应时间,反应温度,扫描速率,离子强度等实验条件分别对两个相互作用体系的影响。在此基础之上分别对白杨素与牛血清白蛋白,大豆甙元与牛血清白蛋白相互作用的机理进行了简单的探讨与分析,求算了白杨素,大豆甙元分别与牛血清白蛋白相互作用过程中的结合常数,结合数等信息。
     3.应用光谱技术研究药物分子与DNA的相互作用
     论文在pH值为7.40的Tris-HCl缓冲溶液中,采用紫外-可见吸收光谱法和荧光光谱法并辅以粘度法等技术,以吖啶橙(AO)作为探针试剂研究了芹菜素,羟基喜树碱两种药物分子分别与核糖核酸DNA之间的相互作用信息。并分别对芹菜素和羟基喜树碱这两种药物分子与DNA相互作用过程的主要作用力类型,结合模式,不同温度下的结合力常数,结合比等进行了研究与分析。
     4.应用电化学方法研究药物分子与DNA的相互作用
     以玻碳电极为工作电极采用线性扫描伏安法分别研究了美托拉宗,白杨素,大豆甙元三种药物分子分别与核糖核酸DNA之间的相互作用。实验考察了不同缓冲体系,pH值,反应时间,反应温度,扫描速率,离子强度等条件对美托拉宗,白杨素以及大豆甙元分别与DNA相互作用的影响。在此基础之上对美托拉宗,白杨素以及大豆甙元分别与DNA相互作用的机理进行了简单的探讨与分析,求算了各自相互作用过程的结合常数,结合数等参量。
     5.主成分分析结合人工神经网络法预测主客体分子间的相互作用
     在相同实验条件下采用光谱学方法研究多种药物分子与牛血清白蛋白相互作用的基础之上,选择以25种药物分子微观结构描述符数据为参数,应用主成分分析结合人工神经网络方法分别建立了药物分子结构和药物小分子对牛血清白蛋白荧光猝灭类型,药物分子结构和药物小分子与牛血清白蛋白主要结合力方式等相互作用信息之间的预测模型。分别通过对5种药物分子与牛血清白蛋白相互作用过程中的荧光猝灭方式,主要结合力等信息的预测,发现预测结果与光谱实验数据完全吻合。表明采用主成分分析结合人工神经网络所建立的分子结构描述符预测药物分子与牛血清白蛋白主-客体相互作用模型,预测精度较好,可为研究各种药物分子在人体内的储存、传输和药理作用提供参考信息,为研究药物分子与生物大分子相互作用的信息提供了一条新的思路。
Host guest recognition is the process that host molecule form binding with guest molecule selectively and product some special function. Up to today, the study category of Host-guest chemistry no longer limited to study inclusion chemistry that mainly studies crown ether, cyclodextrin and other molecules. All are the study category of host-guest chemistry if the research content involves two or more chemical species forming the aggregate chemical or entity chemical by the molecular weak interactions. Host-guest chemistry has become one of the quickest and most challenging fields in chemistry, which shows us a colorful world and put forward a new challenge to the traditional chemistry. Its applications to catalysis, separation of molecules or ions, environmental science, life science and material science have a profound significance to the development of human beings.
     The binding of drug molecules to biomacromolecule, which belongs to the study category of Host-guest chemistry, occurs mostly through weak non-covalent interactions which include Van'der Waals interaction, hydrophobic force, electrostatic interaction and hydrogen bond respectively. Studies on Interaction of drug molecules with biomacromolecule have very important meaning in the fields of elucidate the mechanism of biological reaction, revealing the essence of life phenomenon, and screening the drugs in vitro, synthesis or optimization of leading compounds.
     Some techniques are commonly used to detect interaction between drug and Biomacromolecule, including the spectrophotometry, electrochemical, nuclear magnetic resonance (NMR), mass spectrometry and chromatography, and spectrophotometry, electrochemical are the most common methods.
     The paper reviews the development and various methods of host-guest interaction, and has a detailed description for the interaction between drugs with protein and drugs with deoxyribonucleic acid in recent years. Main efforts devoted to this paper are shown as follows:
     1. Studies of the interaction between drugs and bovine serum albumin by spectroscopic methods
     Fluorescence spectrum technique, UV-Vis absorption spectrum are adopted to study interaction of more than thirty kinds of drugs with BSA, respectively. Thirty kinds of drugs include eight kinds of Flavonoids (Silmyarin, Formononetin, Hesperetin, Genistein, Chrysin, Daidzein, Luteolin, Apigenin), five Flavonoid glycosides (Rutin, Hesperidin, Naringin, Puerarin, Baicalin), two Chrysin-8-sulfonate derivates (Sodium chrysin-8-sulfonate and Calcium chrysin-8-sulfonate), and more than ten drugs (Rhein, Indometacin, Dipyridamole, and so on). Mechanisms of fluorescence quenching, main type of binding force, the numbers of binding sites and bind distance of these drugs to BSA are acquired under the same experimental condition. The paper studies the influences of conformation investigation of BSA by synchronous fluorescence spectra when drugs are added, and makes a simple analysis to its interaction mechanism.
     2. Studies of the interaction between drugs and bovine serum albumin by electrochemical method
     The paper studies the interaction of two kinds of drugs incluing Chrysin, Daidzein with BSA by linear sweep voltammetry, respectively, and studies the influences of buffer system, pH Value, reaction time, temperature, scanning rate, ionic strength to the results of interaction. Then the paper makes a simple analysis toward mechanism of the interaction, and calculates the binding constant and the numbers of binding sites in the process of the interaction.
     3. Studies of the interaction between drugs and DNA by spectroscopic Methods
     The paper studies the interaction of two kinds of drugs incluing Apigenin, Hydroxycamptothecine with DNA using Acridine Orange (AO) as a probe by Fluorescence spectrum, UV-Vis absorption spectrum and methods of viscosity. Then the paper makes an analysis to the interaction of the Apigenin and Hydroxycamptothecine with DNA, respectively, the interaction includes main type of binding force, action mode, the binding constant at the different temperature and the numbers of binding sites.
     4. Studies of the interaction between drugs with DNA by electrochemical method
     The paper studies the interaction of three kinds of drugs incluing Metolazone, Chrysin and Daidzein with DNA, respectively, by Linear Sweep Voltammetry. The effect of the buffer system, pH Value, reaction time, reaction temperature, scanning rate, ionic strength to the interaction are investigated. Then the paper makes a simple analysis toward mechanism of the interaction, and calculates the binding constant and the numbers of binding sites in the process of the interaction.
     5. Predicting the interaction of drugs with BSA by PCA-ANN
     On the base of results of fluorescence analysis, the paper applies Principal Component Analysis and Artificial Neural Network (PCA-ANN) with molecular structure descriptors to establish the two prediction models:structure descriptors of drugs to fluorescence quenching mechanisms of drugs with BSA and structure descriptors of drugs to main type of binding force of drugs with BSA. The interactions between the five kinds of drugs with bovine serum albumin are predicted by the two models. There are no significant difference between the prediction results and the spectral experimental results. This shows Host-guest interaction type between molecular structure and BSA is with high predicting accuracy, which supplies some references to the storage, transfer and pharmacological effects of various drugs in the body, and offers a new idea to study the interaction between drug molecules to biomacromolecule.
引文
[1]陈丽娟,杨明星,林深.主-客体化学研究进展[J].合成化学,2002,10(3):205-210
    [2]郭彦,赵健伟.自组装体系中分子间相互作用对其电化学行为的影响[J].化学通报,2007,12:894-898
    [3]J. M. Lehn. Supramolecular chemistry-Scope and perspectives. Molecules, supermolecules, and molecular devices[J]. Angew. Chem.,1988,27(1):89-112
    [4]J -M Lehn. Perspectives in supramolecular chemistry-From molecular recognition towards molecular information processing and self-organization[J]. Angew. Chem., 1990,29:1304-1319
    [5]刘育,尤长城,张衡益.超分子化学[M].天津:南开大学出版社,2001
    [6]卢继新,李惠芬,蔡乐.药物小分子与生物大分子相互作用的研究方法进展[J].分析科学学报,2007,23(5):601-606
    [7]Liang Li, Sigrid Nachtergaele, Annela M. Seddon, Simple Host-Guest Chemistry To Modulate the Process of Concentration and Crystallization of Membrane Proteins by Detergent Capture in a Microfluidic Device[J]. J. A M. CHEM. SOC. 2008,130(43):14324-14328
    [8]Marco Vincenti. Host-Guest Chemistry in the Mass Spectrometer[J]. Journal of Mass Spectrometry,1995,30,925-939:1-15
    [9]Daryle H. Busch, Neil A. Stephenson. Inclusion chemistry for the modeling of heme proteins[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1989,7(2):137-153
    [10]佟巍,张养军,秦伟捷,等.高效硅胶化学键合固定相的研究进展[J].色谱,2010,28(10):915-922
    [11]夏琳,邱桂学.化学学科的新领域-超分子化学[J].化学推进剂与高分子材料,2007,5(1):33-37
    [12]王晓霞,敖登高娃,冯鹏棉,等.吲哚美辛-锌(II)-牛血清白蛋白三元配合物的荧光光谱法研究[J].分析化学,2009,37:156-156
    [13]江崇球,高明霞.盐酸表阿霉素与牛血清白蛋白相互作用的研究及药物在血清 与尿样中含量的测定[J].光谱学与光谱分析,2003,23(5):937-940
    [14]杨频.生物无机化学导论[M].西安:西安交通大学出版社,1991
    [15]邓凡政,郭东方,王海荣.双水相体系中食用色素与蛋白质作用光谱行为研究[J].光谱学与光谱分析,2007,27(2):329-331
    [16]颜承农,上官云凤,潘祖亭,等.吡罗昔康与蛋白质作用特征的热力学研究[J].分析化学,2004,32(3):317-319
    [17]张爱梅,秦延河,李媛.利福平和牛血清白蛋白相互结合作用的荧光光度特性[J].理化检验(化学分册),2008,44(3):261-263
    [18]孙绍发,李为娇,孙亮.光谱法研究2-对氯苯氨基噻吩并[2,3-d]嘧啶-4(3H)-酮与牛血清白蛋白的相互作用[J].化学与生物工程,2007,24(9):75-78
    [19]张国文,张玉珍,阙青民.磺胺二甲氧嘧啶与牛血清白蛋白相互作用的研究[J].南昌大学学报(工科版),2006,28(4):316-318,315
    [20]胡艳军,刘义,侯安新,等.稀土杂多酸盐EuHSiMo10W2O40-25H2O与BSA相互作用的研究[J].化学学报,2004,62(16):1519-1523
    [21]卢继新,李惠芬,蔡乐,等.药物小分子与生物大分子相互作用的研究方法进展[J].分析科学学报,2007,23(5):601-606
    [22]Peng H., Zhang L. J., Soeller C., et al. Conducting polymers for electrochemical DNA sensing[J]. Biomaterials,2009,30(11):2132-2148
    [23]Wu J. K., Huang C. H., Cheng G. F., et al. Electrochemically active-inactive switchingmolecularbeacon fordirectdetection of DNA in homogenous solution[J]. Electrochem. Commun,2009,11(1):177-180
    [24]Li F., Chen W., Zhang S. S.. Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and self-assembly technologies [J]. Biosens.Bioelectron.,2008,24(4):781-786
    [25]Hassen W. M., Chaix C., Abdelghani A.. An impedimetric DNA sensorbased on functionalizedmagnetic nanoparticles for HIV and HBV detection[J]. Sensor. Actuat. B:Chem.,2008,134(2):755-760
    [26]赵元弟,庞代文,王宗礼,等.抗癌药物的电化学研究(I)一种Fe(III)Schiff碱配合物的基本电化学性质及其与DNA的相互作用[J].化学学报,1998,56(2):178-183
    [27]吴会灵,杨原,张重杰.小分子与核酸相互作用的研究进展[J].分析化学,2004,32(9):1256-1261
    [28]沈景山,孙丹丹,付连春,等.荧光光谱法研究抗癌药物与DNA的相互作用[J].光谱学与光谱分析,2005,25(2):232-234
    [29]查隽,何华,刘铁兵,等.荧光光谱法研究共存碳纳米管对牛血清白蛋白与加替沙星相互作用的影响[J].光谱学与光谱分析,2011,31(1):149-153
    [30]何梅,夏之宁,阴永光,等.紫外光谱研究中药大黄有效成分与牛血清白蛋白的相互作用[J].中国现代应用药学,2004,21(6):514-516
    [31]Hakan Karadeniz, Levent Alparslan, Arzum Erdem, et al. Electrochemical investigation of interaction between mitomycin C and DNA in a novel drug-delivery system[J]. Journal of Pharmaceutical and Biomedical Analysis,2007, 45:322-326
    [32]Ana Maria Oliveira-Brett, Victor C. Diculescu. Electrochemical study of quercetin-DNA interactions Part Ⅱ. In situ sensing with DNA biosensors[J]. Bioelectrochemistry,2004,64:143-150
    [33]于雪,张君才,卫引茂.高效亲和色谱法测定丹皮酚与固定化人血清白蛋白结合域[J].色谱,2010,28(7):688-692
    [34]雷根虎,刘丽亭,戴小军,等.中药小分子阿魏酸和丹皮酚与人血清白蛋白的竞争结合作用研究[J].化学学报,2010,(1):55-61
    [35]王琳琳.蛋白质与几个天然抗癌药物间相互作用的毛细管电泳研究[J].分析化学,2009,37(3):197-197
    [36]张黎伟,张新祥.亲和毛细管电泳法和荧光法研究氟喹诺酮类药物与牛血清白蛋白的相互作用[J].高等学校化学学报,2008,29(4):694-699
    [37]于海英,程秀民,王晓坤.圆二色光谱及其在药物研究方面的应用[J].光谱实验室,2007,24(5):877-885
    [38]Bertucci C., Ascoli G., Uccello-Barretta G., el al. The Binding of 5-Fluorouracil to Native and Modified Human Serum Albumin:UV, CD, and 1H and 19F NMR Investigation[J]. Journal of Pharmaceutical and Biomedical Analysis,1995,13(9): 1087-1093
    [39]李蔚,陈五高,梁永茂.抗癌药物与DNA相互作用的共振拉曼光谱研究[J].中 国激光医学杂志,1998,7(2):102-103
    [40]陶清,韩莉,徐金光,等.诺氟沙星与牛血清白蛋白相互作用的拉曼光谱研究[J].河南科学,2007,25(3):39 1-394
    [41]张芳,林东海.用核磁共振方法研究金属离子与蛋白质的相互作用[J],波谱学杂志,2009,26(1):136-149
    [42]施蕴渝,吴季辉.应用核磁共振波谱技术研究蛋白质相互作用[J].科学通报,2009,54(8):1017-1022
    [43]王靖,郭晨,梁向峰,等.傅里叶变换红外光谱对阴离子表面活性剂SDS与牛血清白蛋白相互作用的研究[J].光谱学与光谱分析,2006,26(9):1598-1600
    [44]叶志钧,刘英菊,朱丽.平衡透析法研究小檗碱与人血清白蛋白的相互作用[J],广东化工,2009,36(1):73-76
    [45]杨海艳,王公轲,陈得军,等.平衡透析法用于有机小分子和蛋白质相互作用研究进展[J].河南师范大学学报(自然科学版),2008,36(4):93-97
    [46]俞英,程晓伟.牛血清白蛋白与酸性品红的结合反应[J].分析化学,2000,28(5):583-586
    [47]Long E. C., Absalon M. J., Stubbe J., et al. Mechanism of light-induced DNA strand scission by RH(phen)2PHI3+:cleavage mediated by C3'-Habstraction[J]. J. Inorg. Biochem.,1991,43(2-3):436-436
    [48]曹瑛,何锡文.吩嗪染料与DNA分子相互作用的紫外-可见光谱研究[J].高等学校化学学报,1998,19(5):714-716
    [49]童金强,颜承农,周志鹏.二氯喹啉酸与牛血清白蛋白结合作用的荧光光谱研究[J].西南师范大学学报(自然科学版),2005,30(4):695-698
    [50]崔凤灵,张强斋,渠桂荣,等.同步荧光光谱法测定蛋白质[J].理化检验(化学分册),2009,4(2):144-147
    [51]芦海云,李俊国.小分子与蛋白质靶分子相互作用的研究方法[J].内江科技,2007,28(6):71-72
    [52]Farzaneh Rasoulzadeh, Hamideh Nadjarpour Jabary, Abdolhossein Naseri, et al. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2009,72:190-193
    [53]Mannem Kavitha, Nabil A. M. Sultan, Musti J. Swamy. Fluorescence studies on the interaction of hydrophobic ligands with Momordica charantia (bitter gourd) seed lectin[J]. Journal of Photochemistry and Photobiology B:Biology,2009,94:59-64
    [54]A. Kathiravan, R. Renganathan, S. Anandan. Interaction of colloidal AgTiO2 nanoparticles with bovine serum albumin[J], Polyhedron,2009,28:157-161
    [55]A. Kathiravan, S. Anandan, R. Renganathan, Interaction of colloidal TiO2 with human serum albumin:A fluorescence quenching study[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2009,333:91-95
    [56]Kathiravan, M. Chandramohan, R. Renganathan. Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin[J]. Journal of Molecular Structure,2009,919(1-3):210-214
    [57]E. L. Gelamo and M. Tabak. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2000,56(11):2255-2271
    [58]Nadia Barbero, Ermanno Barni, Claudia Barolo, et al. A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence[J]. Dyes and Pigments,2009,80:307-313
    [59]Jinhua Li, Xiaoyan Liu, Cuiling Ren, et al. In vitro study on the interaction between thiophanate methyl and human serum albumin[J]. Journal of Photochemistry and Photobiology B:Biology,2008,94:158-163
    [60]Guowen Zhang, Anping Wang, Ting Jiang, et al. Interaction of the irisflorentin with bovine serum albumin:A fluorescence quenching study[J]. Journal of Molecular Structure,2008,891:93-97
    [61]Ye-Zhong Zhang, Jie Dai, Xiao-Ping Zhang, et al. Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods[J]. Journal of Molecular Structure,2008,888:152-159
    [62]Xia Ling, Wenying Zhong, Qi Huang, et al. Spectroscopic studies on the interaction of pazufloxacin with calf thymus DNA[J]. Journal of Photochemistry and Photobiology B:Biology,2008,93:172-176
    [63]Yinglin Zhou, Yuanzong Li. Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods[J]. Biophysical Chemistry,2004,107:273-281
    [64]S. Sanchez-Carrasco, J. G. Delcros, A. A. Moya-Garcia, Study by optical spectroscopy and molecular dynamics of the interaction of acridine-spermine conjugate with DNA[J]. Biophysical Chemistry,2008,133:54-65
    [65]卓琳.DNA与小分子相互作用的研究进展[J].重庆工商大学学报(自然科学版),2005,22(5):440-445
    [66]陈勇,李元宗,常文保,等.核酸分子嵌入剂[J].分析科学学报,1994,10(1):67-74.
    [67]杨铭.以DNA为靶的小分子药物研究中的分子识别[J].北京医科大学学报,1998,30(2):97-99
    [68]何华,王羚邮,戴丽.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展[J].中国药学杂志,2005,40(7):481-485
    [69]李云巍,王庆河,聂翰,等.具有抗肿瘤活性的DNA小沟区结合剂的研究新进展[J].中国药物化学杂志,2008,18(5):389-398
    [70]Kumar C. V., Asumcion E. H.. DNA binding studies and site selective fluorescence sensitization of an anthyl probe [J]. J. Am. Chem. Soc.,1993,115(19):8547-8553.
    [71]于婷婷,何平,梁艳.有机药物分子与DNA相互作用的研究进展[J].化学研究与应用,2009,21(7):937-944
    [72]Shanchao Liu, Yingju Liu, Jia Li, et al. Study on the interaction between DNA and protein induced by anticancer drug carboplatin[J]. J. Biochem. Biophys. Methods, 2005,63:125-136
    [73]Yongnian Ni, Daiqin Lin, Serge Kokot. Synchronous fluorescence and UV-vis spectroscopic studies of interactions between the tetracycline antibiotic, aluminium ions and DNA with the aid of the Methylene Blue dye probe [J]. Analytica Chimica Acta,2008,606:19-25
    [74]Zhou Hu, Changlun Tong. Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA[J]. Analytica Chimica Acta, 2007,587:187-193
    [75]李志良,陈建华,章开诚,等Schiff碱非铂抗癌络合物初步筛选的荧光法研究 [J].中国科学(B辑),1991,21(11):1193-1200
    [76]王瑞琼,鄢远,黄坚锋.荧光法研究丝裂霉素C与DNA的作用机制[J].化学学报,1999,57(2):171-175
    [77]HU Y. J., Liu Y., Wang J. B., Xiao X. H.. Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin[J]. J. Pharm. Biomed. Anal.,2004,36(4):915-919
    [78]胡亚敏,王兴明,费丹,等.荧光光谱法研究黄素与鲱鱼精DNA的相互作用[J].化学学报,2008,66(10):1245-1251
    [79]Yongnian Ni, Daiqin Lin, Serge Kokot. Synchronous fluorescence, UV-visible spectrophotometric, and voltammetric studies of the competitive interaction of bis(1,10-phenanthroline)copper(II) complex and neutral red with DNA[J]. Analytical Biochemistry,2006,352:231-242
    [80]Fa'bio A. Schaberle, Vladimir A. Kuz'min, Iouri E. Borissevitch, Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength[J]. Biochimica et Biophysica Acta,2003,1621:183-191
    [81]赵昌后,孙星炎,刘盛辉,等.DNA与抗癌药物道诺霉素相互作用的研究[J].华东师范大学学报(自然科学版),1999,3:68-71
    [82]张爱梅,王怀生,罗玉会.甲氨蝶呤与DNA相互作用的荧光光谱研究[J].分析测试学报,2008,27(1):45-48
    [83]Carter M. T., Bard A. J.. Voltammetric studies of the interaction of tris (1, 10-phenanthroline) cobalt(III) with DNA[J]. J. Am. Chem. Soc.,1987,109(24): 7528-7530
    [84]Wang S. F., Peng T. Z., Yang C. F.. Electrochemical determination of interaction parameters for DNA and mito-xantrone in an irreversible redox process[J]. Biophys. Chem.,2003,104(1):239-248
    [85]Ferancova A., Adamovski M., Grundler P.. Interaction of tin(II) and arsenic(III) with DNA at the nanostructure film modified electrodes[J]. Bioelectrochemistry, 2007,71(1):33-37
    [86]Heli H., Bathaie S. Z., Mousavi M. F.. An electrochemical study of neutral red-DNA interaction [J]. Electrochim. Acta,2005,51(6):1108-1116
    [87]Li X. L.,Chen Y. L., Huang X. Y.. Electrochemical behavior of neomycin at DNA-modified gold electrodes [J]. J. Inorg. Biochem.,2007,101(6):918-924
    [88]Tabassum S., Parveen S., Arjmand F.. New modulated metallicmacrocycles: electrochemistry and their interaction with calf thymus DNA[J]. Acta Biomater., 2005,1(6):677-689
    [89]Tian X., Li F. J., Zhu L., et al. Study on the electrochemical behavior of anticancer herbal drug rutin and its interaction with DNA[J]. J. Electroanal. Chem.,2008, 621(1):1-6
    [90]吴海霞,康敬万,李志峰,等.亚甲基蓝与DNA相互作用的电化学研究[J].分析测试学报,2006,25(4):1-5
    [91]高琳,邢天来,王非,等.抗癌药物8-氮鸟嘌呤与DNA相互作用的电化学研究[J].河南大学学报(自然科学版),2006,36(3):37-41
    [92]Xue Tian, Fengju Li, Lu Zhu, et al.. Study on the electrochemical behavior of anticancer herbal drug rutin and its interaction with DNA[J]. Journal of Electroanalytical Chemistry,2008,621:1-6
    [93]Fang Wang, Yanxia Xu, Jia Zhao, et al. Electrochemical oxidation of morin and interaction with DNA[J]. Bioelectrochemistry,2007,70:356-362
    [94]You Qin Li, Yu Jing Guo, Xiu Fang Li. Electrochemical studies of the interaction of Basic Brown G with DNA and determination of DNA[J]. Talanta,2007,71: 123-128
    [95]A. Radi, M. A. El Ries, S.. Kandil. Electrochemical study of the interaction of levofloxacin with DNA[J]. Analytica Chimica Acta.2003,495:61-67
    [96]时巧翠,王素芬,朱斌,等.环丙沙星与DNA相互作用的电化学研究[J].浙江大学学报(理学版),2007,34(3):330-334
    [97]徐桂云,焦奎,李延团,等.丁二酮肟双核铜配合物与DNA相互作用的电化学研究[J].高等学校化学学报,2007,28(1):49-64
    [98]屈凌波,赵俊宏,李建军,等.木犀草素与DNA相互作用的电化学研究[J].分析测试学报,2008,27(1):79-83
    [99]李静,王振川,李景印,等.抗坏血酸与DNA相互作用的电化学研究[J].化学研究与应用,2006,(7):863-865
    [100]Ken-ichi KASAI, Shin-ichi ISHII. Quantitative Analysis of Affinity Chromatography of Trypsin-A New Technique for Investigation of Protein-ligand Interaction[J]. J. Biochem. (Tokyo),1975,77(1):261-264
    [101]Hage D. S., Tweed S. A.. Recent advances in chromatographic and electrophoretic methods for the study of drug-protein interactions [J]. J. Chromatogr. B,1997, 699(1-2):499-525
    [102]Hage D. S.. High performance affinity chromatography:a powerful tool for studying serum protein binding[J]. J. Chromatogr. B,2002,768(1):3-30
    [103]Hao W., Wang J..Evaluation on nonlinear chromatographic performance by frontal analysis using a simple multi-plate mathematical model [J]. J. Chromatogr. A,2005, 1063(1-2):47-56
    [104]Bertucci C., Bartolini M., Gotti R., et al. Drug affinity to immobilized target bio-polymers by high-performance liquid chromatography and capillary electrophoresis[J]. J. Chromatogr B,2003,797:111-129
    [105]Moaddel R., Wainer I. W.. Conformational mobility of immobilized proteins[J], Journal of Pharmaceutical and Biomedical Analysis,2007,43(2):399-406
    [106]卢时湧,吴章桂,叶伟东.应用前沿亲和色谱研究分子间相互作用及其应用[J].化学进展,2010,22(1):148-152
    [107]齐小花,丁里,张新祥,等.毛细管电泳研究HIV抑制剂、Tat蛋白与RNA的相互作用[J].分析化学,2005,33(2):214-216
    [108]沈星灿,梁宏,何锡文,等.园二色谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(3):388-394
    [109]Sharon M. K., Thomas J. J., Nicholas C. P.. How to study proteins by circular dichroism[J]. Biochimica et Biophysica Acta, 2005,1751:119-139
    [110]马静,郑学仿,唐乾,等.光谱法研究Cu2+ 与肌红蛋白的相互作用[J].高等学校化学学报,2008,29(2):258-263
    [111]Brahms S, Brahm J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism[J]. J. Mol. Biol.,1980,138(2):149-178
    [112]唐玉龙,郭周义.激光拉曼光谱技术在生物分子DNA研究中的应用和进展[J].激光生物学报,2004,13(5):386-393
    [113]任毅华.诺氟沙星与DNA的拉曼光谱研究[J].光谱学与光谱分析,2009,(11):2980-2983
    [114]彭红军,周光明,黄成.拉曼光谱技术在生物体系研究中的应用[J].化学通报,2005,68:1-6
    [115]王斌,王靖,余江,等FT-Raman光谱对蛋白质二级结构的定量分析[J].光谱学与光谱分析,1999,19(5):674-676
    [116]伍林,欧阳兆辉,曹淑超.拉曼光谱技术的应用及研究进展[J].光散射学报,2005,17(2):180-1 86
    [117]Satyanarayana S., Daborusak J. C., Chaires J. B.. Tris(Phenanthroline) Ruthenium(Ⅱ) Enantiomer Interactions with DNA, Mode and Specificity of Binding[J]. Biochemistry, 1993,32(10):2573-2584.
    [118]Lerman L. S.. Structural considerations in the interaction of DNA and acridines[J]. J. Mol.Biol.,1961,3:18-30
    [119]张黔玲,刘剑洪,任翔忠.新型双核配合物的形成、与DNA的作用机制及荧光性质研究[J].化学学报,2006,64(10),968-974
    [120]邹敏,刘叔文,周春琼.一种新的吡咯多胺镍配合物的合成及其与DNA的作用研究[J].化学学报,2010,68(6):481-486
    [121]叶勇,杨俊亮.偏端霉素衍生物与DNA相互作用的圆二色谱测定[J].郑州大学学报(医学版),2009,(6):1671-6825
    [122]张金波,罗佳滨,张春斌,等.荧光定量PCR技术原理及在分子诊断中的应用进展[J].中国优生与遗传杂志,2006,14(12):13-14
    [1]Middleton E. Jr, Kandaswami C., Theoharides T. C.. The effects of plant flavonoids on mammalian cells:implications for inflammation, heart disease, and cancer[J]. Pharmacol. Rev.,2000,52:673-751
    [2]Havsteen B. H.. The biochemistry and medicinal significance of the flavonoids[J]. Pharmacol Ther.,2002,96:67-202
    [3]M. R.Webb, S. E. Ebeler. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds:structural determinates of activity[J]. Biochem. J.,2004,384:527-541
    [4]S. Ashoka, J. Seetharamappa, P.B. Kandagal, et al. Investigation of the interaction between trazodone hydrochloride and bovine serum albumin[J]. J. Lumin.,2006,121 (1):179-186
    [5]J. Guharay, B. Sengupta, P.K. Sengupta. Protein-flavonol interaction:Fluorescence spectroscopic study [J]. Proteins,2001,43(2):75-81
    [6]Kandagal, P. B., Ashoka, S., Seetharamappa, J., et al. Study of the Interaction of an Anticancer Drug with Human and Bovine Serum Albumin:Spectroscopic Approach[J]. J. Pharm. Biomed. Anal.,2006,41,393-399
    [7]Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., et al. Antioxidant flavonoids bind human serum albumin[J]. J. Mol. Struct.,2006,798:69-74
    [8]P. B. Kandagal, S. M. T. Shaikh, D. H. Manjunatha, et al. Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin[J]. J. Photochem. Photobiol. A.,2007,189(1):121-127
    [9]X. C. Shen, H. Liang, J.H. Guo, et.al. Studies on the interaction between Ag and human serum albumin[J]. J. Inorg. Biochem.2003,95 (2-3):124-130
    [10]A. Sulkowska, B. Bojko, J. Rownicka, et.al. The competition of drugs to serum albumin in combination chemotherapy:NMR study [J]. J. Mol. Struct.,2005,744-747:781-787
    [II]Maria Hepel. Effect of albumin on underpotential lead deposition and stripping on Ag-RDE[J]. Electroanalysis,2005,17:1401-1412
    [12]I. Girard, S. Ferry. Protein binding of methohexital. Study of parameters and modulating factors using the equilibrium dialysis technique[J]. J. Pharmaceut. Biomed. 1996,14(5):583-591
    [13]M. C. Millot, S. Servagent-Noinville, N. L. Taleb, et.al. Structural changes of human serum albumin immobilized on chromatographic supports:a high-performance liquid chromatography and Fourier-transform infrared spectroscopy study [J]. J. Chromatogr. B: Biomed. Sci.Appl.,2001,753(1):101-113
    [14]J. R. Lakowicz. Principles of fluorescence spectroscopy (second ed.) [M]. Plenum Press, New York,1999:237-265
    [15]Zhang X. W, Zhao F. L, Li K. A.. Progress in the research of the interaction between drug and serum protein in vitro Chemistry[J]. J. Chem. Chin. Univ.,1999,20: 1063-1067
    [16]Jiang Min, Xie Meng-Xia, Zheng Dong, et.al. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin[J]. J. Mol. Struct.,2004,692 (1-3):71-80
    [17]Yan-Qing Wang, Hong-Mei Zhang, Gen-Cheng Zhang, et al. Studies on the interaction between silicotungstic acid and bovine serum albumin[J]. J. Pharm. Biomed. Anal., 2007,43:1869-1875
    [18]Spector T., Hall W. W., Krenitsky T. A.. Human and bovine xanthine oxidases: inhibition studies with oxipurinol[J]. Biochem Pharmacol,1986,35(18):3109-3114
    [19]Aiqin Gong, Xiashi Zhu, Yanyan Hu, et.al. A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application[J]. Talanta,2007,73(4):668-673
    [20]Shuyun Bi, Lan Ding, Yuan Tian, et.al. Investigation of the interaction between flavonoids and human serum albumin[J]. J. Mol. Struct.,2004,703(1-3):37-45
    [21]Yan-Jun Hua, Hua-Guang Yua, Jia-Xin Donga, et.al. Spectroscopic studies on the interaction between 3,4,5-trimethoxybenzoic acid and bovine serum albumin[J]. Spectrochim Acta Part A,2006,65:988-992
    [22]Yan-Jun Hu, Yi Liu, Jia-Bo Wang, et al. Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin [J]. Journal of Pharmaceutical and Biomedical Analysis,2004,36 (4):915-919
    [23]A. Sulkowska. Interaction of drugs with bovine and human serum albumin[J]. J. Mol. Struct.,2002,614:227-232
    [24]Yan-Qing Wang, Hong-Mei Zhang, Gen-Cheng Zhang, et.al. Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin[J], J. Pharm. Biomed. Anal.,2007,43 (5):1869-1875
    [25]Leckband D.. Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy[J]. Annu. Rev. Biophys. Biomol. Struct.,2000,29:1-26
    [26]ROSS D. P., SABRAMANIAN S.. Thermodynamics of protein association reactions: forces contributing to stability [J]. Biochemistry,1981,20:3096-3102
    [27]Jing-Ci Li, Ning Li, Qiu-Hua Wu, et.al. Studies of the interaction between apigenin and bovine serum albumin by spectroscopic methods[J]. J. Mol. Struct.,2007,833:184-188
    [28]Tian J., Liu J., Hub Z., Chen X.. Interaction of wogonin with bovine serum albumin [J]. Bioorg Med Chem.,2005,13(12):4124-4129
    [29]Ferenc Zsila, Zsolt Bikadi, Miklos Simonyi. Studies of the interaction between apigenin and bovine serum albumin by spectroscopic methods[J]. Biochem. Pharmacol,2003,65: 447-456
    [30]Naik, D. B., Moorthy, P. N., Priyadarsini, K. I.. Nonradiative energy transfer from 7-amino coumarin dyes to thiazine dyes in methanolic solutions[J]. Chem. Phys. Lett. 1990,168 (6):533-538
    [31]T. Forster, O. Sinanoglu (Eds.), Modern Quantum Chemistry[M]. Academic Press, New York,1996
    [32]Cui F. L., Fan J., Li J. P., et al. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin:investigation by fluorescence spectroscopy[J]. Bioorg Med. Chem.,2004; 12:151-157
    [33]L loyd J. B. F.. Murder involving discovery and first application of fluorescence of tyre prints[J]. Nature Phys Sci.,1971,231:64-65
    [34]Hu Y. J., Liu Y., Zhang L. X., et al. Studies of Interaction Between Colchicine and Bovine Serum Alboumin by Fluorescence Quenching Method[J]. Journal of Molecular Structure,2005,750 (1-3):174-178
    [35]Ya-Ping Wang, Yan-li Wei, Chuan Dong. Study on the interaction of 3,3-bis(4-hydroxy-l-naphthyl)-phthalide with bovine serum albumin by fluorescence spectroscopy[J]. J. Photochem. Photobiol,2006,17:6-11
    [36]J.N.Miller. Recent advances in molecular luminescence analysis[J]. Proc. Anal. Div. Chem. Soc.,1979,16:203-208
    [37]G. Z. Chen, X.Z. Huang, J.G. Xu, et al. Methods of Fluorescence Analysis[M]. second ed., Science Press, Beijing,1990
    [38]Brito-Arias, Marco. Synthesis and Characterization of Glycosides[M]. New York: Springer.2007, Ⅻ
    [39]Claire Dufour, Olivier Dangles. Flavonoid-serum albumin complexation:determination of binding constants and binding sites by fluorescence spectroscopy[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2005,1721(1-3):164-173
    [40]Mi Jin Cho, Luke R. Howard, Ronald L Prior, et.al. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry[J]. J. Sci. Food Agric,2004,84:1771-1782
    [41]Victor D. Bokkenheuser, Cedric H. L. SHACKLETON, Jeanette WINTER. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans [J]. Biochem. J.,1987,248:953-956
    [42]Jhoo J. W., Ang C. Y., Heinze T. M., et al. Identification of C-glycoside flavonoids as potential mutagenic compounds in kava[J]. Food Sci.,2007,72(2):120-125.
    [43]S. Ashoka, J. Seetharamappa, P. B. Kandagal, et al. Investigation of the interaction between trazodone hydrochloride and bovine serum albumin[J]. J. Lumin.,2006,121(1): 179-186
    [44]Guharay J., Sengupta B., Sengupta P. K., et al. Protein-flavonol interaction: fluorescence spectroscopic study[J]. Proteins,2001,43(2):75-81
    [45]Chan, E. C. H., Patchareewan, P., Owen, L. W.. Relaxation to flavones and flavonols in rat isolated thoracic aorta:mechanism of action and structure-activity relationships [J]. J. Cardiovasc. Pharmacol.,2000,35:326-333
    [46]Lee J. H., Kim Y. S., Lee C. K., et.al. Antiviral activity of some flavonoids on herpes simplex viruses[J]. Saengyak Hakhoechi,1999,30(1):34-39
    [47]Shin J. S., Kim K. S., Kim M. B., et.al. Synthesis and hypoglycemic effect of chrysin derivatives[J]. Bioorg. Med. Chem. Lett.,1999,9(6):869-874
    [48]Zanoli P., Avallone R., Baraldi M.. Behavioral Characterisation of the Flavonoids Apigenin and Chrysin[J], Fitoterapia,2000,71(1):117-123
    [49]Larget R., Lockhart B., Renard P., et.al. A convenient extension of the Wessely-Moser rearrangement for the synthesis of substituted alkylaminoflavones as neuroprotective agents in vitro[J]. Bioorg. Med. Chem. Lett.,2000,10:835-838
    [50]Haraguchi H., Ohmi I., Sakai S.. Effect of Polygonum hydropiper sulfated flavonoids on lens aldose reductase and related enzymes[J]. J. Nat. Prod.,1996,59:443-445
    [51]Yan X., Li Y. M., Yu J, et al.. Synthesis and Antioxidant Activities of Two New Water Soluble Isoflavone Derivatives [J]. J. Acta Chimica. Sinica,2007,65(17):1845-1850
    [52]Liu Bin, Yang Bo-lun. Syntheses and Crystal Structures of [Na(H2O)1/2]X and NH2(CH2CH3)2X and Antioxidant Activity of the Former [J]. Chinese Journal of Structural Chemistry,2009,28(9):1112-1120
    [53]Wang F., Hickner M., Seung Kim Y., et al. Direct Polymerization of Sulfonated Poly(arylene ether sulfone) Random (statistical) Copolymers:Candidates for New Proton Exchange Membranes [J]. J. Membr. Sci.,2002,197(2):231-242.
    [54]史娟.白杨素-6-磺酸根与金属离子自组装作用及晶体结构研究[D].西安:陕西师范大学,2006
    [55]刘谦光,张尊听,薛东.大豆苷元磺化物的合成、晶体结构及活性研究[J].高等学校化学学报,2003,24(5):820-825
    [56]黄铭铸,徐丽蓉HPLC法测定杏丁注射液中双密达莫及银杏黄酮的含量[J].西北药学杂志,2000,15(5):200-201
    [57]Sun S. F., Zhou B., Hou H. N.. Studies on the interaction between Oxaprozin-E and bovine serum albumin by spectroscopic methods[J]. International, Int. J. Biol. Macromol.,2006,39(4-5):197-200
    [58]Lakowicz J. R., Weber G.. Quenching of fluorescence by oxygen Probe for structural fluctuations in macromolecules[J]. Biochemistry,1973,12(21):4161-4170
    [59]杜秀莲,李荣昌,王夔.用同步荧光光谱法研究铽(Ⅲ)与脱铁运铁蛋白的作用[J]. 科学通报,2001,46(5):394-396
    [60]陈龙保.用HPLC法测定复方大黄黄柏洗剂中大黄酸与大黄素的含量[J].药学服务与研究;2009,9(6):435-437
    [61]庄江能.大黄的主要成分及其临床药理研究进展[J].西南军医,2009,11(5):931-933
    [62]Cyril L., Earl J. K., Sperry W. M.. Biochemists HandbookfM]. London:Epon Led Press, 1961:84
    [63]安道利,李建晴,智慧.灿烂绿与牛血清白蛋白相互作用的研究[J].分析科学学报,2008,24(3):311-314
    [64]杨曼曼,杨频,张立伟.荧光法研究咖啡酸类药物与白蛋白的作用[J].科学通报,1994,39(1):31-35
    [65]孔粉英,曾冬铭,徐茂田.吲哚美辛在单壁碳纳米管修饰电极上的电化学行为[J].分析试验室,2009,28(2):38-41
    [66]朱旭江,贺军权,欧阳晓玫,等HPLC法测定复方吲哚美辛栓中两组分的含量[J].中国药师,2008,11(9):1079-1081
    [67]胡艳军,刘义,侯安新,等.稀土杂多酸盐EuHSiMo10W2040·25H20与BSA相互作用的研究[J].化学学报,2004,62(16):1519-1523
    [68]刘伟华,宋双居,高书涛,等.大豆苷元与牛血清白蛋白的相互作用研究[J].化学研究与应用,2009,21(4):496-500
    [69]吴秋华,王春,王志,等.防己诺林碱与牛血清白蛋白相互作用的研究[J].光谱学与光谱分析,2007,27(12):2498-2501
    [1]李锐,任海平,宋艳婷,等.小分子与生物大分子间非共价相互作用分析方法研究进展[J].分析化学,2006,34(12):1801-1806
    [2]Weng M. S., Ho Y. S., Lin J. K.. Chrysin induces Gl phase cell cycle arrest in C6 glioma cells through inducingp 21 Wafl/Cipl expression:involvement of p38 mitogen-activated protein kinase [J]. Biochemi Pharma,2005,69:1815-1827
    [3]陈俊杰,杨梅,张连茹,等.胶毒素与BSA的相互作用[J].微生物学通报,2009,36(8):1227-1231
    [4]刘峥,夏之宁.光谱法在分子之间相互作用研究中的应用[J].激光杂志,2001,22(6):9-11
    [5]Brotati. Chakraborty, Samita Basu-Interaction of BSA with proflavin:a spectros copicapproac[J]. Journal of Luminescence,2009,4:34-39
    [6]孙莉莉,张经纬,刘快之.抗坏血酸与牛血清白蛋白相互作用的电化学研究[J].分析试验室,2007,26(2):7-9
    [7]ZHANG H. M., ZHU Z. W., LIN Q.. Electrochemical studies of the interaction of tetraphenylporphyrin tetrasulfonate(TPPS) with albumin[J]. Fresenius J. Anal Chem.,1999,363(4):408-412
    [8]SUN W., JIAO K.. Linear sweep voltammetric determination of protein based on its interaction with alizarin red S[J]. Talanta,2002,56(6):1073-1080
    [9]BAO X. Y., ZHU Z. W., LI N. Q., et al. Electrochemical studies of the interaction with hemoglobin and determination of hemoglobin[J]. Talanta, 2001, 54(4): 591-596
    [10]孙伟,焦奎,刘晓云.电化学法研究蛋白质和茜素红S的相互作用[J].分析化学,2002,30(3):312-314
    [11]曹炜,符军放,索志荣,等.蜂胶中白杨素和高良姜素的HPLC分析[J].药物分析杂志,2007,27(4):522-524
    [12]赵楠.白杨素与人免疫球蛋白结合作用的荧光光谱法研究[J].分析化学,2009,37(A01):286-286
    [13]周泉城,申德超,区颖刚.微波辅助提取大豆甙元工艺研究[J].大豆科学,2008,27(1):124-133
    [14]延玺,李玉梅,于静,等.两种新型水溶性异黄酮衍生物的合成与抗氧化活性[J].化学学报,2007,65(17):1845-1850
    [15]孙元喜,冶保献,周性尧.聚中性红膜修饰电极的电化学特性及其电催化性能[J].分析化学,1998,26(2):166-169
    [16]邬春华,吕元琦,袁倬.大黄酸与牛血清白蛋白相互作用的电化学研究[J].分析测试学报,2004,23(3):71-75
    [17]Laviron E., Adsorption, autoinhibition and autocatalysis in polaro-graphy and in linear potential sweep voltammetry[J]. J. Electroanal Chem.,1974,52(3):355-393
    [18]董绍俊,车广礼,谢远武.化学修饰电极[M].第一版.北京:科学出版社,1995.129
    [1]李静,李景印,郭玉凤.生物小分子与DNA相互作用的光谱及电化学研究进展[J].化学研究,2005,16(4):101-104
    [2]Watson J. D., Crick F.. Molecular structure of nucleic acids:a structure for deoxynucleic acids[J]. Nature,1953,171:737-738
    [3]李锐,任海平,孙艳亭,等.小分子与生物大分子间非共价相互作用分析方法研究进展[J].分析化学,2006,34(12):1801-1806
    [4]徐春,何品刚,方禹之.溴化乙锭标记DNA电化学探针的研究[J].高等学校化学学报,2000,21(8):1187-1190
    [5]胡亚敏,王兴明,费丹,等.荧光光谱法研究核黄素与鲱鱼精DNA的相互作用[J].化学学报,2008,66(10):1245-1251
    [6]单斌,邓泽元.荷叶碱与ct-DNA相互作用的光谱法研究[J].食品科学,2009,30(13):18-21
    [7]Berashvili D. T., Alaniya M. D., Bakuridze A. D.,et al. Apigenin Glucuronide from Perilla nankinensis Leaves[J]. Chem. Natural Compounds,2005,41(1):97-98
    [8]王克勤,罗军武,陈静萍.芹菜提取物中芹菜素的HPLC与HPTLC定量分析研究[J].食品科学,2008,29(4):291-295
    [9]隋海霞,徐海滨,荫士安.芹菜素的生物学作用[J].国外医学(卫生学分册),2008,35(2):103-107
    [10]王兴明,黎泓波,胡亚敏,等.苏木素与DNA相互作用的光谱研究[J].化学学报,2007,65(2):140-146
    [11]余燕影,李华,胡听,等.染料木素铬(Ⅲ)配合物与DNA相互作用的研究[J].光谱学与光谱分析,2008,28(7):1587-1591
    [12]余燕影,李华,胡听,等.染料木素铬(Ⅲ)配合物与DNA相互作用的研究[J].光谱学与光谱分析,2008,28(7):1587-1591
    [13]康敬万,吴海霞,卢小泉,等.水溶性锌卟啉配合物的合成、表征及其与的作用[J].高等学校化学学报,2005,26(6):997-1001
    [14]Brodie C. R., Grant Collins J., Aldrich-Wright J. R.. DNA binding and biological activity of some platinum(II) intercalating compounds containing methyl-substituted l,10-phenant-hrolines[J]. Dalton Trans.,2004,21(8):1145-1152
    [15]ROSS D. P., SABRAMANIAN S.. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochemistry,1981,20:3096-3102
    [16]黎泓波,拓宏桂,王兴明,等.光谱学研究血卟啉与鲱鱼精DNA的相互作用[J].光学学报,2008,28(10):2015-2021
    [17]费丹,王兴明,黎泓波,等.亚甲基蓝与鲱鱼精DNA相互作用的光谱法研究[J].化学学报,2008,66(4):443-448
    [18]黎泓波,张晓宇,王兴明,等.光谱法研究钙黄绿素与鲱鱼精DNA的相互作用[J].湖南师范大学自然科学学报,2007,30(1):47-51
    [19]黎泓波,拓宏桂,王兴明,等.光谱学研究血卟啉与鲱鱼精DNA的相互作用[J].光学学报,2008,28(10):2015-2021
    [20]赖日勇,李小波,许春鹃,等.羟基喜树碱对人胰腺癌细胞PANC-1生长的抑制作用[J].时珍国医国药,2009,20(8):2039-2040
    [21]吴胜林,王翠兰,熊英,等.高效液相色谱法测定血浆中羟基喜树碱的浓度[J].中国医院药学杂志,2008,28(24):2149-2150
    [22]黄国栋,黄媛华,黄道富,等.羟基喜树碱对人胆管癌QBC939裸鼠移植瘤PS2、COX-2的影响[J].西安交通大学学报(医学版),2008,29(3):308-310
    [23]徐慧,牟保畏,吕菊波,等.烟酰胺与DNA相互作用的电化学研究[J].化学通报,2009,72(6):534-538
    [24]Yaw-Huei Hsiangl, Robert Hertzbergj, Sidney Hechtj, et. al. Camptothecin Induces Protein-linked DNA Breaks via Mammalian DNA Topoisomerase Ⅰ[J]. The Journal of Biological Chemistry,1985,260(27):14873-14878
    [1]Qin S., Parthun M. R.. Histone H3 and the histone acetyltransferase Hatlp contribute to DNA doublestrand break repair[J]. Mol. Cell Bio.,2002,22(23):8353-8365
    [2]李美仙,李南强Fe(Ⅱ)-EDTA剪切DNA在悬汞电极上的电化学行为研究[J].高等学校化学学报,2001,22(7):1230-1232
    [3]王宏飞,杨频,李青山.阿霉素-铁(III)配合物的电化学特征及其与DNA结合作用研究[J].高等学校化学学报,1997,1 8(5):671-675
    [4]包晓玉,陈建国.芦丁与DNA相互作用的电化学研究[J].分析试验室,2001,20(2):1-3
    [5]包晓玉,党元林,陈欣,等.维生素B12与DNA相互作用的电化学研究[J].应用化学,2005,22(9):993-996
    [6]Wang Fang, Xu Yanxia, Zhao Jia, el al. Electrochemical oxidation of morin and interaction with DNA[J]. Bioelectrochemistry,2007,70:356-362
    [7]Tian Xue, Li Fengju, Zhu Lu, el al. Study on the electrochemical behavior of anticancer herbal drug rutin and its interaction with DNA[J]. Journal of Electroanalytical Chemistry,2008,621:1-6
    [8]You Qin Li, Jing Yu Guo, Fang Xiu Li. Electrochemical studies of the interaction of Basic Brown G with DNA and determination of DNA[J]. Talanta,2007,71(1):123-128
    [9]胡皆汉,陶丽梅,王孝敏.紫外可见吸收光谱法研究钴超氧化物歧化酶活性中心钴与组氨酸的相互作用[J].光谱学与光谱分析,1995,2(15):9-12
    [10]张君,王飞利,王胜强,等.美托拉腙中有机溶剂残留量的测定[J].理化检验(化学分册),2007,43(12):1012-1014
    [11]Qu Feng, Li Nanqiang, Jiang Yuyang. Electrochemical studies of porphyrin interactingwith DNA and determination of DNA[J]. Anal. Chim. Acta.,1997,344: 97-104
    [12]龙德武,刘传银,陆光汉.铜(II)-三氮噻偶氮络合物与脱氧核糖核酸相互作用的电化学行为[J].分析化学,2002,30(10):1250-1253
    [13]孙伟,李清军,焦奎,等.有机小分子与DNA的相互作用及其在DNA分析中的应用[J].化学试剂,2005,27(3):149-152
    [14]余燕影,李华,胡听,等.染料木素铬(III)配合物与DNA相互作用的研究[J].光谱学与光谱分析,2008,28(7):1587-1591
    [15]LONG E. C., BARTON J. K.. On demonstrating DNA intercalation[J]. Acc. Chem. Res., 1990,23(9):271-273
    [16]张尊听,刘谦光,郭亚宁.白杨素磺化物的合成及光致发光性能[J].分析试验室,2003,22(z1):245-245
    [17]刘昵,陈忠东.白杨素抗肿瘤的研究进展[J].美国中华临床医学杂志,2006,8(1):103-105
    [18]岳军,朱建思.白杨素及其衍生物的抗肿瘤作用[J].医学理论与实践,2006,19(10):1155-1157
    [19]李静,王振川,李景印,等.抗坏血酸与DNA相互作用的电化学研究[J].化学研究与应用,2006,18(7):863-865
    [20]漆红兰,陈沛,张成孝.氧化沙星的测定及其与DNA相互作用的研究[J].药物分析杂志,2007,27(1):96-99
    [21]闫作梅,顾雪峰,韩俊.大豆异黄酮的功能和开发前景的研究进展[J].大豆通报,2006,1:34-36
    [22]Messina M., Hughes C.. Efficacy of soyfoods and soybean isoflavone supplements or alleviating menopausal symptoms is positively related to initial hot flush frequency[J]. J. Med. Food,2003,6(1):1-11
    [23]Hermansen K., Dinesen B., Hoie L. H., et al. Effects of soy and other natural products on LDL:HDL ratio and other lipid parameters:a literature review[J]. Adv. Ther.,2003, 20(1):50-78
    [24]胡晓娟,黄晓书,李卫华.高效液相色谱法测定保健食品中的大豆异黄酮[J].分析试验室,2008,27(1):103-106
    [1]赵妍,曹燚,韩凤梅.荧光猝灭法对肉桂酸与人血清白蛋白间的相互作用的研究[J].光谱学与光谱分析,2008,28(4):904-907
    [2]黄锐,夏之宁,龚萍.血清白蛋白与小分子化合物相互作用的荧光光谱研究[J].光谱学与光谱分析,2008,28(1):161-164
    [3]查锡良.生物化学[M].北京:人民卫生出版社(第七版):2008
    [4]Carter D. C., Ho J. X.. Structure of serum albumin[J]. Adv. Prot. Chem.,1994, 45:153-203
    [5]刘阳.药物分子与蛋白质相互作用研究方法综述[J].中南论坛,2008,3(1):118-120
    [6]颜承农,张华新,鞠香,等.荧光光谱法研究钙试剂羧酸钠与牛血清白蛋白结合反应特征[J].分析化学,2005,33(6):759-762
    [7]S. Ashoka, J. Seetharamappa, P.B. Kandagal, et.al. Investigation of the interaction between trazodone hydrochloride and bovine serum albumin[J]. J. Lumin.,2006, 121 (1):179-186
    [8]J. Guharay, B. Sengupta, P. K. Sengupta, Protein-flavonol interaction:Fluorescence spectroscopic study[J]. Proteins,2001,43(2):75-81
    [9]Kandagal, P. B., Ashoka, S., Seetharamappa, J., et.al. Study of the Interaction of an Anticancer Drug with Human and Bovine Serum Albumin:Spectroscopic Approach[J]. J. Pharm. Biomed. Anal.,2006,41,393-399
    [10]Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., et.al. Antioxidant flavonoids bind human serum albumin[J]. J. Mol. Struct.,2006,798:69-74
    [11]Bi S., Song D., Tian Y, et al. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins[J]. Spectrochim Acta A,2005,61:629-36
    [12]Shaikh S. M. T., Seetharamappa J., Ashoka S., et al. A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods [J]. Dyes and Pigments,2007,73:211-216
    [13]Hushcha T. O., Luik A. I., Naboka Y. N.. Conformation changes of albumin in its interaction with physiologically active compounds as studied by quasi-elastic light scattering spectroscopy and ultrasonic method[J]. Talanta,2000,53:29-34
    [14]Kamat B. P., Seetharamappa J.. Fluorescence and circular dichroism studies on the interaction of bromocresol purple with bovine serum albumin[J]. Polish J. Chem., 2004,78:723-32
    [15]陈菁.双分子荧光互补技术及其在蛋白质相互作用研究中的应用进展[J].生物医学工程研究,2008,27(4):302-306
    [16]彭贞,郑钰琴.孔雀石绿与蛋白质相互作用的电化学行为的研究[J].化学试剂,2009,31(1):49-51
    [17]张齐,罗国亮.优化进化神经网络的空气质量预测研究[J].计算机工程与应用,2009,45(28):211-214
    [18]Xiaoquan Lu, Lan Wang, Hongde Liu, et. al. Studies on the interaction between antibiotics and DNA[J]. Talanta,2007,73:444-450
    [19]屈强,罗金生,于广锁,等.人工神经网络在汽液相平衡常数预测中的应用[J].计算机与应用化学,2001,18(4):383-387
    [20]吕庆章,王晓钰.人工神经网络方法预测乙烷氟氯衍生物的常压沸点[J].化工学报,1996,47(2):244-247
    [21]傅应强.人工神经网络阻抑动力学光度法同时测定邻苯二酚和间苯二胺[J].应用化学,2009,26(6):734-737
    [22]李建蕊,李九生,等.利用近红外光谱和偏最小二乘回归法预测脂肪酸组成[J].中国粮油学报,2010,25(6):107-110
    [23]沈林峰,沈掌泉.应用近红外光谱和偏最小二乘回归法预测玉米中淀粉含量[J].化学分析计量,2008,17(6):26-28
    [24]赵肖为.遗传算法和梯度法联合训练的人工神经网络预测有机物熔点[J].高校化学工程学报,1999,13(4):299-302
    [25]彭黔荣,杨敏,石炎福,等.基于混合遗传算法的人工神经网络模型及其对有机化合物熔点的预测[J].化工学报,2005,56(10):1922-1927
    [26]杨兴华,张南生,潘忠孝.人工神经网络用于锕系离子An3+ 水解常数pK1预测研究[J].无机化学学报,2002,18(6):627-630
    [27]曾玉香,王超,王炳强.应用人工神经网络预测氢化可的松的溶解度[J].应用化学,2009,26(11):1367-1370
    [28]李秀珍,孔纪名,李朝凤.基于Matlab的BP神经网络在泥石流危险性评价中的应用[J].工程勘察,2010,38(1):47-50
    [29]RI Son-il,侯德刚,张振家,等.基于BP人工神经网络的生化处理水水质预测[J].现代化工,2009,29(12):66-68,70
    [30]石云.BP神经网络的Matlab实现[J].湘南学院学报,2010,31(5):86-88
    [31]陈流豪.神经网络BP算法研究综述[J].电脑知识与技术,2010,36(6):10364-10365
    [32]吴雄华,刘亚.基于BP神经网络的熔喷非织造布工艺参数优化[J].纺织学报,2011,32(1):51-54
    [33]鲁静,崔波.人工神经网络在蛋白质结构预测和QSAR中的应用[J].广东化工,2009,36(11):92-93
    [34]王大平,葛忠学,王伯周,等PCA-ANN对炸药爆速的预测研究[J].计算机与应用化学,2008,25(3):278-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700