川西凹陷苏码头构造中上侏罗统沉积相特征及高产井主控因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本人运用沉积学、石油地质学等理论知识,在分析前人研究成果的基础上,以大量的钻井、录井、岩心观察和岩心样品的多种试验资料为基础,探讨了苏码头构造中上侏罗统的沉积体系和沉积相类型、储层特征、地层水特征以及气水分布规律;深入分析了苏码头构造次生气藏高产井的控制因素。
     按照四川盆地中上侏罗统之地层特征及个组段的划分方案,将沙溪庙组分为三段,遂宁组分为两段,蓬莱镇组分为五段。据岩心观察、测井曲线分析,苏码头构造沙溪庙组主要为三角洲前缘沉积,部分为三角洲平原沉积;遂宁组主要是浅湖沉积,少量为三角洲沉积。蓬莱镇组主要为三角洲前缘沉积,小部分为三角洲平原沉积和浅湖沉积
     苏码头构造蓬莱镇组主要发育长石岩屑砂岩,其次是岩屑石英砂岩和岩屑砂岩;遂宁组岩性主要为长石岩屑砂岩和岩屑砂岩。工区破坏性成岩作用包括压实作用、胶结作用、交代作用;建设性成岩作用包括早期环边伊利石(绿泥石的)形成和溶蚀作用;其中来自下伏的酸性流体导致的溶蚀作用是工区优质储层形成的主要因素。苏码头气田储层物性表现为低孔—低渗、特低孔—超低渗、高含水饱和度的“两低一高”的特点,储集空间由原生粒间孔和次生粒间孔组成,以原生孔与次生孔混合型为主,偶有微裂缝发育。
     根据录井、测井、地层水化学特征和测试资料,分析了苏码头气田蓬莱镇组、遂宁组和沙溪庙组地层水的成因及气水的微观、宏观分布特征。苏码头构造遂宁组和沙溪庙组位于较多的泥岩包裹之中储层内,封闭性较好,属于构造—岩性圈闭气藏。上覆的蓬莱镇组气藏埋深较浅,有的甚至处于大气水渗滤的地带,天然气的散失比较严重,保存条件较差。但是钻遇分布面广的泥岩下的较厚的砂体,往往也能形成较好的岩性圈闭,成为高产气藏。经研究发现苏码头气田地层封闭性和层位深浅有一定的相关性,即层位越深封闭性越好。
     苏码头构造上三叠统烃源岩为侏罗系天然气聚集提供了物质基础;相互叠置的砂体为气藏的形成提供了有利的储集条件;苏码头构造高产井主控因素归结为:①离断层较近的构造高部位有利于油气的聚集而含气丰度高;②相控下较厚泥岩下伏的优质砂体有利于油气的聚集与保存;③具有较厚的和较高孔渗性的砂体是高产气井出现的前提。
I apply sedimentology and petroleum geology theory, basing on the analysis of previous studies, a large amount of drilling, logging, cores and core samples of a variety of experimental tests, the multi-direction complement, perfect combination of macro and micro methods, to analyse the Sumatou Middle-Upper Jurassic gas field in the sedimentary system and sedimentary facies, reservoir characteristics, formation water characteristics and gas and water distribution and gas accumulation pattern systematically. Meanwhile, I investigate the Terminal secondary reservoir gas wells yield controlling factors of the Sumatou structure.
     According to the characteristics of the Sichuan Basin in the Middle-Upper Jurassic strata and the classified scheme about each, we divide the Shaximiao formation into three sections, the Suining formation into two sections, and the Penglaizhen formation into five sections. Relying on the core observation, log analysis, the Shaximiao formation in the Sumatou gas fieldis mainly terminal area delta front depositions and part of it is the delta plain. While the Suining formation is mainly shallow lake deposition and a small quality of delta sediment. The Penglaizhen formation is mainly delta front and a small part of it is the delta plain and shallow lake deposits.
     Penglaizhen of Sumatou gas fieldregion formation is mainly feldspathic lithic sandstone, and secondly is the lithic quartz sandstone and lithic sandstone; Suining formation rocks are mainly feldspathic lithic sandstone and lithic sandstone. The destructive diagenesis of work area includes compaction, cementation and replacement; constructive diagenesis includes the formation and dissolution of early rim illite (chlorite); the dissolution of acid water formed by the mix of underlying hydrocarbon formation formed the main reservoir consisting of intergranular dissolved pore in the work area.
     The analysis of Core properties showed us that the gas reservoir properties of Sumatou gas field reflects low porosity - permeability, extremely low porosity - low permeability reservoir, high water saturation of the "two low and one high" features. The storage space was constituted by the original intergranular pore and secondary intergranular pores, which was mainly formed by primary and secondary bore hole and has micro-fracture occasionally.
     According to logging, characteristics of formation water chemistry and the test data, we analyse the the surface layer water in the Penglaizhen, Suining and Shaximiao formation of the micro and macro distribution of water causes. The study found the relativity between the closure of the Sumatou gas field and layer depth, that is, the deeper the layer, the better sealing.
     Sumatou structure of the Upper Triassic source rocks provided the material foundation for the Jurassic gas gathering; mutually superimposed sandy body supplied the favorable reservoir conditions for the formation of gas reservoir. The controlling factors of high-yield wells in Sumatou structure attributed to:①the high position closer to the fault is conducive to gas accumulation and gas abundance;②the sand under high-quality thick mudstone is conducive to hydrocarbon accumulation and preservation;③the sand body with thick and high porosity and permeability is the prerequisite for high-yield wells there.
引文
[1]徐国盛,刘树根等.四川盆地天然气成藏动力学[M],地质出版社,2005
    [2]汪中浩,章成广,肖承文.塔中油田低渗透储集层产能预测模型[J],江汉石油学院学报,2003,25(4):89~91。
    [3]陈兆荣,侯明才.川西前陆盆地上侏罗统蓬莱镇组沉积特征[J],东北理工大学学报,2008,31(4):325~329.
    [4]张树林,张玉明.油气次生成藏动力学[J],现代地质,2008,24(4):580~585.
    [5]平宏伟,陈红汉.次生油气藏成藏研究进展[J],地球科学进展,2009,9(9):990~1000.
    [6]吾崇筠等.中国含油气盆地沉积学[M],石油工业出版社,1992.
    [7]刘树根,赵锡奎,罗志立,徐国盛等.龙门山造山带—川西前陆盆地系统构造事件研究[J],成都理工学院学报,2001,28(3):221~230.
    [8]徐振平,梅廉夫.川东北构造不同构造带地层水化学特征与油气保存的关系[J],海相油气地质,2006,11(4):29~33.
    [9]冉宏.川东地区石炭系气藏气水分布特征及其成因探讨[J],天然气工业,2001,1.
    [10]尹晓贺,蒋裕强,陈义才.川中地区M构造香溪群古构造恢复及气水分布关系探讨[J],西部探矿工程,2006 ,5(10):162~166.
    [11]苟红光,杜向荣,杨爱生,张日供.视地层水电阻率法在测井解释中的应用[J],新疆石油天然气,2006,2(3).
    [12]朱家俊.东营凹陷与地层水运移相关的低电阻率油层[J],石油天然气学报,2007,29(3):39~43.
    [13]李传亮.泥岩地层产水与地层异常压力原因分析[J],西南大学学报,2007,5(2):130~133.
    [14]胡晓强,陈洪德等.川西前陆盆地侏罗系层序地层[J],西南石油学院学报,2006,28(2):16~19.
    [15]朱光有,张水昌等.四川盆地天然气特征及气源[J],地学前缘(中国地质大学(北京),北京大学),2006,13(2):234~246.
    [16]赵孟军,宋岩.中国中西部前陆盆地多期成藏、晚期聚气的成藏特征[J],地学前缘(中国地质大学(北京),2005,12(4):525~533.
    [17]刘树根,徐国盛,李巨初等.龙门山造山带-川西前陆盆地系统的成山成盆成藏动力学[J ],成都理工大学学报(自然科学版) ,2003,30 (6) :559~566.
    [18]蔡开平,廖仕孟.川西地区侏罗系气藏气源研究[J ],天然气工业,2000,20 (1) :36~41.
    [19]徐国盛,刘树根等.川西前陆盆地碎屑岩天然气跨层运移过程中的相态演变[J ],成都理工学院学报,2001,28(4):383~389.
    [20]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M],成都科技大学出版社,1993.
    [21]陆正元,徐国强.川南地区断层带油气保存条件质量预测[J],成都理工学院学报,1998,25(增刊):150~155.
    [22]王允诚.油层物理学[M],石油工业出版社,1993.
    [23]徐国盛,刘树根.川西地区上三叠统高压封存箱与天然气成藏关系研究[J],成都理工学院学报,1999,26(4),411~417.
    [24]肖慈珣等.天然气储层产能的测井评价与预测[J],石油与天然气地质,1999,20(4):279~289.
    [25]唐大海等.四川盆地西部侏罗系沙溪庙组气藏成藏条件[J],天然气勘探与开发,2005,28(3):14~19.
    [26]张莉,钟大康,朱筱敏,张琴.惠民凹陷古近系碎屑岩储集体成因类型及特征分析[J],2005,20(3):19~22.
    [27]陈淑惠.杭锦旗区块上古生界气水分布规律研究[J],2004,100(9):95~97.
    [28]张海军,王训练,丁林,夏国英,王雷,王清山.冰川型海平面变化控制下的台地成岩作用[J],2007,32(3):330~337.
    [29]杨玲,韩继勇,孙卫,任晓娟.鄂尔多斯盆地碎屑岩储集体中的次生孔隙类型[J],2005, 35(5):621~624.
    [30]杨晓宁,陈洪德,寿建峰,张惠良.碎屑岩次生孔隙形成机制[J],大庆石油学院学报,2004,28(1):4~6.
    [31]孙来喜,李允,曾宪兵.测井资料在洛带气田气井产能预测中的应用[J],天然气工业,2005,25(2):56~57.
    [32]罗啸泉.成都市洛带地区沙溪庙组沉积相及储集条件分析[J],四川地质学报,2005,25(1):4~7.
    [33]刘殊,颜琰,袁红卫.川西凹陷浅层气藏分布规律研究—以洛带和新场气田为例[J],石油物探,2006,45(4):342~350.
    [34]王亮国,何鲤.洛带气田上沙溪庙组沉积相与天然气富集的砂体类型[J],天然气勘探与开发,2003,26(2):19~28.
    [35]赵孟军,宋岩等.中国中西部前陆盆地成藏过程[J],石油与天然气地质,2005,26(4):402~410.
    [36]曹烈,徐殿桂,黄川.川西坳陷上三叠统—侏罗系烃源岩生烃史研究[J],天然气工业,2005,25 (12) :22~24.
    [37]罗蜇谭,王允诚.油气储层的孔隙结构[M],科学出版社,1986.
    [38]匡建超,童孝华,杨维宁.川西坳陷致密碎屑岩储层产能预测方法研究[J],矿物岩石,1994,14(1):85~91.
    [39]王世谦,罗启后.四川盆地西部侏罗系天然气成藏特征[J],天然气工业, 2001,21(2):1~8.
    [40]吴世祥等.川西侏罗系成藏主控因素及分类[J],天然气工业,2001,21(4):20~23.
    [41]罗啸泉,郭东晓,魏力民.洛带气田上侏罗统遂宁组沉积相及含气地震响应特征[J],沉积与特提斯地质,2006,26(2):47~54.
    [42] A.G.柯林斯著(美),林文庄等译.油田水地球化学,石油工业出版社[M],1984.
    [43]真炳钦次著,陈荷立等译.压实与流体运移,石油工业出版社[M],1982.
    [44]刘崇禧等.水文地球化学找油理论与方法,地质出版社[M],1988.
    [45]李明成编著.石油与天然气运移,石油工业出版社[M],1994.
    [46]宋焕荣,黄尚瑜.塔里木盆地北部主要油气田(藏)古水文地质研究,“八五”国家重点科技攻关科研报告[R],1993.
    [47]周文,徐国盛,宋焕荣等.陕甘宁盆地中部气田马五1储层地层水成因及分布规律研究(科研报告) [R],1996.
    [48] L.H.卡普钦科.油气聚集理论的水文地质基础,石油工业出版社[M],1991.
    [49]邸世祥.油田水文地质学,西北大学出版社[M],1991.
    [50]李学礼.水文地球化学,原子能出版社[M],1982.
    [51]吴熙纯,宋焕荣,黄尚瑜等.珠江口盆地东沙隆起第三纪水文地质与碳酸盐岩聚油条件研究(科研报告) [R],1995.
    [52] E.C.戴尔勃格.石油勘探实用水动力学,石油工业出版社[M],1992.
    [53] B.N.久宁.深部地下径流研究方法,地质出版社[M],1990.
    [54]沈照理.水文地球化学基础,地质出版社[M],1986.
    [55] M.Schere. parameters Influencing Porosity in Sandstone: A Model for Sandstone Porosity prediction. AAPG.1987. 71(5): 485-491.
    [56] Peters K E, Moldowan J M. The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M].New Jersy:Prentice-Hall,1993.110~265.
    [57] Magoon L. B. and Dow W. G..The petroleum system.AAPG Memoir, 1994(60):3-24.
    [58] Shanmugam G , Poffenberger M,Toro Alava J.Tide一dominated estuarine facies in the Hollin and Napo Formations. Sacha field.Oriente basin. Ecuador. AAPG. 200. 84 ( 5 ) :652~654.
    [59] Me Xinong,Jiao Yangquan. Tectonic- Stratigraphic analysis and geodynamic background of 1VEsozoic sough basin[J] . Journal of China University of Geosciences.1997.8 (1) . 35~39.
    [60] Lu Yongchao.Xie Yinong.Jiao Yangquan.et al . Ikpositional responding to tectonic evolution of East China Sea . shelf basin[J] . Journal of China University of Geosciences.1997.8(1) . 56~61.
    [61] Cross T A, Baler M R.Chapin M A. et al. Application of high resolution seqence stratigraphy to reservoir analysis [A].Eschard R.Dolgez B. Subsurface Reservoir Characterization from Outcrop Observations [C].Paris: Editions Technip.1993. 11~33.
    [62] M.Scherer, parameters Influencing Porosity in Sandstone: A Model for Sandstone Porosity prediction. AAPG. 1987. 71(5): 485-491.
    [63] White H J,Skopec R A,Rodas J A et al. Reservoir characterisation of the Hollin and Napo Formations, western Oriente basin, Ecuador.AAPG Mem.1995.62(6) :573~596.
    [64] Fu Jia-mo.Sheng Guo-ying. Jiang Ji-gang. Immature oil originated from a saline deposit-bearing basin J1. Oil Gas Geol.1985,6(2): 150~158.c ibn

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700