离心水泵叶轮工作曲面有限元分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的发展,泵的应用范围不断扩大。对泵的水力特性和运行稳定性要求越来越高。离心泵叶轮是离心水泵的重要过流部件,其工作性能、效率直接影响着离心泵的工作性能。叶轮在工作状态下受离心力和水压力的共同作用,其受力状况复杂。传统的设计方法工作量大、效率低。随着数值模拟技术和有限元分析法在叶轮机械领域的应用,为结构设计及内部流场分析提供了依据。
     本文以一个中高比转数的离心泵为对象研究了叶轮内流场模拟、叶轮的ANSYS静力和模态分析以及叶轮几何参数优化。首先在UG中进行叶轮实体的三维建模,将模型进行网格划分,并利用计算流体动力学(CFD)技术得到了离心泵叶轮内部流动的压力、速度分布和叶片上的压力分布状况。通过ANSYS进行静力和模态分析。最后用遗传算法工具箱优化了叶轮的几何参数。
     通过离心泵的木模图建立了叶轮的三维实体模型,采用曲面工具分析了叶轮叶片的曲面质量,使叶轮的造型更加的合理准确,提高了叶轮设计的效率。
     介绍了离心泵内部流动数值模拟的理论和方法,在GAMBIT中对叶轮进行网格划分和边界条件设定。使用FLUENT软件对离心泵内部流场进行求解,准确得到了离心泵内部流动的压力、速度分布情况,输出了分布于叶片上的压力数据。
     针对以水为介质的离心水泵叶轮的强度和模态分析的还比较少,本文采用ANSYS的APDL程序语言把流场分析输出的压力数据加载到叶片上,实现了离心泵的流固耦合分析,并进行了叶轮静力分析和模态分析,得到了水压力和离心力作用下叶轮的应力应变情况及频率特性,计算结果表明设计工况下叶轮工作可靠。
     建立了以叶轮的圆盘摩擦损失、水力损失和容积损失最小为目标函数,编写了目标函数的M文件,确定了优化变量的取值范围,使用Matlab的遗传算法工具箱对叶片的进口、出口角和出口宽度进行了优化,经理论反算效率比优化前提高了2.3%。
     本文将数值模拟技术和有限元分析法相结合应用于叶轮结构设计分析,对提高叶轮的安全性与可靠性,缩短设计周期,降低成本具有重要意义。
With the development of the industry, the application of the pump is is expanding gradually. It is becoming more strict in hydraulic performance and operation stability. The impeller, as a major flowing-through parts, whose working performance and efficiency are playing a vital part in the working performance of the centrifugal pump. On the other hand, the impellers are involved in the complicated combination of the centrifugal force and water pressure. The numerical simulation and finite-element analysis are extensively used in the hydraulic machinery, which is reasonable to take the place of the traditional designing methods for their over-loaded work and low-efficiency.
     On the basis of a medium-top special pump ,the thesis discussed the flow field simulation in the impeller, static analysis with ANSYS about the impeller and geometric parameters optimization of the impeller. Firstly, a physical model was modeled by the UG, gridded in the Gambit. Using the Computational Fluid Dynamics(CFD) technology, distribution such as pressure, velocity and surface pressure on the surface of the blade was obtained about the impeller of the centrifugal pump. The static analysis and model analysis are performed by using ANSYS. At last, geometric parameters of the impeller were optimized by GA(Genetic Algorithm) ToolBoxes.
     Under the help of the formdrawing of the centrifugal pump, three-dimensional physical model of the impeller was modeled. The surfaces analysis of the impeller blade was made with the surfaces tool of the UG . The impeller modeling become more reasonable and accurated as well as more high-efficiently in designing.
     Theories and methods about the interior flow numerical simulation of the centrifugal pump were discussed and some researches were made to mesh and set the boundaries of the impeller in the thesis. The interior flow fields were simulated by the Fluent software under full-work condition of the centrifugal pump, which was contributed to the précised distributions including pressure and velocity of the interior flow and exporting the surfaces pressure data distributing the blades.
     At present, there rarely is researches involved in the strength and modal analysis which use the water as the medium. After the interior flow fields simulation, the APDL program language based on ANSYS was chosen to get the surfaces pressure date loaded on the blades successfully,obtain stress, strain and frequency characteristics of impeller with the water pressure and centrifugal force,the results show that the operation is reliable under the design condition.
     To minimize the energy loss, a single-objective function, including disc friction, hydraulic loss and bulk loss, was established and compiled to M-files with the Matlab M-file compiler. As finishing setting a reasonable variables range, the inlet and outlet vane setting angles as well as outlet blade width were optimized by the GA toolboxes based on the Matlab. According to the back calculation with the optimized parameters of the impeller, the efficiency of the centrifugal pump largely increased than before by 2.3 percent.
     In the thesis, numerical simulation and finite-element analysis were applied to physical design and analysis of the impeller. It is significant and constructive to better the security and reliability of the impeller, shorten the design cycle and reduce the cost.
引文
百度百科.2010.APDL.http://baike.baidu.com/view/946992.htm.[2010-3-11]
    查森.1988.叶片泵原理及水力设计.北京:机械工业出版社
    陈次昌,金树德.1993.水泵微型计算机辅助设计.北京:机械工业出版社:18
    方世杰等.2007.机械优化设计.北京:机械工业出版社:1
    龚曙光等.2010.ANSYS参数化编程与命令手册.北京:机械工业出版社:1
    关醒凡.1986.泵的理论与设计.北京:机械工业出版社
    关醒凡.1995.现代泵技术手册.北京:宇航出版社:554
    郭鹏程,罗兴锜,刘胜柱.2004.基于三维紊流数值计算的离心泵叶轮优化设计.机械工程学报, 40(4):181~184
    郭术义.2004.流固耦合应用研究进展.济南大学学报(自然科学版), 18(2):124~126
    海川节能.2009.水泵节能现状及前景.http://www.emc88.com/newsContent1.asp?newsID=32.[2010-03-01]
    郝一舒,王德斌,杨玮玮.2009.基于NURBS的整体叶轮建模技术.CAD/CAM与制造业信息化, (1):85~86
    胡国良,任继文.2009.ANSYS11.0有限元分析入门与提高.北京:国防工业出版社:92
    慧聪网.2005.未来泵业技术发展趋势.http://info.water.hc360.com/2005/05/20115-562374.shtml.[2010-02-25]
    姬晋廷,陈国强,涂玉平.2005.轴流式水轮机叶片的刚强度及模态有限元分析.华中电力, 18(01):25~27
    李龙,陈黎明.2003.泵优化设计国内现状及发展趋势.水泵技术, 2:8~12
    李世煌,刘树洪.1988.低比速离心泵圆盘摩擦损失的试验研究.水泵技术, (3):21~25
    李巍,陆逢升,王彤.1997.离心泵圆盘摩擦损失的实验研究.水泵技术, (1):27-30
    刘保嘉,徐宗俊,王巍.2001.曲线及曲面的光顺性研究.机械与电子, (5):49~52
    刘广兵.2007.水泵的节能现状及前景.中国给水排水, (11)
    刘厚林.2006.离心泵圆盘摩擦损失计算.农业工程学报, (12):107~109
    刘军.2009.大流量离心压缩机首级叶轮强度分析及结构改进设计研究.[硕士学位论文].大连:大连理工大学
    刘少东.2010.轴向漩涡流动的理论分析.[硕士学位论文].四川省:西华大学
    刘小民,张文斌.2010.采用遗传算法的离心叶轮的多目标自动优化设计.西安交通大学学报, 44(1):31~35
    牟介刚.2006.离心泵现代设计方法研究和工程实现. [硕士学位论文].浙江:浙江大学
    钮冬至,樊启泰.2001.用ANSYS软件研究轴流通风机叶轮的振动特性.风机技术, (05):29~30
    钱健,刘超等.2005.离心泵叶轮内部三维紊流数值模拟与验证.农业机械学报, 36(1):32~35
    商长松,陈杰.2003.二滩水电站转轮裂纹原因浅析和处理对策.水电站机电技术, S1:83~84
    邵国辉.2008.CFD技术在低比转速离心泵设计中的应用通用机械, 03:63~66
    施卫东,颜品兰,蒋卫平等.2008.基于ANSYS_PDS的泵轴可靠性分析.排灌机械, (5):1~4
    孙家广.1998.计算机图形学(第三版).北京:清华大学出版社
    谈明高.2007.离心泵水力损失的计算.江苏大学学报, 05:405~408
    汤立宏.2009.浅谈水泵的汽蚀现象及防治措施.装备制造, 04:102~103
    唐立新.2008.600MW汽轮机组主油泵叶轮的“流—固”耦合结构分析.[硕士学位论文].四川:西华大学
    王福军.2004.计算流体力学分析—CFD软件原理与应用.北京:清华大学出版社
    王佳.2009.调速型液力偶合器叶轮强度与振动特性研究.[硕士学位论文].吉林:吉林大学
    王京美,王德斌,刑渊.2001.逆向工程技术在模具制造中的应用, (1):3~6
    王瑞金,张凯.2007.Fluent技术基础与应用实例.北京:清华大学出版社
    王世军.2006.基于ANSYS平台的接触模态分析技术.安世亚太2006年用户年会论文
    王毅.2010.大流量离心压缩机首级叶轮流固耦合数值模拟.[硕士学位论文].大连:大连理工大学
    吴达人,周孝天.1991.泵原理、计算与结构.北京:机械工业出版社:12
    伍先俊,朱石坚.2004.轴流通风机叶片模态仿真及其对气动噪声的影响.风机技术, (5):40~43
    夏德伟,张俊生,陈树勇等.2006.UG NX4.0中文版机械设计典型范例教程.北京:电子工业出版社
    肖若富,王正伟.2006.基于组合优化策略的离心泵叶轮优化设计.清华大学学报, 46(5):700~703
    邢景棠等.1977.流固耦合力学概述.力学进展, 27(01):19~38
    邢志勇.2010. ANSYS的制碱业冷析循环泵动力学分析. [硕士学位论文].大连:大连交通大学
    徐建国.2009.轴流泵叶片应力与模态分析.[硕士学位论文].江苏:扬州大学
    闫海津,胡丹梅.2009.风力机叶片的三维建模.能源技术:30(2):89~95
    闫永强,梁武科.2007.CFD技术在离心泵优化设计中的应用.排灌机械, (22)2:5~7
    尹亚楠,袁清华.车身逆向过程应用中的曲面光顺.科技信息, 07:21~22
    于勇.2008.FLUENT入门与进阶教程.北京:北京理工大学出版社
    袁启铭.2010.轴流泵叶片流固耦合振动特性分析.[硕士学位论文].江苏:扬州大学
    云杰漫步多媒体CAX设计教研室编著.2009.UG NX6.0中文版曲面造型设计.北京:清华大学出版社
    张佩芳,袁寿其,黄良勇.2004.低比转速离心泵研究现状与发展趋势水泵技术.水泵制造,01:20~24
    张韬.2009. FLG40_200离心泵内流场数值模拟及性能改善.[硕士学位论文].浙江:浙江工业大学
    赵继宝.2008.国内外水泵技术的研究现状与发展前景.鸡西大学学报,8(02):110~111
    郑小波,罗兴琦,邬海军.2005.轴流式叶片的流固耦合振动特性分析.西安理工大学学报, (04):342~346
    朱保林,张淑佳,林锋,胡清波.2005.离心泵叶轮设计方法现状与发展趋势.水泵技术,02:25~28
    Adler,D.1989.Status of Centrifugal Impeller Internal Aerodynamics,Part1:Inviscid Flow Prediction Method.Trans. Journal of Engineering for Power,102:725~746
    ANSYS Inc.2007.ANSYS耦合场分析指南.ANSYS Inc.:1
    Ashihara Kosuke,Guo Shijie.2004.Optimization of Microtur-bine Aerodynamics Using CFD. Inverse Design and FEM Structural Analysis. ASME Paper Compressor Design GT-53431
    Belytschko T,Geers T L eds.1977.Computational Methods for Fluid-structure Interaction Problems.The Winter Annual Meeting of ASME,(27):2
    Cao, S., Peng, G., Yu, Z.2005.Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis. Journal of Fluids Engineering ,127:330~338
    Casey MV.1983.A Computational Geometry for the Blade and Internal Flow in Supersonic Turbo-machines of Centrifugal Compressors. Journal of Engineering for Power,105(2):288~295
    Craig Hornsby.2002. CFD-driving pump design forward. World Pumps,431:18~22
    E Blanco-Marigorta J Fernandez-Francos JL Parrondo-Gayo.2000.Numerical simulation of centrifugal pumps. ASME Fluids Engineering Summer Conference,11(1):62
    G.Pavesi,G.Cavazzini,G.Ardizzon.2008.Time–frequency characterization of the unsteady phenomena in acentrifugal pump.International Journal of Heat and Fluid Flow, 29(5):1524~1540
    Gonzalez, J., Fernandez, J., Blanco, E., Santlaria, C..2002.Numerical Simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump.ASME Journal of Fluids Engineering,125:348~355
    Gwo-Chung Tsai.2004.Rotating vibration behavior of the turbine blades with different groups of blades. Journal of Sound and Vibration, 271:547~575
    J. L. Parrondo-Gayo, J. Gonzalez-Perez, J. Fernandez-Francos.2002.The effect of the operating point on the pressure fluctuations at the blade passage frequency in the volute of a centrifugal pump.Journal of Fluids Engineering, 124:784~794
    J.C. Páscoa, A.C. Mendes, L.M.C. Gato.2009.A fast iterative inverse method for turbomachinery blade design.Mechanics Research Communications, 36(5):630~637
    J.Gonzalez, J.Fernandez-Francos,E.Blanco,C.Santolaria-Marros.2002.Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump.Journal of Fluids Engineering, 124:348~355
    John S. Anagnostopoulos.2009.A fast numerical method for flow analysis and blade design in centrifugal pump impellers.Computers & Fluids, 38(2):284~289
    Jose-Gonzalez Eduardo-Blanco Carlos-Santolaria.2002. Numerical simulation of the dynamic effects due to impeller volute interaction in a centrifugal pump. ASME Journal of Fluids Engineering,(124):348~355
    Kirkhopeh J. and Wilson G.J.1971.Analysis of coupled bladed disc vibration in Axial Flow Turbine and Fans. AIAA/ASME.12th structural Dynamics and Material conference Anaheim,4:71-375
    Marc Gugau. Transient impeller-volute interaction in a centrifugal pump.FG Turbomaschinen und Fluidantriebstechnik
    Mario flavar, Hrvoje Kozmar, Igor Sutlovi?.2009.Improving centrifugal pump efficiency by impeller trimming.Desalination,249(2):654~659
    Suthep Kaewnai, Manuspong Chamaoot, Somchai Wongwises.2009.Predicting performance of radial flow type impeller of centrifugal pump using CFD,Journal of Mechanical Science and Technology,23(6):1620~1627
    Tan C S,Haw throne W R.1984. Journal of Engineering for Gas Turbines and Power,106:346~365
    Thompson W E ed.1981.Fluid/Structure Interaction in Turbomachinery.The Winter Annual Meeting of ASME,11:15~20
    V A Riziotis S G Voutsinas ,et.2004. Aero-elastic stability of wind turbines: the problem, the methods and the issues. Wind Energy,7:373~392
    V Gnesin R Rzadkowski.2002.A coupled fluid-structure analysis for 3-D inviscid flutter of standard configuration. Journal of sound and vibration,251(2):315~327
    Vasilis Grapsas,Fotis Stamatelos,John Anagnostopoulos,Dimitris Papantonis.2008.Numerical Study and Optimal Blade Design of a Centrifugal Pump by Evolutionary Algorithms. Lecture Notes in Computer Science,5178:26~33
    Volker Carstens Ralf Kenmme Stefan Schimitt b.2003.Coupled simulation of flow-structure interaction in turbo-machinery. Aerospace Science and Technology,7:298~306
    W.A.Wahba and A.Tourlidakis.2001.A genetic algorithm applied to the design of blade profiles for centrifugal pump impellers. AIAA Computational Fluid Dynamics Conference,6:11~14
    Watanabe Hiroyoshi,Okamoto Hidenobu,Guo Shijie.2004.Optimization of Microturbine Aerodynamics Using CFD.Inverse Design and FEM Structural Analysis ASME Paper Turbine Design,GT-5358
    Zangeneh M.1991.A Compressible Three Dimensional Blade Design Method for Radial and Mixed Flow Turbomachinery Blades.J Numerical Methods in Fluids,13:599~624

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700