缺位的Dawson型磷钨酸盐衍生物的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用缺位的Dawson型磷钨酸盐簇为反应前躯体,通过与过渡金属、主族金属和金属有机配合物反应生成新型的多金属氧酸盐化合物,研究这类化合物的合成条件及规律,以及新物质的结构与性能间的关系。
     利用水热合成与常规水溶液合成方法,合成了几种新型的多金属氧酸盐化合物,通过元素分析,IR,TG, EPR,NMR和单晶X-射线衍射对晶体结构进行了表征,对化合物的热稳定性,磁学性质和电化学性质进行了初步研究。
     1、六缺位的K_(12)[H_2P_2W_(12)O_(48)]·24H_2O与过渡金属在水溶液中反应生成的赤道位三铁取代的化合物及其性质: K_4Cs_2Fe_2[P_2W_(15)(FeOH)_3O_(59)]·22H_2O (1)
     这个化合物的显著的结构特点是三个Fe取代的位置不同于经典的极位三取代的化合物,而是取代了Dawson型磷钨酸盐阴离子簇赤道位的三个W的位置。利用X-ray、TG、IR、变温磁化率研究、电化学等表征了化合物的结构、稳定性、磁性,电化学及电催化性质。磁学性质研究表明化合物1的三个取代的FeIII之间显示了强的反铁磁性相互作用,磁性结果的拟合也证明了这一点。由于化合物1不溶于水和一般的有机溶剂,以化合物1为修饰剂的本体修饰碳糊电极(1-CPE)被用来研究它的电化学性质和对亚硝酸盐和抗坏血酸的电催化活性。
     2、缺位的Dawson型磷钨酸盐与主族金属在水溶液中反应生成的化合物及其性质: K_(10)[H_6{P_2W_(13)O_(51)}_2Sb_4]·21H_2O (2) [(CH_3)_2NH_2]_5[H_2{P_2W_(17)SbO_(61)}]·18H_2O (3)
     化合物2代表了第一个以主族元素为夹心原子的Dawson型道赤位夹心化合物。与同主族四面体配位的P (V)和As (V)不同,由于Sb (III)的孤电子对的空间效应导致了三角锥的配位几何构型,并在分子中心含有一个立方的空笼。该化合物的成功的合成和结构的表征为缺位的Dawson多阴离子与主族金属元素的反应提供了一个吸引人的模型。化合物3是Sb(III)单取代的Dawson型磷钨酸盐,由于Sb(III)的孤电子对效应而显示了特殊的四配位模式。利用X-ray、TG、IR、UV-vis、NMR、电化学等表征了化合物的结构、稳定性、电化学及电催化性质。UV-vis和~(31)P NMR证明了2在水溶液中的稳定性。化合物2溶于0.5 M CH_3COOK + CH_3COOH缓冲溶液中的电化学研究表明其对NO2-的还原具有很好的电催化活性
     3、以缺位的Dawson型多阴离子为反应前躯体,水热条件下合成具有高核磁簇的化合物及其性质(Phen = 1, 10-phenanthroline, bdc =1,4-benzenedicarboxylate): [Cu_2(Phen)_4Cl][Cu_2(Phen)_3(H_2O)Cl][P_2W_(18)O_(62)]·H_2O (4) [Cu_7(Phen)_7(H_2O)4Cl_8][P_2W_(18)O_(62)]·6H_2O (5) K_2[{(CuPhen)_2Cl_2}_2(bdc)]2[P_2W_(18)O_(62)]·6H_2O (6)
     使用不同的多金属氧酸盐前驱体和Cu-phen复合物在水热条件下合成出三个基于[P_2W_(18)O_(62)]~(6-)多阴离子簇的无机-有机杂化化合物。在这几个化合物中通过Cl和对苯二甲酸(bdc)配体桥连不同的Cu-phen复合物片段组合成了新的具有不同核性的Cu-phen复合物。在化合物4与5中,由于Cu-Cl-Cu键角分别接近180o和90o而导致了它们的CuII之间分别显示了反铁磁性和铁磁性相互作用。在化合物6中通过Cl和bdc桥的连接不同的Cu-phen复合物片段组合成了新的四核的Cu-phen复合物,该化合物的磁行为显示了反铁磁性和铁磁性相互作用的混合。它们的高热稳定性、在不同溶剂中的低溶解性及富含多金属氧酸盐的特性使它们有可能成为理想的电催化材料。电化学研究表明5和6对于亚硝酸盐的还原具有很好的电催化活性。这个工作表明反应原料、阴阳离子的尺寸和反应物比例的适当结合在水热条件下能够形成具有不同的结构和功能的新型材料。
     4、以缺位的Dawson型多阴离子为反应前躯体,水热条件下合成一维链状化合物及其性质(bpy = bipyridine): (4,4’-H_2bpy)_4[{Cu(4,4’-Hbpy)_2(4,4’-bpy)}{P_2W_(18)O_(62)}]·7H_2O (7) [Cu(2,2’-bpy)]_2 [H_2P_2W_(18)O_(62)]·8H_2O (8)
     在水热条件下合成出两个基于[P_2W_(18)O_(62)]~(6-)多阴离子簇的无机-有机杂化物。化合物7是由过渡金属配位聚合物链{Cu(4,4’-Hbpy)2(4,4’-bpy)}_n~(n+)和多金属氧酸盐簇[P_2W_(18)O_(62)]~(6-)连接形成的一维链状化合物。而化合8则是由两个[Cu(2,2’-bpy)_2]复合物片段与[H_2P_2W_(18)O_(62)]~(4-)交替连接形成的一维链状化合物。
Our work is focused on the design and preparation of new polyoxometalate compounds based on the lacunary Dawson type tungstophosphates which react to various metal compounds or metal-organic complexes. The study on sythetic conditions and rules for these new copounds and the exploration of relationships between structures and properties for these new compounds are also carried out.
     Several new polyoxometalate compounds have been synthesized on the basis of water solution synthesis methods or hydrothermal technique and structurally characterized by elemental analyses, IR,TG, EPR,UV-vis,NMR and single crystal X-ray diffractions. The thermal stabilities, magnetic properties and electrochemical behavior of these compounds have been studied.
     1. Interaction of the hexa-lacunary polyanion precursor [α-H_2P_2W_(12)O_(48)]12- with the FeIII in aqueous solution results in the formation of an equatorial tri-iron substituted Wells-Dawson type compound: K_4Cs_2Fe_2[P_2W_(15)(FeOH)_3O_(59)]·22H_2O (1)
     Compound 1 was characterized by IR, elemental, single-crystal X-ray diffraction, thermogravimetric, magnetic, as well as electrochemical analyses. The [P2W15(FeOH)3O59]12- polyoxoanion can be viewed as a derivative of parent [α-P_2W_(18)O_(62)]6- polyoxoanion by removal of three belt W=O groups and then inhabited by three Fe=OH groups. The compound 1-modified carbon paste electrode (1-CPE) presents good electrocataltic activity not only toward the reduction of nitrite, which is attributed to the function of tungstophosphate, but also toward the oxidation of ascorbic acid, which is primarily attributed to the function of FeIII. The magnetic properties of 1 have been studied by magnetic susceptibility and magnetization measurement and fitted according to an isotropic exchange model. 1 exhibits strong antiferromagnetic spin exchange interactions between the FeIII centers.
     2. Interaction of the lacunary lacunary Dawson type tungstophosphate precursors with main group metal elements in aqueous solution results in the formation of new Wells-Dawson type polyanions clusters: K_(10)[H_6{P_2W_(13)O_(51)}_2Sb_4]·21H_2O (2) [(CH_3)2NH_2]5[H_2{P_2W_(17)SbO_(61)}]·18H_2O (3)
     A sandwich-type anionic cluster of a new lacunary building block [P2W13O51]14- has been prepared: 2 was synthesized in one-pot self-assembly reaction of [H_2P_2W_(12)O_(48)]12- with C_4H_4KO_7Sb·0.5H_2O. The compound 3 is an antimony(III) substituted Wells-Dawson type tungdstophosphate. They have been characterized by single-crystal X-ray analysis, IR, thermogravimetric analysis, elemental analysis, UV, NMR and electrochemistry. 2 represents the first dimetric, antimony-containing polyoxoanion derived from vacant Dawson-type tungstophosphate. In contrast to the tetrahedrally coordinated P (V) and As (V) of the same main group, Sb (III) give new structural information because of the stereochemical effect of the lone pair electrons located on top of the trigonal pyramid. Examination of cyclic voltammograms displays a good electrocatalytic activity toward the reduction of nitrite. The polyanion 2 is stable in solution, as shown by UV spectra and 31P NMR spectroscopy. Due to the excellent stability of 2, it is promising to use 2 as a new polyoxometalate precursor to research its extensional structures.
     3. Interaction of the lacunary lacunary Dawson type tungstophosphate precursors with metal-organic complexes in hydrothermal condition results in the formation of new hybrid compounds with multinuclear magnetic clusters(Phen = 1, 10-phenanthroline, bdc = 1,4-benzenedicarboxylate): [Cu_2(Phen)_4Cl][Cu_2(Phen)_3(H_2O)Cl][P_2W_(18)O_(62)]·H_2O (4) [Cu_7(Phen)_7(H_2O)4Cl_8][P_2W_(18)O_(62)]·6H_2O (5) K_2[{(CuPhen)_2Cl_2}_2(bdc)]2[P_2W_(18)O_(62)]·6H_2O (6)
     Three novel hybrid compounds containing multinuclear CuII complex cations, have been obtained in hydrothermal conditions and characterized by IR, elemental, thermogravimetric, magnetic, electrochemical and single-crystal X-ray diffraction analyses. The main structural feature to these compounds is the presence in different copper-Phen complex moieties which compose new multinuclear copper-Phen complexes linked by Cl and bdc ligands. The Cu-Cl-Cu angles of binuclear and heptanuclear copper-Phen complexes are close to 180o and 90o, respectively. This difference induces that 3 and 4 exhibit antiferromagnetic and ferromagnetic spin exchange interactions between the CuII centers, respectively. The magnetic behavior of 5 is unusual and interesting, indicative of a strong antiferromagnetic interaction admixture with a ferromagnetic interaction. The 4-CPE and 4-CPE display good electrocatalytic activity toward the reduction of nitrite. This work reveals that appropriate combination of materials, size and ratio of anion and cation, and hydrothermal synthetic conditions can lead to the formation of POM-based complexes with different structural and functional characteristics.
     4. Interaction of the lacunary lacunary Dawson type tungstophosphate precursors with metal-organic complexes in hydrothermal condition results in the formation of new 1D chain hybrid compounds(bpy = bipyridine): (4,4’-H_2bpy)_4[{Cu(4,4’-Hbpy)_2(4,4’-bpy)}{P_2W_(18)O_(62)}]·7H_2O (7) [Cu(2,2’-bpy)]_2 [H_2P_2W_(18)O_(62)]·8H_2O (8)
     Two new 1D chain hybrid compounds have been obtained in hydrothermal conditions. Compounds 7 is constructed by {Cu(4,4’-Hbpy)2(4,4’-bpy)}_n~(n+) chain and Dawson type polyanion cluster [P_2W_(18)O_(62)]~(6-). Compound 8 show one-dimensional chain formed by two[Cu(2,2’-bpy)_2]~(2+) and [H_2P_2W_(18)O_(62)]~(4-).
引文
[1] Pope M T, Heteropoly and Isopoly Oxometalates[M]. Berlin: Springer?Verlag, 1983.
    [2]王恩波,胡长文,许林,多酸化学导论[M].北京:化学工业出版社, 1998.
    [3] Pope M T, Müller A. Polyoxometalate Chemistry[M]. Kluwer, Dordrecht, 2001, 1?10.
    [4] Dawson B. Acta Crystallogr, 1953, 6: 113.
    [5] Kozhevnikov l V. Catalysis by Heteropely Acids and Multicomponent Polyoxometalates in Liquid?Phase Reaction[J]. Chem Rev, 1998, 98(1): 171?198.
    [6] Rhule J T, Hill C L, Judd D A, et al. Polyoxometalates in Medicine[J]. Chem Rev, 1998, 98(1): 327?357.
    [7] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts[J]. Chem Rev, 1998, 98(1): 219?237.
    [8] Contant R. Potasdsium Octadecatungstodiphosphates (V) and Related Lacunary Compounds[J]. Inorg Synth 1990, 27: 104?111.
    [9] Cantant R, TézéA. A New Crown Heteropolyanion, K28Li5H7P8W48·92H_2O: Synthesis, Structure, and properties[J]. Inorg Chem 1985, 24: 4610?4614.
    [10] Lyon D K, Miller W K, Novet T, et al. Highly Oxidation Resistant Inorganic?Porphyrin Analogue Polyoxometalate Oxidation Catalysts. 1. The Synthesis and Characterization of Aqueous?Soluble Potassium Salts ofα2?P2W17O61(Mn+·OH_2)(n?10) and Organic Solvent Soluble Tetra?n?butylammonium Salts ofα2?P2W17O61(Mn+·Br)(n?11) (M = Mn3+, Fe3+, Co2+, Ni2+, Cu_2+)[J]. J Am Chem Soc 1991, 113: 7209?7221.
    [11] Venturelli A, Nilges M J, Smirnov A, et al. Synthesis and Characterization of ReV, ReVI and ReVII Complexes of the [α2?P2W17O61]10? Isomer[J]. J Chem Soc Dalton Trans, 1990, 301?310.
    [12] Boglio C, Lemière G, Hasenknopf B, et al. Lanthanide Complexes of the Monovacant Dawson Polyoxotungstate [α1?P2W17O61]10? as Selective and Recoverable Lewis Acid Catalyst[J]. Angew Chem Int Ed, 2006, 45: 3324?3327.
    [13] Boglio C, Hasenknopf B, Lenoble G, et al. Sensing the Chirality of Dawson Lanthanide Polyoxometalates [α1?LnP2W17O61]7? by Multinuclear NMR Spectroscopy[J]. Chem Eur J, 2008, 14: 1532?1540.
    [14] Judd D A, Nettles J H, Nevins N, et al. Polyoxometalate HIV?1 Protease Inhibitors. A New Mode of Protease Inhibition[J]. J Am Chem Soc, 2001, 123: 886?897.
    [15] Contant R, Abbessi M, Canny J. Iron?Substituted Dawson?Type Tungstodiphosphates: Synthesis, Characterization, and Single or Multiple Initial Electronation Due to the Substituent Nature or Position[J]. Inorg Chem, 1997, 36: 4961?4967.
    [16] Huang W, Vega A J, Gullion T, et al. Internuclear 31P?51V Distance Measurements in Polyoxoanionic Solids Using Rotational Echo Adiabatic Passage Double Resonance NMR Spectroscopy[J]. J Am Chem Soc, 2007, 129: 13027?13034.
    [17] Lenoble G, Hasenknopf B, Thouvenot R. A Strategy for the Analysis of Chiral Polyoxotungstats by Multinuclear (31P, 183W) NMR Spectroscopy Applied to the Assignment of the 183W NMR Spectra ofα1?[P2W17O61]10? andα1?[YbP2W17O61]7?[J]. J Am Chem Soc, 2006, 39: 5735?5744.
    [18] Luo Q, Howell R C, Bartis J, et al. Lanthanide Complexes of [α?2?P2W17O61]10?: Solid State and Solution Studies[J]. Inorg Chem, 2002, 41: 6112?6117.
    [19] Luo Q, Howell R C, Dankova M. Coordination of Rare?Earth Elements in Complexes with Monovacant Well?Dawson Polyoxoanions[J]. Inorg Chem, 2001, 40: 1894?1901.
    [20] Kato C N, Shinohara A, Hayashi K, et al. Syntheses and X?ray Crystal Structures of Zirconium(IV) and Hafnium(IV) Complexes Containing Monovacat Wells?Dawson and Keggin Polyoxotungstates[J]. Inorg Chem, 2006, 45: 8108?8119.
    [21] Yoshida S, Murakami H, Sakai Y, et al. Syntheses, Molecular Structures and pH?Dependent Monomer?Dimer Equilibria of Dawsonα2?Monotitanium(IV)?Substituted Polyoxometalates[J]. Dalton Trans, 2008, 4630?4638.
    [22] Sadakane M, Ostuni A, Pope M T. Formation of 1:1 and 2:2 Complexes of Ce(III) with the Heteropolytungstate anionα2?[P2W17O61]10?, and Their Interaction with Proline. The Structure of [Ce2(P2W17O61)2(H_2O)8]14?[J]. J Chem Soc Dalton Trans, 2002, 63?67.
    [23] Lu Y, Xu Y, Li Y. New Polyoxometalate Compounds Built up of Lacunary Wells?Dawson Anions and Trivalent Lanthanide Cations[J]. Inorg Chem, 2006, 45: 2055?2060.
    [24] Huang W, Francesconi L C, Polenova T. 31P Magic Angle Spinning NMr Spectroscopy for Probing Local Environments in Paramagnetic Europium?Substituted Wells?Dawson Polyoxotungstates[J]. Inorg Chem, 2007, 46: 7861?7869.
    [25] Zhang C, Howell R C, Luo Q, et al. Influence of Steric and Electronic Properties of the Defect Site, Lanthanide Ionic Radii, and Solution Conditions on the Composition of Lanthanide(III)α1?P2W17O6110? Polyoxometalates[J]. Inorg Chem, 2005, 44: 3569?3578.
    [26] Boglio C, Lenoble G, Duhayon C, et al. Production and Reactions of Organic-Soluble Lanthanide Complexes of the Monolacunary Dawson [α1?P2W17O61]10? Polyoxotungstate[J]. Inorg Chem, 2006, 45: 1389?1398.
    [27] Sokolova M N, Fedosseev A M, Andreev G B, et al. Synthesis and Structural Examination of Complexes of Am(IV) and Other Tetravalent Actinides with Lacunary Heteropolyanionα2?P2W17O6110?[J]. Inorg Chem, 2009, 48: 9185?9190.
    [28] Kurashina T, Aoki S, Hirasawa R, et al. Cyclic Oligomer of Oxide Clusters Through a Siloxane Bond. Synthesis and Structure of Reaction Products ofα1?mono?lacunary Dawson Polyoxometalate with Tetrachlorosilane and Tetraethoxysilane[J]. Dalton Trans, 2009, 5542?5550.
    [29] Bareyt S, Piligkos S, Hasenknopf B, et al. Highly Efficient Peptide Bond Formation to Functionalized Wells?Dawson?Type Polyoxotungstates[J]. Angew Chem Int Ed, 2003, 42: 3404?3406.
    [30] Bareyt S, Piligkos S, Hasenknopf B, et al. Efficient Preparation of Functionalized Hybrid Organic/Inorganic Wells-Dawson-type Polyoxotungstates[J]. J Am Chem Soc, 2005, 127: 6788?6794.
    [31] Boglio C, Micoine K, Deraté, et al. Regioselective Activation of Oxo Ligands in Functionalized Dawson Polyoxotungstates[J]. J Am Chem Soc, 2008, 130: 4553?4561.
    [32] Liu H, Peng J, Wang L. A Mono–Cobalt Substituted Wells–Dawson Phosphotungstate with an Antenna Ligand[J]. Z Anorg Allg Chem, 2009, 635: 2688?2691.
    [33] Cao R, O'Hallorsn K P, Hillesheim D A, et al. Mono?substituted Keggin, Wells?Dawson and {P2W21}?type polyoxometalates without positional disorder[J]. CrystEngComm, 2010.
    [34] Dablemont C, Hamaker C G, Thouvenot R, et al. Functionalization of Heteropolyanions?Osmium and Rhenium Nitrido Derivatives of Keggin? and Dawson?TypePolyoxotungstates: Synthesis, Characterization and Multinuclear (183W, 15N) NMR, EPR, IR, and UV/Vis Fingerprints[J]. Chem Eur J 2006, 12: 9150?9160.
    [35] Mayer C R, Roch?Marchal C, Lavanant H, et al. New Organosilyl Derivatives of the Dawson Polyoxometalate [α2?P2W17O61(RSi)2O] 6?: Synthesis and Mass Spectrometric Investigation[J]. Chem Eur J, 2004, 10: 5517?5523.
    [36] Zhang X, Chen Q, Duncan D C, et al. Multiiron Polyoxoanions. Syntheses, Characterization, X-ray Crystal Structures, andCatalysis of H_2O2?Based Hydrocarbon Oxidations by [FeIII4(H_2O)2(P2W15O56)2]12?[J]. Inorg Chem, 1997, 36: 4208?4215.
    [37] Mbomekalle I M, Keita B, Nadjo L, et al. Lacunary Wells?Dawson Sandwich Complexes?Synthesis, Characterization, and Stability Studies of Multi?Iron Species[J]. Eur J Inorg Chem, 2003, 3924?3928.
    [38] Mbomekalle I M, Mialane P, Dolbecq A, et al. Rational Synthesis, Structure, Magnetism and Electrochemistry of Mixed Iron–Nickel–Containing Wells–Dawson–Fragment–Based Sandwich-Type Polyoxometalates[J]. Eur J Inorg Chem, 2009, 5194?5204.
    [39] Schaming D, Canny J, Boubekeur K, et al. An Unprecedented Trinuclear Dawson Sandwich Complex with Internal Lacuna: Synthesis and 31P NMR Spectroscopic Analysis of the Symmetrical [NaNi3(H_2O)2(P2W15O56)2]17– and [CoNi3(H_2O)2(P2W15O56)2]16– Anions[J]. Eur J Inorg Chem, 2009, 5004?5009.
    [40] Luo Z, K?gerler P, Cao R, et al. Synthesis, Structure, and Magnetism of a Polyoxometalate with Coordinatively Unsaturated d?Electron?Transition Metal Centers[J]. Inorg Chem 2009, 48: 7812?7817.
    [41] Fang X, Anderson T M, Benelli C, et al. Polyoxometalate?Supported Y? and YbIII? Hydroxo/Oxo Clusters from Carbonate?Assisted Hydrolysis[J]. Chem Eur J, 2005, 11: 712?718.
    [42] Fang X, Hill C L. Multiple Reversible Protonation of Polyoxoanion Surfaces: Direct Observation of Dynamic Structural Effects from Proton Transfer[J]. Angew Chem Int Ed, 2007, 46: 3877?3880.
    [43] Fang X, Anderson T M, Hill C L. Enantiomerically Pure Polytungstates: Chirality Transfer through Zirconium Coordination Centers to Nanosized Inorganic Clusters[J]. Angew Chem Int Ed, 2005, 44: 3540?3544.
    [44] Fang X, Anderson T M, Hou Y, et al. Stereoisomerism in polyoxometalates: structural and spectroscopic studies of bis(malate)?functionalized cluster systems[J]. Chem Commun, 2005, 5044?5046.
    [45] Fang X, K?gerler P. PO43??Mediated Polyoxometalate Supercluster Assembly[J]. Angew Chem Int Ed, 2008, 47: 8123?8126.
    [46] Fang X, K?gerler P. A polyoxometalate?Based Manganese Carboxylate Cluster[J]. Chem Commun, 2008, 3396?3398.
    [47] Pradeep C P, Long D, Newton G N, et al. Supramolecular Metal Oxides: Programmed Hierarchical Assembly of a Protein-Sized 21 kDa [(C16H36N)19{H_2NC(CH_2O)3P2V3W15O59}4]5? Polyoxometalate Assembly[J]. Angew Chem Int Ed, 2008, 47: 4388?4391.
    [48] Pradeep C P, Misdrahi M F, Li F, et al. Synthesis of Modular“Inorganic–Organic–Inorganic”Polyoxometalates and Their Assembly into Vesicles[J]. Angew Chem Int Ed, 2009, 48: 8309?4313.
    [49] Han Y, Xiao Y, Zhang Z, et al. Synthesis of Polyoxometalate?Polymer Hybrid Polymers and Their Hybrid Vesicular Assembly[J]. Macromolecules, 2009, 42: 6543?6548.
    [50] Li J, Huth I, Chamoreau L, et al. Insertion of Amides into a Polyoxometalate[J]. Angew Chem Int Ed, 2008, 48: 2035?2038.
    [51] Kortz U, Hamzeh S S, Nasser N A. Supramolecular Structures of Titanium(IV)?Substituted Wells?Dawson Polyoxotungstates[J]. Chem Eur J 2003, 9, 2945?2952.
    [52] Sakai Y, Yoza K, Kato C N, et al. Tetrameric, Trititanium(IV)?Substituted Polyoxotungstates with anα?Dawson Substructure as Soluble Metal?Oxide Analogues: Molecular Structure of the Giant“Tetrapod”[(α?1,2,3?P2W15Ti3O62)4{μ3?Ti(OH)3}4Cl]45?[J]. Chem Eur J, 2003, 9: 4077?4083.
    [53] Pradeep C P, Long D, K?gerler P, et al. Controlled assembly and solution observation of a 2.6 nm polyoxometalate‘super’tetrahedron cluster: [KFe12(OH)18(α?1,2,3?P2W15O56)4]29?[J]. Chem Commun, 2007, 4254?4256.
    [54] Judd D A, Chen Q, Campana C F, et al. Synthesis, Solution and Solid State Sturctures, and Aqueous Chemistry of an Unstable Polyeroxo Polyoxometalate: [P2W12(NbO2)6O56]12?[J]. J Am Chem Soc, 1997, 119: 5461?5462.
    [55] Godin B, Chen Y, Vaissermann J, et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H_2P_2W_(12)O_(48)]12? with FeIII Ions: Towards Original Structures of Increasing Size and Complexity[J]. Angew Chem Int Ed, 2005, 44: 3072?3075.
    [56] Godin B, Vaissermann J, Herson P, et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H_2P_2W_(12)O_(48)]12?:Synthesis and Characterization of Iron(III) Complexes Derived from the Unprecedented {P2W14O54} Fragment[J]. Chem Commun, 2005, 5624?5626.
    [57] Zhang Z, Yan S, Li Y, et al. New Trimeric Polyoxotungstate Aggregates Based on [P_2W_(12)O_(48)]14? Building Blocks[J]. Chem Commun, 2008, 1650?1652.
    [58] Zhang Z, Yan S, Qi Y, et al. A New heart?like Co?Containing Polyoxoanion Based on the Lacunary Preyssler Anion[J]. Dalton Trans 2008, 3051?3053.
    [59] Zhang Z, Li Y, Wang Y, et al. Extended Organic?Inorganic Hybrids Based on Dawson and Double-Dawson-Type Polyoxometalates[J]. Inorg. Chem. 2008, 47: 7615?7622.
    [60] Li Y, Li Y, Wang Y, et al. A New Supramolecular Assembly Based on Triple?Dawson?Type Polyoxometalate and 3d?4f Heterometallic Cluster[J]. Inorg Chem, 2009, 48: 6452?6458.
    [61] Zhao J, Zheng S, Liu W, et al. Hydrothermal Synthesis and Structural Characterization of Two 1?D and 2?D Dawson?Based Phosphotungstates[J]. J Solid State Chem, 2008, 181: 637?645.
    [62] Hussain F, Kortz U, Kelta B, et al. Tetrakis(dimethyltin)?Containing Tungstophosphate [{Sn(CH3)2}4(H_2P4W24O92)2]28?: First Evidence for a Lacunary Preyssler Ion[J]. Inorg Chem, 2006, 45: 761?766.
    [63] Mal S S, Dickman M H, Kortz U, Actinide Polyoxometalates: Incorporation of Uranyl?Peroxo in U?Shaped 36?Tungsto?8?Phosphate[J]. Chem Eur J, 2008, 14: 9851?9855.
    [64] Mal S S, Kortz U. The Wheel-Shaped Cu_20 Tungstophosphate [Cu_20Cl(OH)24(H_2O)12 (P8W48O184)]25? Ion[J]. Angew Chem Int Ed, 2005, 44: 3777?3780.
    [65] Mal S S, Dickman M H, Kortz U, et al. Nucleation Process in the Cavity of a 48?Tungstophosphate Wheel Resulting in a 16?Metal?Centre Iron Oxide Nanocluster[J]. Chem Eur J, 2008, 14, 1186?1195.
    [66] Müller A, Pope M T, Todea A M, et al. Metal?Oxide?Based Nucleation Process under Confined Conditions:Two Mixed?Valence V6?Type Aggregates Closing the W48 Wheel?Type Cluster Cavities[J]. Angew Chem Int Ed, 2007, 46: 4477?4480.
    [67] Mitchell S G, Gabb D, Ritchie C, et al. Controlling Nucleation of the Cyclic Heteropolyanion {P8W48}: a Cobalt?Substituted Phosphotungstate Chain and Network[J]. Cryst Eng Comm, 2009, 11: 36?39.
    [68] Zimmermann M, Belai N, Butcher R J, et al. New Lanthanide?Containing Polytungstates Derived from the Cyclic P8W48 Anion: {Ln4(H_2O)28[KP8W48O184(H4W4O12)2Ln2(H_2O)10]13?}x, Ln = La, Ce, Pr, Nd[J]. Inorg Chem, 2007, 46: 1737?1740.
    [69] Mal S S, Nsouli N H, Dickman M H, et al. Organoruthenium Derivative of the Cyclic [H7P8W48O184]33? anion: [{K(H_2O)}3{Ru(p-cymene)(H_2O)}4P8W49O186(H_2O)2]27?[J]. Dalton Trans, 2007, 2627?2630.
    [70] Pichon C, Mialane P, Dolbecq A, et al. Characterization and Electrochemical Properties of Molecular Icosanuclear and Bidimensional Hexanuclear Cu(II) Azido Polyoxometalates[J]. Inorg Chem, 2007, 46: 5292?5301.
    [1] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines[J]. Angew Chem Int Ed, 1991, 30: 34?48.
    [2] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts[J]. Chem Rev, 1998, 98: 219?237.
    [3] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusters?Nanoscale Magnets[J] Chem Rev, 1998, 98: 239?271.
    [4] Coronado E, Gómez?García C J. Polyoxometalate?Based Molecular Materials[J]. Chem Rev, 1998, 98: 273?296.
    [5] Rhule J T, Hill C L, Judd D A, et al. Polyoxometalates in Medicine[J], Chem. Rev. 1998, 98: 327?356.
    [6] Contant R, HervéG. The Heteropolytungstates: Relationships Between Routes of Formation and Structures[J]. Rev Inorg Chem 2002, 22: 63?111.
    [7] Kozhevnikov I V, Catalsis by Polyoxometalates[M]. Wiley, Chichester (UK), 2002.
    [8] Hill C L, Prosser?McCartha C M. Homogeneous Catalysis by Transition Metal Oxygen Anion Clusters[J] Coor. Chem. Rev. 1995, 143: 407?455.
    [9] Clemente?Juan J M, Coronado R. Magnetic Clusters from Polyoxometalate Complexes[J]. Coord Chem Rev, 1999, 193?195: 361?394.
    [10] Ouahab L. Coordination Complexes in Conducting and Magnetic Molecular Materials[J]. Coord Chem Rev, 1998, 178?180: 1501?1531.
    [11] Sato O. Optically Switchable Molecular Solids: Photoinduced Spin-Crossover, Photochromism, and Photoinduced Magnetization[J]. Acc Chem Res, 2003, 36: 692?700.
    [12] Nishiyama Y, Nakagawa Y, Mizuno N. High Turnover Numbers for the Catalytic Selective Epoxidation of Alkenes with 1 atm of Molecular Oxygen[J]. Angew Chem Int Ed 2001, 40: 3639?3641.
    [13] Contant R, Abbessi M, Thouvenot R, et al. Dawson Type Heteropolyanions. 3. Syntheses and 31P, 51V, and 183W NMR Structural Investigation of Octadeca(molybdo?tungsto?vanado) diphosphates Related to the [H_2P_2W_(12)O_(48)]12? Anion[J]. Inorg Chem, 2004, 43: 3597?3604.
    [14] Zonnevijlle F, Tourne C M, Tourne G F. Preparation and Characterization of Iron(III)?and Rhodium(III)?Containing Heteropolytungstates. Identification of Novel Oxo?Bridged Iron(III) Dimers[J]. Inorg Chem, 1982, 21: 2751?2757.
    [15] Dong S, Liu M, Electrochemical and Electrocatalytic Properties of Iron(III)?Substituted Dawson?Type Tungstophosphate Anion[J]. J Electroanal Chem, 1994, 372: 95?100.
    [16] Song W, Wang X, Liu Y, et al. Electrochemical and Electrocatalytic Properties of Tetra?Iron Substituted Sandwich?Type Pentadecatungstodiphosphate Heteropolyanions[J]. J Electroanal Chem, 1999, 476: 85?89.
    [17] Kuo M C, Stanis R J, Ferrel III J R, et al. Electrocatalyst Materials for Fuel Cells Based on the Polyoxometalates?K7 or H7[(P2W17O61)FeIII(H_2O)] and Na12 or H12[(P2W15O56)2 FeIII4(H_2O)2][J]. Electrochim Acta, 2007, 52: 2051?2061.
    [18] Mbomekalle I M, Keita B, Nadjo L, et al. Multi?Iron Tungstodiarsenates. Synthesis,Characterization, and Electrocatalytic Studies ofαββα?(FeIIIOH_2)2FeIII2(As2W15O56)212-[J]. Inorg Chem 2003, 42: 1163?1169.
    [19] Keita B, Mbomekalle I M, Nadjo L, et al. Multi?Iron Wells?Dawson Heteropolytungstates. Electrochemical Probing of Siderophoric Behavior in Sandwich?Type Complexes[J]. Inorg Chem, 2004, 43: 3257?3263.
    [20] Godin B, Chen Y, Vaissermann J, et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H_2P_2W_(12)O_(48)]12? with FeIII Ions: Towards Original Structures of Increasing Size and Complexity[J]. Angew Chem Int Ed, 2005, 44: 3072?3075.
    [21] Lyon D K, Miller W K, Novet T, et al. Highly Oxidation Resistant Inorganic?Porphyrin Analogue Polyoxometalate Oxidation Catalysts. 1. The Synthesis and Characterization of Aqueous?Soluble Potassium Salts ofα2?P2W17O61(Mn+·OH_2)(n?10) and Organic Solvent Soluble Tetra?n?butylammonium Salts ofα2?P2W17O61(Mn+·Br)(n?11) (M = Mn3+, Fe3+, Co2+, Ni2+, Cu_2+)[J]. J Am Chem Soc 1991, 113: 7209?7221.
    [22] Anderson T M, Zhang X, Hardcastle K I, et al. Reactions of Trivacant Wells?Dawson Heteropolytungstates. Ionic Strength and Jahn?Teller Effects on Formation in Multi-Iron Complexes[J]. Inorg Chem, 2002, 41: 2477?2488.
    [23] Godin B, Vaissermann J, Herson P. et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H_2P_2W_(12)O_(48)]12–: Synthesis and Characterization of Iron(III) Complexes Derived from the Unprecedented {P2W14O54} Fragment[J]. Chem Commun, 2005, 5624?5626.
    [24] Pradeep C P, Long D, K?gerler P, et al. Controlled Assembly and Solution Observation of a 2.6 nm Polyoxometalate‘Super’Tetrahedron Cluster: [KFe12(OH)18(α?1,2,3?P2W15O56)4]29–[J] Chem Commun, 2007, 4254?4256.
    [25] Contant R, Potassium Octadecatungstodiphosphates(V) and Related Lacunary Compounds[J]. Inorg Synth, 1990, 27: 104?111.
    [26] Yan B, Xu Y, Bu X, et al. Hydrothermal Syntheses and Structures of Three One?Dimensional Heteropolytungstates Formed by Dawson or Keggin Cluster Units[J]. Dalton Trans, 2001, 2009?2014.
    [27] Reinoso S, Vitoria P, Felices L S, et al. Organic?Inorganic Hybrids Based on Novel Bimolecular [Si2W22Cu_2O78(H_2O)]12? Polyoxometalates and the Polynuclear Complex Cations [Cu(ac)(phen)(H_2O)]nn+ (n = 2, 3)[J]. Chem Eur J, 2005, 11: 1538?1548.
    [28] Kholdeeva O A, Maksimov G M, Maksimovskaya R I, et al. A Dimeric Titanium?Containing Polyoxometalate. Synthesis, Characterization, and Catalysis of H_2O2?Based Thioether Oxidation[J]. Inorg Chem, 2000, 39: 3828?3837.
    [29] Felices L S, Vitoria P, Gutiérrez?Zorrilla J M, et al. Hybrid Inorganic?Metalorganic Compounds Containing Copper(II)?Monosubstituted Keggin Polyanions and Polymeric Copper(I) Complexes[J]. Inorg Chem, 2006, 45: 7748?7757.
    [30] Dolbecq A, Compain J, Mialane P, et al. Water Substitution on Iron Centers: from 0D to 1D Sandwich Type Polyoxotungstates[J]. Inorg Chem, 2008, 47: 3371?3378.
    [31] Godin B, Vaissermann J, Herson P, et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H_2P_2W_(12)O_(48)]12–: Synthesis and Characterization of Iron(III) Complexes Derived from the Unprecedented {P2W14O54} Fragment[J]. Chem Commun, 2005, 5624?5626.
    [32] Zhao X, Liang D., Liu S, et al. Two Dawson?Templated Three?Dimensional Metal?Organic Frameworks Based on Oxalate?Bridged Binuclear Cobalt(II)/Nickel(II) SBUs and Bpy Linkers[J]. Inorg Chem, 2008, 47: 7133?7138.
    [33] Brown I D, Altermatt D. Strontium and Europium Polynuclear Units in Intermetallic Compounds with Magnesium. Structural Refinements and Relationships[J]. Acta Cryst, 1987, B41: 244?246.
    [34] Brese N E, O’Keeffe M. Bond?Valence Parameters for Solids[J]. Acta Cryst, 1991, B47: 192?197.
    [35] Contant R, Abbessi M, Canny J, et al. Iron-Substituted Dawson?Type Tungstodiphosphates: Synthesis, Characterization, and Single or Multiple Initial Electronation Due to the Substituent Nature or Position[J]. Inorg Chem, 1997, 36: 4961?4967.
    [36] Toth J E, Anson F C. Electrochemical Properties of Iron(III)?Substituted Heteropolytungstate Anions[J]. J Electroanal Chem, 1989, 256: 361?370.
    [37] Keita B, Belhouari A, Nadjo L, et al. Substituent Effect in the Electrochemistry of Dawson-type Tungstodiphosphates: Some Strategic Parameters for Apparently Multiple Electronation on the First Wave of Heteropolyanions[J]. J Electroanal Chem, 1998, 442: 49?57.
    [38] Mal S S, Dickman M H, Kortz U, et al. Nucleation Process in the Cavity of a 48?Tungstophosphate Wheel Resulting in a 16?Metal?Centre Iron Oxide Nanocluster[J]. Chem Eur J, 2008, 14: 1186?1195.
    [39] McCormac T, Fabre B, Bidan G. Part I. A Comparative Electrochemical Study of Transition Metal Substituted Dawson Type Heteropolyanions[J]. J Electroanal Chem, 1997, 425: 49?54.
    [40] Cheng L, Zhang X, Xi X, et al. Electrochemical Behavior of the Molybdotungstate Heteropoly Complex with Neodymium, K10H3[Nd(SiMo7W4O39)2]·xH_2O in Aqueous Solution[J]. J Electroanal Chem, 1996, 407: 97?103.
    [41] Keita B, Oliveira P, Nadjo L, et al. The Ball-Shaped Heteropolytungstates [{Sn(CH3)2(H_2O)}24{Sn(CH3)2}12(A?XW9O34)12]36? (X=P, As): Stability, Redox and Electrocatalytic Properties in Aqueous Media[J]. Chem Eur J, 2007, 13: 5480?5491.
    [42] Keita B, Nadjo L, J Mol Catal A: Chem, 2007, 262: 190?215.
    [43] lisnard L, Mialane P, Dolbecq A, et al. Effect of Cyanato, Azido, Carboxylato, and Carbonato Ligands on the Formation of Cobalt(II) Polyoxometalates: Characterization, Magnetic, and Electrochemical Studies of Multinuclear Cobalt Clusters[J]. Chem Eur J, 2007, 13: 3525?3536.
    [44] Toth J E, Anson F C. Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstates[J]. J Am Chem Soc, 1989, 111: 2444?2451.
    [45] Fabre B, Bidan G, Lapkowski M. Poly(N?methylpyrrole) Films Doped with Iron?Substituted Heteropolytungstates : A New Sensitive Layer for the Amperometric Detection of Nitrite Ions[J]. J Chem Soc Chem Commun, 1994, 1509?1507.
    [46] Mccormac T, Fabre B, Bidan G. Part II. Role of pH and the Transition Metal for the Electrocatalytic Reduction of Nitrite with Transition Metal Substituted Dawson Type Heteropolyanions[J]. J Electroanal Chem 1997, 427: 155?159.
    [1] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Discipline[J]. Angew Chem Int Ed, 1991, 30: 34?48.
    [2] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts[J]. Chem Rev, 1998, 98: 219?238.
    [3] Müller A, Peters F, Pope M T, et al.Polyoxometalates: Very Large Clusters?Nanoscale Magnets[J]. Chem Rev, 1998, 98: 239?272.
    [4] Coronado E, Gómez?García C J. Polyoxometalate?Based Molecular Materials[J]. Chem Rev, 1998, 98: 273?296.
    [5] Rhule J T, Hill C L, Judd D A, et al.Polyoxometalates in Medicine[J]. Chem Rev, 1998, 98: 327?357.
    [6] Contant R, HervéG. The Heteropolyoxotungstates: Relationships Between Routes of Formation and Structures[J]. Rev Inorg Chem, 2002, 22: 63?111.
    [7] Kozhevnikov I V, Catalsis by Polyoxometalates[M]. Wiley, Chichester (UK), 2002.
    [8] Hill C L, Prosser?McCartha C M. Homogeneous Catalysis by Transition Metal Oxygen Anion Clusters[J]. Coor Chem Rev, 1995, 143: 407?455.
    [9] Clemente?Juan J M, Coronado R. Magnetic Clusters from Polyoxometalate Complexes[J]. Coord Chem Rev, 1999, 193?195: 361?394.
    [10] Finke R G, Droege M W, Domaille P J. Trivacant Heteropolytungstate Derivatives. 3. Rational syntheses, Characterization, Two?Dimensional Tungsten?183 NMR, and Properties of Tungstometallophosphates P2W18M4(H_2O)2O6810? and P4W30M4(H_2O)2O11216? (M = cobalt, copper, zinc)[J]. Inorg Chem, 1987, 26: 3886?3896.
    [11] Gómez?García C J, Borrás?Almenar J J, Coronado E, et al. Single?Crystal X?ray Structure and Magnetic Properties of the Polyoxotungstate Complexes Na16[M4(H_2O)2(P2W15O56)2]·nH_2O (M = MnII, n = 53; M = NiII, n = 52): An Antiferromagnetic MnII Tetramer and a Ferromagnetic NiII Tetramer[J]. Inorg Chem, 1994, 33: 4016?4022.
    [12] Anderson T M, Hardcastle K I, Okun N, et al. Asymmetric Sandwich-Type Polyoxoanions. Synthesis, Characterization, and X?ray Crystal Structures of Diferric Complexes [TMIIFeIII2(P2W15O56)(P2TMII2W13O52)]16?, TM = Cu or Co[J]. Inorg Chem, 2001, 40: 6418?6425.
    [13] Mbomekalle I M, Keita B, Nadjo L, et al. Multi?Iron Tungstodiarsenates. Synthesis, Characterization, and Electrocatalytic Studies ofαββα?(FeIIIOH_2)2FeIII2(As2W15O56)212?[J]. Inorg Chem, 2003, 42: 1163?1169.
    [14] Sadakane M, Dickman M H, Pope M T. Chiral Polyoxotungstates. 1. Stereoselective Interaction of Amino Acids with Enantiomers of [CeIII(α1?P2W17O61)(H_2O)x]7-. The Structure of dl?[Ce2(H_2O)8(P2W17O61)2]14?[J]. Inorg Chem, 2001, 40: 2715?2719.
    [15] Luo Q, Howell R C, Bartis J, et al. Lanthanide Complexes of [α-2-P2W17O61]10-: Solid State and Solution Studies[J]. Inorg Chem, 2002, 41: 6112?6117.
    [16] Luo Q, Howell R C, Dankova M, et al. Coordination of Rare?Earth Elements in Complexes with Monovacant Wells?Dawson Polyoxoanions[J]. Inorg Chem, 2001, 40: 1894?1901.
    [17] Zhang C, Howell R C, Luo Q , et al. Influence of Steric and Electronic Properties of theDefect Site, Lanthanide Ionic Radii, and Solution Conditions on the Composition of Lanthanide(III)α1?P2W17O6110? Polyoxometalates[J]. Inorg Chem, 2005, 44: 3569?3578.
    [18] Kato C N, Shinohara A, Hayashi K, et al.Syntheses and X?ray Crystal Structures of Zirconium(IV) and Hafnium(IV) Complexes Containing Monovacant Wells?Dawson and Keggin Polyoxotungstates[J]. Inorg Chem, 2006, 45: 8108?8119.
    [19] Weakley T J R, Finke R G. Single-crystal x-ray structures of the polyoxotungstate salts K8.3Na1.7[Cu4(H_2O)2(PW9O34)2]·24H_2O and Na14Cu[Cu4(H_2O)2(P2W15O56)2]·53H_2O[J]. Inorg Chem, 1990, 29: 1235?1241.
    [20] Zhang X, Chen Q, Duncan D C, et al. Multiiron Polyoxoanions. Syntheses, Characterization, X?ray Crystal Structures, and Catalysis of H_2O2?Based Hydrocarbon Oxidations by [FeIII4(H_2O)2(P2W15O56)2]12? [J]. Inorg Chem, 1997, 36: 4208?4215.
    [21] Bi L, Wang E, Peng J, et al. Crystal Structure and Replacement Reaction of Coordinated Water Molecules of the Heteropoly Compounds of Sandwich?Type Tungstoarsenates[J]. Inorg Chem, 2000, 39: 671?679.
    [22] Mbomekalle I M, Keita B, Nadjo L, et al. Manganous heteropolytungstates. Synthesis and heteroatom effects in Wells–Dawson?derived sandwich complexes[J]. Dalton Trans, 2003, 2646?2650.
    [23] Fang X ?K, Anderson T M, Benelli C, et al. Polyoxometalate?Supported Y? and YbIII?Hydroxo/Oxo Clusters from Carbonate?Assisted Hydrolysis[J]. Chem?Eur J, 2005, 11: 712?718.
    [24] Contant R, TézéA. A New Crown Heteropolyanion K28Li5H7P8W48O184·92H_2O: Synthesis, Structure, and Properties[J]. Inorg Chem, 1985, 24: 4610?4614.
    [25] Mal S S, Dickman M H, Kortz U. Actinide Polyoxometalates: Incorporation of Uranyl-Peroxo in U-Shaped 36?Tungsto?8?Phosphate[J]. Chem?Eur J, 2008, 14: 9851?9855.
    [26] Müller A, Pope M T, Todea A M, et al. Metal?Oxide?Based Nucleation Process under Confined Conditions: Two Mixed?Valence V6?Type Aggregates Closing the W48 Wheel?Type Cluster Cavities[J]. Angew Chem Int Ed, 2007, 46: 4477?4480.
    [27] Godin B, Chen Y, Vaissermann J, et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H_2P_2W_(12)O_(48)]12? with FeIII Ions: Towards Original Structures of Increasing Size and Complexity[J]. Angew Chem Int Ed, 2005, 44: 3072?3075.
    [28] Mal S S, Dickman M H, Kortz U, et al. Nucleation Process in the Cavity of a 48?Tungstophosphate Wheel Resulting in a 16?Metal?Centre Iron Oxide Nanocluster[J]. Chem ?Eur J, 2008, 14: 1186?1195.
    [29] Zhang Z, Yao S, Qi Y, et al. A New Heart?Like Co?Containing Polyoxoanion Based on the Lacunary Preyssler Anion[J]. Dalton Trans, 2008, 3051?3053.
    [30] Mitchell S G, Gabb D, Ritchie C, et al. Controlling Nucleation of the Cyclic Heteropolyanion {P8W48}: A Cobalt?Substituted Phosphotungstate Chain and Network[J]. Cryst Eng Comm, 2009, 11: 36?39.
    [31]Mal S S, Kortz U. The Wheel?Shaped Cu_20 Tungstophosphate [Cu_20Cl(OH)24(H_2O)12 (P8W48O184)]25? Ion[J]. Angew Chem Int Ed, 2005, 44: 3777?3780.
    [32] Pichon C, Mialane P, Dolbecq A, et al. Characterization and Electrochemical Properties of Molecular Icosanuclear and Bidimensional Hexanuclear Cu(II) Azido Polyoxometalates[J]. Inorg Chem, 2007, 46: 5292?5301.
    [33] Zhang Z ?M, Yao S, Li Y ?G, Wang Y ?H, et al. New Trimeric Polyoxotungstate AggregatesBased on [P_2W_(12)O_(48)]14? Building Blocks[J]. Chem Commun, 2008, 1650?1652.
    [34] Zimmermann M, Belai N, Butcher R J, et al. New Lanthanide?Containing Polytungstates Derived from the Cyclic P8W48 Anion: {Ln4(H_2O)28[KP8W48O184(H4W4O12)2Ln2(H_2O)10]13?}x, Ln = La, Ce, Pr, Nd[J]. Inorg Chem, 2007, 46: 1737?1740.
    [35] Mal S S, Nsouli N H, Dickman M H, et al. Organoruthenium derivative of the cyclic [H7P8W48O184]33– anion: [{K(H_2O)}3{Ru(p-cymene)(H_2O)}4P8W49O186(H_2O)2]27–[J]. Dalton Trans, 2007, 2627?2630.
    [36] Hussain F, Kortz U, Keita B, et al. Tetrakis(dimethyltin) ?Containing Tungstophosphate [{Sn(CH3)2}4(H_2P4W24O92)2]28?: First Evidence for a Lacunary Preyssler Ion[J]. Inorg Chem, 2006, 45: 761?766.
    [37] Godin B, Vaissermann J, Herson P, et al. Coordination chemistry of the hexavacant tungstophosphate [H_2P_2W_(12)O_(48)]12–: synthesis and characterization of iron(III) complexes derived from the unprecedented {P2W14O54} fragment[J]. Chem Commun, 2005, 5624?5626.
    [38] Contant R, Potassium Octadecatungstodiphosphates(V) and Related Lacunary Compounds[J]. Inorg Synth, 1990, 27: 104?111.
    [39] Zhao J, Zheng S, Liu W, et al. Hydrothermal Synthesis and Structural Characterization of Two 1?D and 2?D Dawson?based Phosphotungstates[J]. J Solid State Chem, 2008, 181: 637?645.
    [40] Zhang Z, L Y, Wang Y, et al. Extended Organic Inorganic Hybrids Based on Dawson and Double?Dawson?Type Polyoxometalates[J]. Inorg Chem, 2008, 47: 7615?7622;
    [41] Anderson T M, Zhang X, Hardcastle K I, et al. Reactions of Trivacant Wells?Dawson Heteropolytungstates. Ionic Strength and Jahn?Teller Effects on Formation in Multi-Iron Complexes[J]. Inorg Chem, 2002, 41: 2477?2488.
    [42] Sakai Y, Yoza K, Kato C N, et al.Tetrameric, Trititanium(IV)-Substituted Polyoxotungstates with anα?Dawson Substructure as Soluble Metal?Oxide Analogues: Molecular Structure of the Giant“Tetrapod”[(α?1,2,3?P2W15Ti3O62)4{μ3?Ti(OH)3}4Cl]45?[J]. Chem?Eur J, 2003, 9:4077?4083.
    [43] Fang X, Anderson T M, Hill C L. Enantiomerically Pure Polytungstates: Chirality Transfer through Zirconium Coordination Centers to Nanosized Inorganic Clusters[J]. Angew Chem Int Ed, 2005, 44: 3540?3544.
    [44] Bassil B S, Dickman M H, Kortz U. Synthesis and Structure of Asymmetric Zirconium?Substituted Silicotungstates, [Zr6O2(OH)4(H_2O)3(β-SiW10O37)3]14- and [Zr4O2(OH)2(H_2O)4(β?SiW10O37)2]10-[J]. Inorg Chem, 2006, 45: 2394?2396.
    [45] Yamase T, Abe H, Ishikawa E, et al. Structure and Magnetism of [n-BuNH3]12[Cu4(GeW9O34)2]·14H_2O Sandwiching a Rhomblike Cu48+ Tetragon throughα-Keggin Linkage[J]. Inorg Chem, 2009, 48: 138?148.
    [46] Niu J, Guo D, Zhao J, et al.Controlled Assembly of Polyoxometalate?based Composite Materials Containing Zero?and One?dimensional Structures [J]. New J Chem, 2004, 28: 980?987.
    [47] Lu Y, Xu Y, Li Y, et al. New Polyoxometalate Compounds Built up of Lacunary Wells?Dawson Anions and Trivalent Lanthanide Cations[J]. Inorg Chem, 2006, 45: 2055?2060.
    [48] Zhao X, Liang D, Liu S, et al. Two Dawson?Templated Three?Dimensional Metal?Organic Frameworks Based on Oxalate?Bridged Binuclear Cobalt(II)/Nickel(II) SBUs and Bpy Linkers[J]. Inorg Chem, 2008, 47: 7133?7138.
    [49] Lu Y, Xu Y, Wang E, et al. Novel Two?Dimensional Network Constructed from Polyoxomolybdate Chains Linked through Copper?Organonitrogen Coordination Polymer Chains: Hydrothermal Synthesis and Structure of [H_2bpy][Cu(4,4‘?bpy)]2[HPCuMo11O39][J]. Cryst Growth Des, 2005, 5: 257?260.
    [50] Wassermann K, Lunk H J, Palm R, et al.Polyoxoanions Derived from [γ?SiO4W10O32]8??Containing Oxo?Centered Dinuclear Chromium(III) Carboxylato Complexes: Synthesis and Single?Crystal Structural Determination of [γ?SiO4W10O32(OH)Cr2(OOCCH3)2(OH_2)2]5?[J]. Inorg Chem, 1996, 35: 3273?3279.
    [51] Belai N, Dickman M H, Pope M T, et al. Confirmation of the Semivacant Wells?Dawson Polyoxotungstate Skeleton. The Structures of [Ce{X(H4)W17O61}2]19? (X = P, As) Indicate the Probable Location of Internal Protons[J]. Inorg Chem, 2005, 44: 169?171.
    [52] Brown I D, Altermatt D. Bond?valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database[J]. Acta Cryst, 1985, B41: 244?246.
    [53] Brese N E, O’Keeffe M. Bond-Valence Parameters for Solids[J]. Acta Cryst, 1991, B47: 192?197.
    [54] Nyquist R A, Kagel R O. Infrared Spectra of Inorganic Compounds (3800?45cm?1)[M].Academic Press, New York and London, 1971.
    [55] Gilliam S J, Jensen J O, Banerjee A, et al. Spectrochim. Acta Part A, 2004, 60: 425?434.
    [56] Piedra?Garza L F, Dickman M H, Moldovan O, et al. Organoantimony?Containing Polyoxometalate: [{PhSbOH3(A?α?PW9O34)2]9?[J]. Inorg Chem, 2009, 48:411?413.
    [57] McCormac T, Fabre B, Bidan G. Part I. A comparative electrochemical study of transition metal substituted Dawson type heteropolyanions [J]. J Electroanal Chem, 1997, 425: 49?54.
    [58] Xue G, Liu X, Xu H, et al. An Unusual Asymmetric Polyoxomolybdate Containing Mixed?Valence Antimony and Its Derivatives: [Sb4VSb2IIIMo18O73(H_2O)2]12? and {M(H_2O)2[Sb4VSb2IIIMo18O73(H_2O)2]2}22? (M = MnII, FeII, CuII or CoII)[J]. Inorg Chem, 2008, 47: 2011?2016.
    [59] Zhen Y, Shen Q, Li L, et al. A polyoxoanion with an unusual [Sb6O16(OH)12] cluster skeleton and S4 molecular symmetry [Mo4Sb6(OH)12O24]6?[J]. Inorg Chem Commun, 2008, 11: 886?888.
    [1] Hagraman P J, Hagraman K, zubieta J. Organic?Inorganic Hybrid Materials: From“Simple”Coordination Polymers to Organodiamine?Templated Molybdenum Oxides[J]. Angew Chem Int Ed, 1999, 38: 2638?2684.
    [2] Chesnut D J, Hagrman D, Zapf P J, et al. Organic/Inorganic Composite Materials: the Roles of Organoamine Ligands in the Design of Inorganic Solids[J]. J Coor Chem Rev, 1999, 190?192: 737?769.
    [3] Hagrman P J, Finn R C, Zubieta J. Molecular Manipulation of Solid State Structure: Influences of Organic Components on Vanadium Oxide Rrchitectures[J]. Solid State Sci, 2001, 3: 745?774.
    [4] Gouzerh P, Proust A. Main?Group Element, Organic, and Organometallic Derivatives of Polyoxometalates[J]. Chem Rev, 1998, 98: 77?111.
    [5] Liu S, Xie L, Gao B, et al. An Organic–Inorganic Hybrid Material Constructed from a Three?Dimensional Coordination Complex Cationic Framework and Entrapped Hexadecavanadate clusters[J]. Chem Commun, 2005, 5023?5025.
    [6] Dolbecq A, Mialane P, Lisnard L, et al. Hybrid Organic?Inorganic 1D and 2D Frameworks withε?Keggin Polyoxomolybdates as Building Blocks[J]. Chem Eur J, 2003, 9: 2914?2920.
    [7] Zapf P J, Warren C J, Haushalter R C, et al. One? and Two?Dimensional Organic–Inorganic Composite Solids Constructed from Molybdenum Oxide Clusters and Chains Linked Through {M(2,2’?bpy)}2+ Fragments (M = Co, Ni, Cu)[J]. Chem Commun, 1997, 1543?1544.
    [8] Yuan M, Li Y?G, Wang E ?B, et al.Modified Polyoxometalates: Hydrothermal Syntheses and Crystal Structures of Three Novel Reduced and Capped Keggin Derivatives Decorated by Transition Metal Complexes[J]. Inorg Chem, 2003, 42: 3670?3676.
    [9] Férey G. Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry[J]. Chem Mater, 2001, 13: 3084?3098.
    [10] Bunkholder E, Golub V, O’Connor C J, et al. Solid?State Coordination Chemistry of the Oxomolybdate?Organodiphosphonate/Nickel?Organoimine System: Structural Influences of the Secondary Metal Coordination Cation and Diphosphonate Tether Lengths[J]. Inorg Chem, 2004, 43: 7014?7029.
    [11] Zhang C, Liu S, Gao B, et al. Hybrid Materials based on Metal–Organic Coordination Complexes and Cage?Like Polyoxovanadate Clusters: Synthesis, Characterization and Magnetic Properties[J]. Polyhedron, 2007, 26: 1514?1522.
    [12] Sha J, Peng J, Lan Y, et al. pH?Dependent Assembly of Hybrids Based on Wells?Dawson POM/Ag Chemistry[J]. Inorg Chem, 2008, 47: 5145?5153.
    [13] Sun C, Liu S, Liang D, et al. Highly Stable Crystalline Catalysts Based on a Microporous Metal?Organic Framework and Polyoxometalates[J]. J Am Chem Soc, 2009, 131: 1883?1888.
    [14] K?gerler P, Cronion L. Polyoxometalate Nanostructures, Superclusters, and Colloids: From Functional Clusters to Chemical Aesthetics[J]. Angew Chem Int Ed Engl, 2005, 44:844?846.
    [15] Burrows A D, Chan C W, Chowdhry M M, et al.Multidimensional Crystal Engineering of Bifunctional Metal Complexes Containing Complementary Triple Hydrogen Bonds[J]. Chem Soc Rev, 1995, 24: 329?339.
    [16] Ushak S, Spodine E, Fur E L, et al. Two New Hybrid Organic/Inorganic Copper(II)?Oxovanadate(V) Diphosphonates: [Cu_2(phen)2(O3PCH_2PO3)(V2O5)(H_2O)]·H_2O and [Cu_2(phen)2(O3P(CH_2)3PO3)(V2O5)]·C3H8. Synthesis, Structure, and Magnetic Properties[J]. Inorg Chem, 2006, 45: 5393?5399.
    [17] Ghosh A K, Ghoshal D, Ribas J, et al. Hydrogen-Bonded Assembly of Water and Chloride in a 3D Supramolecular Host[J]. Crst Growth Des, 2006, 6: 36?39.
    [18] Wang S?T, Wang E?B, Hou Y, et al. Hydrothermal Synthesis, Structure, and Characterization of Two One?Dimensional Chainlike Hybrid Complexes [(CuX)2(o-phen)]∞(X=Br, Cl; o?phen=o?phenanthroline)[J]. Inorg Chim Acta, 2003, 349: 123?127.
    [19] Shivaiah V, Chatterijee T, Srinivasu K, et al. A Water Pipe Held Up by a Polyoxometalate Supported Transition Metal Complex: Synthesis and Characterization of [Cu_2(phen)2(CH3COO)(CH3COOH)(H_2O)2][Al(OH)6Mo6O18]·28H_2O[J]. Eur J Inorg Chem, 2007, 231?234.
    [20] Reinoso S, Vitoria P, Felices L S, et al. Organic-Inorganic Hybrids Based on Novel Bimolecular [Si2W22Cu_2O78(H_2O)]12? Polyoxometalates and the Polynuclear Complex Cations [Cu(ac)(phen)(H_2O)]nn+ (n=2, 3)[J]. Chem Eur J, 2005, 11: 1538?1548.
    [21] Reinoso S, Vitoria P, Felices L S, et al. Analysis of Weak Interactions in the Crystal Packing of Inorganic Metalorganic Hybrids Based on Keggin Polyoxometalates and Dinuclear Copper(II)?Acetate Complexes[J]. Inorg Chem, 2006, 45: 108?118.
    [22] Reinoso S, Vitoria P, Gutiérrez?Zorrilla J M, et al. Coexistence of Five Different Copper(II)?Phenanthroline Species in the Crystal Packing of Inorganic?Metalorganic Hybrids Based on Keggin Polyoxometalates and Copper(II)?Phenanthroline?Oxalate Complexes[J]. Inorg Chem, 2007, 46: 4010?4021.
    [23] Bond M R, Willett R D, Rubenacker G V. Crystal Structures and Magnetic Behavior of Two Novel Copper(II) Halide Chains. (C7H10N)4Cu5Cl14 and (C5H14N)4Cu5Cl14: Multiple Copper(II) Halide Coordination Geometries[J]. Inorg Chem, 1990, 29: 2713?2720.
    [24] Chesnut D J, Kusnetzow A, Brige R, et al. Solid State Coordination Chemistry of the Copper Halide?and Pseudo?Halide?Organoamine System, Cu?X?[(bis?2,3?(2?pyridyl)pyrazine)] (X = Cl, Br, CN): Hydrothermal Synthesis and Structural Characterization[J]. Inorg Chem, 1999, 38: 2663?2671.
    [25] Ayllón J A, Santos I C, Henriques R T, et al. Crystal Structure and Magnetic Behavior of [(C2H5)4N]2Cu5Cl12. A Novel Two?Dimensional Copper(II) Halide Network Derived from the CuCl2 Structure[J]. Inorg Chem, 1996, 35: 168?172.
    [26] Rojas D, Garcia A M, Vega A, et al. Binuclear Copper(II) Oxidation Products from Copper(I) Complexes with Tridentate Ligands. Magnetostructural Characterization[J].Inorg Chem,2004, 43: 6324?6330.
    [27] Mukherjee P A, Hoshal D, Zangrando E, et al. Use of Different Unsaturated Dicarboxylates Toward the Design of New 3D and 2D Networks of Copper(II)[J]. Eur J Inorg Chem, 2004, 4675?4680.
    [28] Paul B, Zimmermann B, Fromm K M, et al. [M(μ?O2C?C6H4?CO2)(NH3)2] (M = Cu, Cd; O2C?C6H4?CO2 = Benzene?1, 4?Dicarboxylate, Terephthalate): 1D Coordination Polymers with Strong Inter-Chain Hydrogen Bonding[J]. Z Anorg Allgem Chem, 2004, 630:1650?1654.
    [29] Bian H, Xu J, Gu W, et al.Synthesis, Structure and Properties of Terephthalate-Bridged Copper (II) Polymeric Complex with Zigzag Chain[J]. Inorg Chem Commun, 2003, 6: 573?576.
    [30] Hoang C S, You Y S. Synthesis, Crystal Structures and Magnetic Properties of Cu(II) Compounds Bridged by theTerephthalate Ligand and Hydrogen Bonds[J]. Polyhedron, 2004, 23: 3043?3050.
    [31] Bakalbassis E G, Bozopoulos A P, Mrozinski J, et al. Crystal structure, Magnetic Properties, and Orbital Interactions of the [(μ-terephthalato)(ethylenediamine)diaquocopper(II)] Zigzag Chain[J]. Inorg Chem, 1988, 27: 529?532.
    [32] Xanthopouos C E, Sigalas M P,Katsoulos G A, et al.Crystal and Molecular Structure and Magnetism of (μ?terephthalato)bis[(N?(2?diethylamino)ethyl)salicylidenaminato)copper(II)] -water-methanol[J]. Inorg Chem, 1993, 32:5433?5436.
    [33] Bakalbassis E G, Tsipis C A, Mrozinski J. A novelμ?Terephthalato Copper(II) Dime with Unexpected Strong Antiferromagnetic Exchange Interaction[J]. Inorg Chem, 1985, 24: 4231?4233.
    [34] Contant R. Potassium Octadecatungstodiphosphates(V) and Related Lacunary Compounds[J].Inorg Synth, 1990, 27: 104?111.
    [35] Zimmermann M, Belai N, Butcher R J, et al. New Lanthanide-Containing Polytungstates Derived from the Cyclic P8W48 Anion: {Ln4(H_2O)28[KP8W48O184(H4W4O12)2Ln2(H_2O)10]13-}x, Ln = La, Ce, Pr, Nd[J]. Inorg Chem, 2007, 46: 1737?1740.
    [36] Wang E?B, Hu C?W,Xu L. Introduction of Polyacid Chemistry, Chemical Industry Press[M] .Beijing, 1998.
    [37] Niu J, Guo D, Zhao J, et al.Controlled Assembly of Polyoxometalate?Based Composite Materials Containing Zero?and One?Dimensional Structures[J]. New J Chem, 2004, 28: 980?987.
    [38] Lu Y, Xu Y, Li Y, et al. New Polyoxometalate Compounds Built up of Lacunary Wells?Dawson Anions and Trivalent Lanthanide Cations[J]. Inorg Chem, 2006, 45: 2055?2060.
    [39] Tian A ,Ying J, Peng J, et al.Assembly of the Highest Connectivity Wells?Dawson Polyoxometalate Coordination Polymer: the Use of Organic Ligand Flexibility[J]. Inorg Chem, 2008, 47: 3274?3283. (40) Brown I D, Altermatt D. Bond-Valence Parameters Obtained from a Aystematic Analysis of the Inorganic Crystal Structure[J]. Acta Cryst, 1985, B41: 244?247.
    [41] Brese N E, O’Keeffe M. Bond?Valence Parameters for Solids[J]. Acta Cryst, 1991, B47: 192?197.
    [42] Flack H D, Bernardinelli G. Absolute Structure and Absolute Configuration[J]. Acta Crystallogr Sect A, 1999, 55: 908?915.
    [43] Chen W,Li Y, Wang Y, et al. An Inorganic Aggregate Based on a Sandwich?Type Polyoxometalate with Lanthanide and Potassium Cations: From 1D Chiral Ladder?Like Chains to a 3D Open Framework[J]. Eur J Inorg Chem, 2007, 2216?2220.
    [44] Estes W E, Gavel D P, Hatfield W E, et al. Magnetic and Structural Characterization of Dibromo?and Dichlorobis(thiazole)copper(II)[J]. Inorg Chem, 1978, 17: 1415?1421.
    [45] Rodríguez M, Llobet A, Corbella M, et al.Synthesis, Structure, and Magnetic Properties of a New Chloro?Bridged Dimer [Cu_2(dpt)2Cl2]Cl2 with an Unusual Structure and Ferromagnetic Coupling[J]. Inorg Chem, 1999, 38; 2328?2334.
    [46] Kahn O. Molecular Magnetism[M] VCH: New York, 1993.
    [47] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts[J]. Chem Rev, 1998, 98: 219?238.
    [48] McCormac T, Fabre B, Bidan G. Part I. A Comparative Electrochemical Study of Transition Metal Substituted Dawson Type Heteropolyanions[J]. J Electroanal Chem, 1997, 425: 49?54.
    [49] Cheng L, Zhang X, Xi X, et al. Electrochemical Behavior of the Molybdotungstate Heteropoly Complex with Neodymium, K10H3[Nd(SiMo7W4O39)2]·xH_2O in Squeous Solution[J]. J Electroanal Chem, 1996, 407: 97?103.
    [50] Keita B, Mbomekalle I?M, Nadjo L. Redox Behaviours and Electrocatalytic Properties of Copper within Dawson Structure?Derived Sandwich Heteropolyanions [Cu4(H_2O)2(X2W15O56)2]16? (X = P or As)[J] Electrochem Commun, 2003, 5: 830?837.
    [51] Janiak C. A Critical Account onπ?πStacking in Metal Complexes with Aromatic Nitrogen?Containing Ligands[J]. J Chem Soc, Dalton Trans. 2000, 3885?3896.
    [52] Massoud S S, Mautner F A, Vicente R, et al. Dinuclear Terephthalato?Bridged Copper(II) Complexes: Syntheses, Spectral and Structural Characterization, and Magnetic Properties[J]. Inorg Chim Acta, 2006, 359: 1489?1500.
    [53] Deakin L, Arif A M, Miller J S. Observation of Ferromagnetic and Antiferromagnetic Coupling in 1?D and 2?D Extended Structures of Copper(II) Terephthalates[J]. Inorg Chem, 1999, 38: 5072?5077.
    [54] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts[J]. Chem Rev, 1998, 98: 219?237.
    [55] McCormac T, Fabre B, Bidan G J. Part I. A Comparative Electrochemical Study of Transition Metal Substituted Dawson Type Heteropolyanions[J]. Electroanal Chem, 1997, 425: 49?54.
    [1] Pope M T, Heteropoly and Isopoly Oxometalates[M]. Berlin: Springer?Verlag, 1983.
    [2]王恩波,胡长文,许林,多酸化学导论[M].北京:化学工业出版社, 1998.
    [3] Pope M T, Müller A. Polyoxometalate Chemistry[M]. Kluwer, Dordrecht, 2001, 1?10.
    [4] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines[J]. Angew Chem Int Ed, 1991, 30: 34.
    [5] Streb C, Long D, Cronin L. Engineering Porosity in a Chiral Heteropolyoxometalate?Based Framework: the Supramolecular Effect Benzenetricarboxylic Acid[J]. Chem Commun, 2007, 471?473.
    [6] An H, Wang E. Xiao D, et al. Chiral 3D Architecture with Helical Channels Constructed from Polyoxometalate Clusters and Copper?Amino Acid Complexes[J]. Angew Chem Int Ed, 2006, 45: 904?908.
    [7] Sun C, Liu X, Liang D, et al. Highly Stable Crystalline Catalysts Based on a Microporous Metal?Organic Framework and Polyoxometalates[J]. J Am Chem Soc, 2009, 131: 1883?1888.
    [9] Armatas N G, Ouellette W , Whitenack K, et al. Construction of Metal?Organic Oxides from Molybdophosphonate Clusters and Copper?Bipyrimidine Building Blocks[J]. Inorg Chem, 2009, 48: 8897?8910.
    [10] Dolbecq A, Compain J, Mialane P, et al. Water Substitution on Iron Centers: from 0D to 1D Sandwich Type Polyoxotungstates[J]. Inorg Chem, 2008, 47: 3371?3378.
    [11] Hao J, Xia Y, Wang L, et al. Unprecedented Replacement of Bridging Oxygen Atoms in Polyoxometalates with Organic Imido Ligands[J]. Angew Chem Int Ed, 2008, 47: 2626?2630.
    [12] Liu S, Xie L, Gao B, et al. An Organic–Inorganic Hybrid Material Constructed from a Three–Dimensional Coordination Complex Cationic Framework and Entrapped Hexadecavanadate Clusters[J]. Chem Commun, 2005, 5023–5025.
    [13] Zheng S, Yuan D, Jia H, et al. Combination Between Lacunary Polyoxometalates and High–Nuclear Transition Metal Clusters under Hydrothermal Conditions: I. from isolated cluster to 1–D chain[J]. Chem Commun, 2007, 1858–1860.
    [14] Lisnard L, Mialane P, Dolbecq A, et al. Effect of Cyanato, Azido, Carboxylato, and Carbonato Ligands on the Formation of Cobalt(II) Polyoxometalates: Characterization, Magnetic, and Electrochemical Studies of Multinuclear Cobalt Clusters[J]. Chem Eur J, 2007, 13: 3525–3536.
    [15] Merca A, Haupt E T K, Mitra T, et al. Mimicking Biological Cation-Transport Based on Sphere-Surface Supramolecular Chemistry: Simultaneous Interaction of Porous Capsules with Molecular Plugs and Passing Cations[J]. Chem Eur J, 2007, 13: 7650–7658.
    [16] Wilson E F, Abbas H, Duncombe B J, et al. Probing the Self-Assembly of Inorganic Cluster Architectures in Solution with Cryospray Mass Spectrometry: Growth of Polyoxomolybdate Clusters and Polymers Mediated by Silver(I) Ions[J] J Am Chem Soc, 2008, 130: 13876–13884.
    [17] Fang X, Anderson T M, Hill C L. Enantiomerically Pure Polytungstates: Chirality Transfer through Zirconium Coordination Centers to Nanosized Inorganic Clusters[J]. Angew Chem Int Ed, 2005, 44: 3540?3544.
    [18] Fang X, Anderson T M, Hou Y, et al. Stereoisomerism in Polyoxometalates: Structural andSpectroscopic Studies of Bis(malate)?Functionalized Cluster Systems[J]. Chem Commun, 2005, 5044?5046.
    [19] Fang X, K?gerler P. PO43??Mediated Polyoxometalate Supercluster Assembly[J]. Angew Chem Int Ed, 2008, 47: 8123?8126.
    [20] Fang X, K?gerler P. A polyoxometalate?Based Manganese Carboxylate Cluster[J]. Chem Commun, 2008, 3396?3398.
    [21] Pradeep C P, Long D, Newton G N, et al. Supramolecular Metal Oxides: Programmed Hierarchical Assembly of a Protein-Sized 21 kDa [(C16H36N)19{H_2NC(CH_2O)3P2V3W15O59}4]5? Polyoxometalate Assembly[J]. Angew Chem Int Ed, 2008, 47: 4388?4391.
    [22] Pradeep C P, Misdrahi M F, Li F, et al. Synthesis of Modular“Inorganic–Organic–Inorganic”Polyoxometalates and Their Assembly into Vesicles[J]. Angew Chem Int Ed, 2009, 48: 8309?4313.
    [23] Han Y, Xiao Y, Zhang Z, et al. Synthesis of Polyoxometalate?Polymer Hybrid Polymers and Their Hybrid Vesicular Assembly[J]. Macromolecules, 2009, 42: 6543?6548.
    [24] Li J, Huth I, Chamoreau L, et al. Insertion of Amides into a Polyoxometalate[J]. Angew Chem Int Ed, 2008, 48: 2035?2038.
    [25] Pichon C, Dolbecq A, Mialane P, et al. Fe2 and Fe4 Clusters Encapsulated in Vacant Polyoxotungstates: Hydrothermal Synthesis, Magnetic and Electrochemical Properties, and DFT Calculations[J]. Chem Eur J, 2008, 14: 3189?3199.
    [26] Tian A, Ying J, Peng J, et al. Assembly of the Highest Connectivity Wells-Dawson Polyoxometalate Coordination Polymer: the Use of Organic Ligand Flexibility[J]. Inorg Chem, 2008, 3274?3283.
    [27] Wang X, Bi Y, Chen B, et al. Self–Assembly of Organic–Inorganic Hybrid Materials Constructed from Eight-Connected Coordination Polymer Hosts with Nanotube Channels and Polyoxometalate Guests as Templates[J]. Inorg Chem, 2008, 47: 2442?2448.
    [28] Lan Y, Li S, Su Z, et al. Spontaneous Resolution of a 3D Chiral Polyoxometalate?Based Polythreaded Framework Consisting of an Achiral Ligand[J]. Chem Commun, 2008, 529?532.
    [29] Cao J, Liu S, Cao R, et al. Organic–Inorganic Hybrids Assembled by Bis(undecatungstophosphate) Lanthanates and Dinuclear Copper(II)–Oxalate Complexes[J]. Dalton Trans, 2008, 115?120.
    [30] Ritchie C, Burkholder E, K?gerler P, et al. Unsymmetrical Surface Modification of a Heteropolyoxotungstate via in–Situ Generation of Monomeric and Dimeric Copper(II) Species[J]. Dalton Trans, 2006, 1712?1714.
    [31] Contant R, Potassium Octadecatungstodiphosphates(V) and Related Lacunary Compounds[J]. Inorg Synth, 1990, 27: 104?111.
    [32] Brown I D, Altermatt D. Strontium and Europium Polynuclear Units in Intermetallic Compounds with Magnesium. Structural Refinements and Relationships[J]. Acta Cryst, 1987, B41: 244.
    [33] Brese N E, O’Keeffe M. Bond-Valence Parameters for Solids[J]. Acta Cryst, 1991, B47: 192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700