医学图像倾斜校正方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于医学图像有效地反映了人体生物组织大量信息,因此在临床医学上得到广泛应用。临床医生能够充分利用这些图像信息,为临床诊断、制定有效的治疗方案提供更加全面准确的资料;另一方面也可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性,进一步丰富医生的诊断经验。医学图像处理作为医学图像研究中非常关键的一环,它对完善医学诊断与治疗的手段和方法、提高计算机辅助诊断的精度与效率有重大的实用价值。
     论文针对采集到的医学图像存在倾斜现象,讨论了医学图像倾斜校正方法;针对医学图像配准速度慢、易陷入局部最优等问题,论文把倾斜校正方法应用于互信息和迭代最近点医学图像配准,并提出了改进的迭代最近点医学图像配准方法;在分析模糊集的基础上,进一步提出了基于倾斜校正和模糊理论的医学图像配准方法,这些方法不仅丰富与完善了医学图像处理的相关理论与方法,也解决了医学图像处理上的一些难题,有重大的理论意义和实用价值。概括地说,论文的研究工作包括如下内容:
     (1)医学图像倾斜校正方法研究。在医学图像成像过程中,由于某些原因,采集到的医学图像中经常存在倾斜现象,这给医学图像匹配和融合带来极大困难。针对这种情况,为了解决倾斜问题,论文在建立医学图像倾斜模型基础上,把医学图像倾斜校正分为五个过程,但总体上讲,关键在于获取图像质心坐标和图像倾斜角。根据获取图像倾斜角的方法,论文介绍和提出了七种倾斜校正方法:(a)基于图像几何矩的医学图像倾斜校正算法(Algorithm for Medical Image Tilt Correction Based on Image Moments, ACIM);(b)基于图像惯量矩阵的医学图像倾斜校正方法(Method for Medical Image Tilt Correction Based on Inertia Matrix, MCIM); (c)基于奇异值分解的医学图像倾斜校正方法(Method for Medical Image Tilt Correction Based on Singular Value Decomposition, MSVD);(d)基于主分量分析的医学图像倾斜校正方法(Method for Medical Image Tilt Correction Based on Principal Component Analysis, MPCA);(e)基于K-Means聚类的医学图像倾斜校正方法(Method for Medical Image Tilt Correction Based on K-Means Clustering, MKMC); (f)基于模糊均值聚类的医学图像倾斜校正方法(Method for Medical Image Tilt Correction Based on Fuzzy C-Means Clustering, MFCM); (g)基于自组织特征映射(Self-Organizing Feature Map, SOFM)神经网络聚类的医学图像倾斜校正方法(Method for Medical Image Tilt Correction Based on SOFM, MSOFM)。ACIM利用了医学图像几何矩的特点,使二阶中心矩变得最小时的旋转角α即为图像倾斜角;MCIM利用了医学图像惯量矩阵来获取倾斜角α;MSVD利用了SVD技术,对医学图像坐标进行奇异值分解,得到特征向量(注:论文中特征向量均为单位特征向量),获取倾斜角;MPCA是在分析PCA的基础上,通过对医学图像坐标进行K-L变换,得到特征向量,进而获取倾斜角;在分析了K-means聚类和模糊C-均值聚类算法之后,论文讨论了MKMC和MFCM,先把医学图像坐标聚成两类,拟合成一条直线,通过计算该直线斜率得到倾斜角;MSOFM与MKMC和MFCM类似,利用SOFM神经网络,把医学图像坐标聚成两类,拟合成一条直线,通过计算该直线斜率得到倾斜角。实验结果表明,这些方法对倾斜图像均有效,ACIM和MCIM校正效果最好,MSVD、MPCA、MKMC、MFCM次之,由于MSOFM聚类时间较长,时间效率最差。
     (2)倾斜校正方法在医学图像配准中应用研究。论文分析了基于互信息配准和基于迭代最近点配准两种方法的优、缺点,并把医学图像配准分为两个过程:粗配准和细配准。在粗配准中,通过ACIM、MCIM、MSVD、MPCA、MKMC和MFCM等获取配准图像的质心坐标和旋转角,并作为细配准中多参数寻优方法的初值。另外,论文提出了改进的迭代最近点配准算法,即用粗配准获取迭代最近点配准算法的初始旋转参数和平移参数,然后使用B样条梯度算子生成特征点,得到参考点集和浮动点集。实验结果表明,使用了倾斜校正方法的互信息配准和改进的迭代最近点配准能有效减少运算量,配准速度快,精度较高,而且克服了容易陷入局部最优的问题。
     (3)倾斜校正方法和模糊理论在医学图像配准中应用研究。在研究模糊集理论基础上,提出了两幅图像之间模糊距离的概念,并进一步提出了模糊信噪比的概念。以Z函数作为模糊集的隶属度函数,以参考图像和浮动图像之间的模糊信噪比作为相似性测度,通过倾斜校正方法获取配准参数初值,使用单纯形法作为多参数寻优方法寻找最优几何变换参数,进行细配准。实验结果表明,模糊信噪比和互信息一样,均能作为两幅图像的相似性测度,两者具有接近的配准精度,但前者时间效率更高,运算量更少。论文进一步推导出峰值信噪比是模糊信噪比的特例,并把峰值信噪比用作配准函数,实验表明峰值信噪比也具有较好的配准性能。在研究了线性插值、二次样条插值(a=1)、三次样条插值(a=-0.5)、二次B样条插值和三次B样条插值等插值方法之后,从插值方法、数据缺失和噪声干扰等三个方面分析和研究了模糊信噪比、峰值信噪比和互信息等三个相似性测度的鲁棒性。实验结果表明,在基于倾斜校正和模糊理论的医学图像配准时使用不同的插值方法,峰值信噪比和模糊信噪比保持了较好的有效性;在数据缺失不严重时,三个相似性测度保持了较好的有效性,但是当数据缺失较严重时,三个相似性测度均失效;当图像中存在椒盐噪声干扰时,模糊信噪比保持了较好的有效性,互信息次之,而峰值信噪比完全失效;当图像中存在高斯噪声干扰时,三个相似性测度完全失效。
Since the medical image represents a great amount of the useful information on tissues and organs inside human body, it is widely used in clinical medicine. The clinicians can make full use of the information extracted from the medical images to provide more comprehensive and accurate data for the clinical diagnosis and the decision on the effective treatment scheme. Also, based on the information provided, the doctors can qualitatively and even quantitatively analyze the contour and focus of a disease and other regions of interesting, which will significantly improve the accuracy and reliability of medical diagnosis, and further accumulates the clinical diagnostic experience for the clinicians. Medical image processing, as a very crucial part of medical image research, plays a significant role on perfecting the scheme and method for medical diagnosis and treatment, and advancing the accuracy and efficiency of computer-aided diagnosis.
     Since medical images frequently have some visible and serious tilt, which acts as costly barrier for the subsequent image registration and fusion, it is very necessary to correct the tilt. In this paper, seven correction methods are used to deal with the medical image tilt. Since the traditional medical image registrations have a heavily computational load and often trap into the local optima, the mutual information and improved iterative closest point medical image registrations based on the tilt correction are proposed. On the foundation of the analysis for fuzzy theory, the fuzzy theory medical image registration based on the tilt correction is presented in detail. These methods mentioned above not only enrich and advance the related theories and methods of medical image processing, but also resolve some problems of medical image processing. Therefore, they have great theoretical significance and practical value. In summary, the main research work and innovation are as follows:
     (1) The medical image tilt correction methods are introduced. In the process of medical imaging, often because of the pertinent imaging device with a low stability, the patients with voluntary movement or with emotional tension, and so on, the medical images frequently have some undesirable tilt, which has costly negative effect on the following image alignment and fusion. In order to solve the tilt problem, the tilt models of medical images are first designed, and then the correction tilt process is divided into five main stages. Among these stages, the key tasks focus on finding the centroid and obtaining the tilt angle of a medical image. According to the various methods for acquiring the tilt angle, seven tilt correction methods are introduced and pioneered, which are an algorithm for medical image tilt correction based on image moments (ACIM), a method for medical image tilt correction based on inertia matrix (MCIM), a method for medical image tilt correction based on singular value decomposition (MSVD), a method for medical image tilt correction based on principal component analysis (MPCA), a method for medical image tilt correction based on K-means clustering (MKMC), a method for medical image tilt correction based on fuzzy C-means clustering (MFCM), and a method for medical image tilt correction based on self-organizing feature map (MSOFM). ACIM obtains the tilt angle a by minimizing the second order central moment based on rotational invariance of a medical image; MCIM calculates the tilt angle a by the image inertia moment; MSVD and MPCA compute the eigenvectors of the coordinates of a medical image by singular value decomposition and principal component analysis respectively to get the tilt angleα; As for MKMC, MFCM and MSOFM, they first cluster the coordinates of a medical image into two classes by using the K-means clustering, fuzzy C-means clustering and self-organizing feature map respectively, and then fit the two classes to a straight line, finally obtain the tilt angle a by computing the slope of the straight line. The experimental results reveal that, all the proposed methods are effective for correcting the tilt medical images. Among these methods, the correction effects of ACIM and MCIM occupy first place, MSVD, MPCA, MKMC and MFCM comes second. Since MSOFM has the longest clustering time, it is the worst correction method.
     (2) Medical image registration based on the tilt correction is studied. In this paper, after the advantages and disadvantages of the traditional mutual information and iterative closet point medical image registrations are analyzed and expounded, and then the medical image registration is divided into two steps:the coarse and precise registrations. In the process of the coarse registration, the centroids and the tilt angles of reference and floating images are obtained by applying ACIM, MCIM, MSVD, MPCA, MKMC and MFCM respectively, and are viewed as the initial values for the precise registration. In addition, an improved iterative closest point algorithm is proposed. The use of the coarse registration first obtains the initial rotation and translation parameters for the iterative closest point algorithm, and then the B-spline gradient operator is applied to yield the feature points for the reference and floating point sets. The experiments reveal that the mutual information and iterative closet point registrations based on the tilt correction can effectively reduce the computational load, advance registration efficiency, decrease the possibility of failing to register images, and avoid getting into the local optima.
     (3) Medical image registration based on the tilt correction and fuzzy theory is proposed. Two new concepts of fuzzy distance and fuzzy signal-to-noise ratio (FSNR) between two images are put forward after delineating the fuzzy theory. Taking the Z-function as the membership function of a fuzzy set, the FSNR as a new similarity measure between the reference and floating images, the tilt correction method mentioned above as the tool for acquiring the initial registration parameters, and combining with the simplex method, applies to explore the optimal transformation parameters, finally precise registration is realized. This proposed method can cater to both mono-modality and multi-modality image registrations. The experimental results show that this proposed method has a simple implementation, a low computational load, a fast registration and good registration accuracy. Furthermore, compared with the mutual information medical image registration, the proposed method has a higher processing efficiency and a lower computational load. However, they have approximate registration accuracy. Further, the peak signal-to-noise ratio (PSNR) is derived from the definition of the FSNR, and is selected as a similar measure in this paper. The experiments show that the PSNR has an acceptable registration performance as well. The linear, quadratic spline (a=1), cubic spline (a=-0.5), quadratic B-spline, and cubic B-spline interpolations are first depicted and discussed, and then the robustnesses of the FSNR, PSNR and mutual information are analyzed and elaborated from three aspects:interpolation method, data deficiency and noise interference. The experimental results illustrate that when various interpolation methods are used for the medical image registration based on the tilt correction and fuzzy theory, the FSNR and PSNR are effective and practical. In the case of the images with less data deficiency, the three similarity measures are effective; but with serious data deficiency, the three similarity measures badly run. Also, when the images are corrupted by the salt & pepper noise, the FSNR is the most effective, the mutual information takes second, and the PSNR completely fails. More unfortunately, the three similarity measures are totally ineffective in the case of the images corrupted by Gaussian noise.
引文
[1]田娅,饶妮妮,蒲立新.国内医学图像处理技术的最新动态[J].电子科技大学学报,2002,31(50):485-489.
    [2]赵于前.基于数学形态学的医学图像处理理论与方法研究:[博士学位论文].长沙:中南大学,2006.
    [3]Maes F., Collignon A.,Vandermeulen D.,et al. Multimodality image registration by maximization of mutual information[J]. IEEE Transactions on Medical Imaging,1997,16(2):187~198.
    [4]Noblet V.,Heinrie C., Heitz F., et al.3-D deformable image registration:A topology preservation scheme based on hierarchical deformation models and interval analysis optimization[J], IEEE Transactions on Image Processing,2005,14(5):553~566.
    [5]Kybic J., Unser M. Fast parametric elastic image registration[J]. IEEE Transactions on Image Processing,2003,12(11):1427~1442.
    [6]Krucker J. F., LeCarpentier G. L., Fowlkes J. B., et al. Rapid elastic image registration for 3-D ultrasound[J]. IEEE Transactions on Medical Imaging,2002,21(11):1384~1394.
    [7]Sorzano C.0. S., Thevenaz P., Unser M. Elastic registration of biological images using vector-spline regularization[J], IEEE Transactions on Biomedical Engineering,2005,52(4):652~663.
    [8]Paul V., William M., Wells I. Alignment by maximization of mutual information [J]. International Journal of Computer Vision,1997,24 (2):137~154.
    [9]Fei B., Wheaton A., Lee Z., et al. Automatic MR volume registration and its evaluation for the pelvis and prostate[J]. Physics in Medicine and Biology,2002,47(5):823~838.
    [10]芮挺,丁健,王金岩,等.SVD特征的快速景像匹配方法[J].计算机辅助设计与图形学学报,2006,18(2):212-216.
    [11]火元莲,齐永锋,吕振肃,等.基于混合粒子群优化算法的医学图像配准[J].红外技术,2007,20(9):545-547.
    [12]Anagnostopoulos C.N. E., Anagnostopoulos I.E., Loumos V.,et al. A license plate-recognition algorithm for intelligent transporta- tion system applications[J]. IEEE Transactions On Intelligent Transportation Systems,2006,7(3):377~392.
    [13]Itay B. Y., Nate H., Klara K., et al. Line segmentation for degraded handwritten historical documents[C]. Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona,2009,1161~1165.
    [14]Berger A. D., Khosla P.K. The modified adaptive Hough transform (MAHT)[J]. Journal of Robotic Systems,2007,7(2):277~290.
    [15]Fernandes L. A. F., Oliveira M. M. Real-time line detection through an improved Hough transform voting scheme [J]. Pattern Recognition, 2008,41(1):299~314.
    [16]Singh C., Bhatia N., Kaur A. Hough transform based fast skew detection and accurate skew correction methods [J]. Pattern Recognition,2008,41 (12):3528~3546.
    [17]Lai J. Z. C., Liaw Y. C., Liu J. Fast k-nearest-neighbor search based on projection and triangular inequality[J]. Pattern Recognition, 2007,40(2):351~359.
    [18]Chou C. H., Chu S. Y., Chang F. Estimation of skew angles for scanned documents based on piecewise covering by parallelograms[J]. Pattern Recognition,2007,40(2):443~455.
    [19]Liu H., Wu Q., Zha H. B., et al. Skew detection for complex document images using robust borderlines in both text and non-text regions[J]. Pattern Recognition Letters,2008,29(13):1893~1900.
    [20]Comelli P., Ferragina P., Granieri M. N., et al. Optical recognition of motor vehicle license plates [J]. IEEE Transactions on Vehicular Technology,1995,44(4):790~799.
    [21]Hegt H. A., Haye R.J., Khan N. A. A high performance license plate recognition system[J]. IEEE International Conference on Systems, Man, and Cybernetics,1998,4357~4362.
    [22]Yu C.C., Wen C. Y., Hun Z. D. A 3-D transformation to improve the legibility of license plate numbers[J]. Journal of Forensic Sciences,2002,47(3):578~585.
    [23]郝永杰,刘文耀,路烁.畸变汽车牌照图像的空间校正[J].西南交通大学学报,2002,37(4):417-420.
    [24]贾晓丹,李文举,王海姣.一种新的基于Radon变换的车牌倾斜校正方法[J].计算机工程与应用,2008,44(3):245-248.
    [25]Pan M.S., Yan J. B., Xiao Z. H. A new method for correcting vehicle license plate tilt[J]. International Journal of Automation and Computing,2009,6(2):210~216.
    [26]Louloudis G., Halatsis K., Gatos B., et al. A block-based Hough transform mapping for text line detection in handwritten documents[C]. Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition (IWFHR 2006), La Baule, France,2006,515~520.
    [27]Manmatha R., Rothfeder J. L. A scale space approach for automatically segmenting words from historical handwritten documents[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27(8):1212~1225.
    [28]Bruzzone E., Coffetti M. C. An algorithm for extracting cursive text lines[C]. Proceedings of the Fifth International Conference on Document Analysis and Recognition, Bangalore, India,1999, 749~754.
    [29]Fletcher L. A., Kasturi R. A robust algorithm for text string separation from mixed text/graphics images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(6):910~918.
    [30]Pu Y., Shi Z. A natural learning algorithm Based on Hough transform for text lines extraction in handwritten documents[C]. Proceedings of the 6th International Workshop on Frontiers in Handwriting Recognition, Taejon, Korea,1998,637~646.
    [31]Shi Z., Govindaraju V. Line separation for complex document images using fuzzy run length[C], Proceedings of the First International Workshop on Document Image Analysis for Libraries,2004,306~311.
    [32]Abuhaiba I.S.I., Datta S., Holt M. J. J. Line extraction and stroke ordering of text pages [C]. Proceedings of the Third International Conference on Document Analysis and Recognition, Montreal, Canada, 1995,390~393.
    [33]Nicolas S., Paquet T., Heutte L. Text line segmentation in hand-written document using a production system[C]. Proceedings of the 9th IWFHR, Tokyo, Japan,2004,245~250.
    [34]Shi Z., Setlur S., Govindaraju V. Text extraction from gray scale historical document images using adaptive local connectivity map[C]. Proceedings of the Eighth International Conference on Document Analysis and Recognition, Seoul, Korea,2005,794~798.
    [35]汪同庆,朱永权,王洪.基于游长平滑的文档图像倾斜校正[J].计算机工程,2004,30(1):141-143.
    [36]夏波涌,童悍操.基于纹理梯度的文档图像的倾斜校正方法[J].计算机仿真,2009,26(3):240-243.
    [37]周冠玮,平西建,程娟.变换的文本图像倾斜校正方法[J].计算机应用,2007,27(7):1813-1816.
    [38]卢振泰,冯衍秋,冯前进,等.基于主相位一致性的医学图像配准[J].电子学报,2008,36(10):1974-1978.
    [39]Wein W., Brunke S., Khamene A., et al. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention[J]. Medical Image Analysis,2008,12(5):577~585.
    [40]Marsland S., Twining C. J., Taylor C. J. A minimum description length objective function for groupwise non-rigid image registration [J]. Image and Vision Computing,2008,26(3):333~346.
    [41]Klein A., Andersson J, Ardekani B.A., et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration[J]. NeuroImage,2009,46(3):786~802.
    [42]Shen D. G. Fast image registration by hierarchical soft correspond-ence detection[J]. Pattern Recognition,2009,42(5):54~961.
    [43]Geng X. J., Christensen G. E., Gu H., et al. Mplicit reference-based group-wise image registration and its application to structural and functional MRI[J]. NeuroImage,2009,47(94):1341~1351.
    [44]何元烈.多模医学图像配准与融合技术及医学智能辅助诊断系统研究:[博士学位论文].广州:华南理工大学,2006.
    [45]Slomka P. J., Baum R. P. Multimodality image registration with software:state-of-the-art [J]. European Journal of Nuclear Medici-ne and Molecular Imaging,2009,36(s1):44~55.
    [46]Godley A., Ahunbay E., Peng C., et al. Automated registration of large deformations for adaptive radiation therapy of prostate cancer[J]. Medical Physics,2009,36(4):1433~1441.
    [47]Lange T., Papenberg N., Heldmann S.3D ultrasound-CT registration of the liver using combined landmark-intensity information[J]. International Journal of Computer Assisted Radiology and Surgery, 2009,4(1):79~88.
    [48]Yin Y. B., Hoffman E. A., Lin C. L. Mass preserving nonrigid registrat-ion of CT lung images using cubic B-spline[J]. Medical Physics, 2009,36(9):4213~4222.
    [49]荣成城,周健,罗立民.基于B样条插值函数的人脑MR图像非刚体配准方法[J].数据采集与处理,2007,22(1):78-83.
    [50]Likar B., Pernui F. A hierarchical approach to elastic registration based on mutual information [J]. Image and Vision Computing,2001, 19(1-2):33~44.
    [51]Gholipour A., Kehtarnavaz N., Briggs R., et al. Brain functional localization:a survey of image registration techniques[J]. IEEE Transactions on Medical Imaging,2007,26(4):427~51.
    [52]栾红霞.基于定量定性互信息的医学图像配准:[博士学位论文].上海:上海交通大学,2007.
    [53]Ellis R. E., Toksvig L.S., Marcacci M., et al. A biocompatible fiduical marker for evaluating the accuracy of CT image registration[J]. Computer Assisted Radiology,1996,1124:693~698.
    [54]Chopra S., Htlnerbein M., Eulenstein S., et al. Development and validation of a three dimensional ultrasound based navigation system for tumor resection[J]. European Journal of Surgical Oncology,2008,34(4):456~461.
    [55]Biswal B.B., Hyde J. S. Contour-based registration technique to differentiate between task-activated and head motion-induced signal variations in fMRI [J]. Magnetic Resonance in Medicine, 1997,38 (3):470~476.
    [56]Thongphiew D., Wu Q. J., Lee W. R. Comparison of online IGRT techniques for prostate IMRT treatment:Adaptive vs repositioning correction[J]. Medical Physics,2009,36(5):1651~1662.
    [57]Alessio A.M., Kinahan P. E., Champley K. M. Attenuation-emission alignment in cardiac PET/CT based on consistency conditions[J]. Medical Physics,2010,37(3):1191-1200.
    [58]Shamir R. R., Freiman M., Joskowicz L., et al. Surface-based facial scan registration in neuronavigation procedures:a clinical study [J]. Journal of Clinical Neuroscience,2010,17(4):455~459.
    [59]Riboldi M., Gierga D.P., Chen G. T. Y., et al. Accuracy in breast shape alignment with 3D surface fitting algorithms[J]. Medical Physics,2009,36(4):1193~1198.
    [60]Szeliski R., Lavallee S. Matching 3-D anatomical surfaces with non-rigid deformations using octree-splines [J]. International Journal of Computer Vision,1996,18(2):171~186.
    [61]Thirion J. P. Image matching as a diffusion process:an analogy with Maxwell's demons[J]. Medical Image Analysis,1998,2(3):243~260.
    [62]Herring J. L., Dawant B. M., Maurer C. R., et al. Surface-based registration of CT images to physical space for image-guided surgery of the spine:a sensitivity study[J]. IEEE Transactions on Medical Imaging,1998,17(5):743~761.
    [63]Hyunjin P., Peyton H., Kristy K., et al. Adaptive registration using local information measures[J], Medical Image Analysis, 2004,8 (4):465~473.
    [64]Can A., Stewart C. A feature-based, robust, hierarchical algorithm for registration palm of images of the curved human retina [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (3):347~363.
    [65]Cavagnaro D.R., Myung J.I., Pitt M. A., et al. Adaptive Design Optimization:A Mutual Information-Based Approach to Model Discrimination in Cognitive Science [J]. Neural Computation,2010, 22(4):887~905.
    [66]Collignon A. Multi-modality medical image registration by maximi-zeation of mutual information [Ph. D. thesis]. Leuven:Catholic Univ-ersity of Leuven,1998.
    [67]Collignon A., Maes F., Delaere D., et al. Automated multi-modality image registration based on information theory[J]. Information Processing in Medical Imaging.1995,263~274.
    [68]Wells Ⅲ W. M., Viola R., Kikinis R. Multi-modal volume registration by maximization of mutual information[J]. Medical Robotics and Computer Assisted Surgery.1995, pp.55~62.
    [69]Gao Z. Y., Gu B., Lin J. R. Monomodal image registration using mutual information based methods[J]. Image and Vision Computing,2008, 26(2):164~173.
    [70]Chu M. Y., Chen H. M., Hsieh C. Y., et al. Adaptive Grid Generation Based Non-rigid Image Registration using Mutual Information for Breast MRI[J]. Journal of Signal Processing Systems,2009,54(1): 45~63.
    [71]Zadeh L. A. Fuzzy sets[J]. Information and Control,1965,8(3): 338~353.
    [72]Szmidt E., Kacprzyk J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,2001,118(3):467~477.
    [73]Pal S. K., King R. A. On edge detection of X-ray images using fuzzy sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence,1983,5(1):69~77.
    [74]Yang Z., Chung F. L., Wang S. T. Robust fuzzy clustering-based image segmentation[J], Applied Soft Computing,2009,9(1):80~84.
    [75]Das S., Konar A. Automatic image pixel clustering with an improved differential evolution[J]. Applied Soft Computing,2009,9(1):226 ~236.
    [76]Khotanlou H., Colliot 0., Atif J., et al. A brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models[J]. Fuzzy Sets and Systems,2009, 160(10):1457~1473.
    [77]Fan J.C., Han M., Wang J. Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation [J]. Pattern Recognition,2009,42(11):2527~2540.
    [78]Lizarazo I.,Elsner P. Fuzzy segmentation for object-based image classification [J]. International Journal of Remote Sensing,2009, 30(6):1643~1649.
    [79]Nakamura K., Fisher E.Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients[J]. Neurolmage,2009,44(3):769~776.
    [80]黄建军,靳华,赵荣椿.基于模糊自适应共振理论的图像分割[J].西北工业大学学报,2000,18(3):345-348.
    [81]孔祥维,谢存,徐蔚然.基于多特征和模糊推理的边缘检测[J].电子学报,2000,28(6):36-39.
    [82]赵初,王纯.模糊边缘检测方法[J].模式识别与人工智能,1999,12(1):79-84.
    [83]Lee C. S., Kou Y. H., Yui P. T. Weighted fuzzy mean filter for image processing[J]. Journal of Fuzzy Sets and Systems,1997,89(1): 157~180.
    [84]刘恒殊,黄廉卿.基于模糊集理论的医学CR图像增强[J].光学精密工程,2002,10(1):94-97.
    [85]程丹松,黄建华,于志国,等.基于模糊理论的医学图像增强方法[J].哈尔滨工业大学学报,2007,39(3):435-437.
    [86]Unser M. Spline:A perfect fit for signal and image processing[J]. IEEE Signal Processing,1999,16(8):22~38.
    [87]郑庆帅,张洛平.基于B样条插值的医学图像三维重构技术[J].计算机工程,2006,32(24):229-231.
    [88]Szeliski R., Coughlan J. Spline-based image registration[J]. International Journal of Computer Vision,1997,22:199~218.
    [89]刘新刚,陈武凡,陈光杰.基于刚-弹性变换的医学图像塔式配准新算法[J].南方医科大学学报,2006,26(5):587-590.
    [90]余成波,秦华峰,张莲.基于B样条函数的图像分割分水岭算法研究[J].压电与声光,2008,30(3):356-358.
    [91]汤红忠,黄辉先,张东波,等.基于B样条曲线模型的彩色图像分割[J].计算机工程,2009,35(2):214-215.
    [92]Unser M., Aldroubi A., Eden M. B-spline Signal Processing:Part-I Theory[J]. IEEE Transactions on Signal Processing,1993,41(2): 821~833.
    [93]Unser M., Aldroubi A., Eden M. B-spline Signal Processing:Part-II Theory[J]. IEEE Transactions on Signal Processing,1993,41(2): 834~848.
    [94]Lehmann T. M., Gonner C., Spitzer K. Survey:interpolation methods in medical image processing[J]. IEEE Transactions on Medical Imaging,1999,18(11):1049~1075.
    [95]Hu M. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory,1962, (8):179~187.
    [96]Wong Y. R. Matching with invariant moments[J]. Computer Graphics and Image Processing,1978,8(1):16~24.
    [97]黎雷生,肖德贵.基于不变矩的步态识别[J].计算机应用,2005,25(8):1795-1796.
    [98]李迎春,陈贺新,杨建波,等.基于矩不变的飞机识别算法[J].吉林大学学报:信息科学版,2002,20(3):15-19.
    [99]Flusser J., Tomas S. Pattern recognition by affine moment invariants[J]. Pattern Recognition,1993,26(1):167~174.
    [100]周振环,赵明.基于不变矩景象匹配算法[J].计算机工程,2007,33(22):203-205.
    [101]倪青青,王昊.基于一阶和二阶亮度矩不变的图像阈值分割的迭代算法[J].上海师范大学学报:自然科学版,2006,35(3):39-42.
    [102]Huang T.S., Narendra P.M. Image restoration by singular value decomposition [J]. Applied Optics,1975,14(9):2213~2216.
    [103]Koprinarov I. N., Hitchcock A. P., Mccrory C. T., et al. Quantitative mapping of structured polymeric systems using singular value decomposition analysis of soft X-ray images[J]. Journal of physical chemistry B,2002,106(21):5358~5364.
    [104]Zientara G. P., Panych L. P., Jolesz F.A. Dynamically adaptive MRI with encoding by singular value decomposition[J]. Magnetic Resonance in Medicine,1994,32(2):268~274.
    [105]Fish D. A., Grochmalicki J., Pike E. R. Scanning singular-value-decomposition method for restoration of images with space-variant blur[J]. Journal of the Optical Society of America A,1996,13 (3): 464~469.
    [106]Klema V., Laub A. The singular value decomposition:Its computation and some applications [J]. IEEE Transactions on Automatic Control, 1980,25(2):164~176.
    [107]Chang C. C., Tsai P., Lin C. C. SVD-based digital image watermarking scheme[J]. Pattern Recognition Letters,2005,26(10):1577~1586.
    [108]Yang J., Zhang D., Frangi A. F., et al. Two-dimensional PCA:a new approach to appearance-based face representation and recognition[J]. Ieee Transactions On Pattern Analysis And Machine Intelligence,2004,26(1):131~137.
    [109]Draper B. A., Baek K., Bartlett M. S., et al. Recognizing faces with PCA and ICA[J]. Computer Vision and Image Understanding,2003, 91(1-2):115~137.
    [110]Li X., Yeh A.G.0. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta[J]. International Journal of Remote Sensing,1998,19(8):1501~1518.
    [111]Mika S., Scholkopf B., Smola A., et al. Kernel PCA and de-noising in feature spaces[J]. Proceedings of the 1998 conference on Advances in neural information processing systems Ⅱ,1999,536-542.
    [112]华继钊,王建国,杨静宇.基于PCA的边缘检测方法[J].中国图象图形学报,2009,14(5):912-919.
    [113]Abadpour A., Kasaei S. Color PCA eigenimages and their application to compression and watermarking[J]. Image and Vision Computing,2008,26(7):878~890.
    [114]Carevic D.,Caelli T. Region-based coding of color images using Karhunen-Loeve transform[J]. Graphical Models and Image Processing,1997,59(1):27~38.
    [115]Liang Y. C., Lee H. P., Lim S. P., et al. Proper orthogonal decomposition and its application-Part I:Theory[J]. Journal of Sound and Vibration,2002,252(3):527~544.
    [116]Liang Y. C., Lin W. Z., Lee H. P., et al. Proper orthogonal decomposition and its application-Part Ⅱ:Model reduction for MEMS dynamical analysis [J]. Journal of Sound and Vibration,2002, 256(3):515~532.
    [117]吴春国,梁艳春,孙延风,等.关于SVD与PCA等价性的研究[J].计算机学报,2004,27(2):286-288.
    [118]Bezdek J. C. Fuzzy Mathematics in Pattern Classification, [Ph.D Thesis]. USA:Cornell University,1973.
    [119]Bezedek J. C. A convergence theorem for the fuzzy ISODATA clustering algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(1):1-7.
    [120]Lee S.K.,Vannier M. W. Post-acquisition correction of MR inhomoge-neities[J]. Magnetic Resonance in Medicine,1996,36(2):276~286.
    [121]Pham D., Prince J. An adaptive fuzzy segmentation algorithm for three-dimensional MRI[J]. Information Processing in Medical Imaging,1996,140~153.
    [122]Udupa J. K., Samarasekera S. Fuzzy connectedness and object definition:theory, algorithms, and applications in image segment-ation[J]. Graphical Model and Image Processing,1995,58(3):246~ 261.
    [123]郑华利,周献中,王建宇.FCM图像分割算法的特征分析与改进[J].计算机工程,2004,30(5):17-18.
    [124]谢明霞,陈科,郭建忠.基于图谱理论的FCM图像分割方法研究[J].计算机应用,2008,28(11):2912-2914.
    [125]王海波,李雪耀.基于FCM聚类算法的颅内出血CT图像分割[J].CT理论与应用研究,2009,18(2):99-105.
    [126]Cannon R. L., Dave J. V., Bezdek J. C. Efficient implementation of the Fuzzy C-Means clustering algorithm[J]. IEEE Transactions on Pattern Analysis and Machine,1986,8(2):248~255.
    [127]Hathaway R. J., Bezdek J. C. Local convergence of the fuzzy c-means algorithms[J]. Pattern Recognition,1986,19(6):477~480.
    [128]Hathaway R. J., Davenport J. W., Bezdek J. C. Relational duals of the c-means algorithms[J]. Pattern Recognition,1989,22(2):205~212.
    [129]Ismail M. A., Selim S. Z. Fuzzy c-means:optimality of solutions and effective termination of the algorithm[J]. Pattern Recognition, 1986,19 (6):481~485.
    [130]Markey M. K., Lo J. Y., Tourassi G. D.,et al. Self-organizing map for cluster analysis of a breast cancer database[J]. Artificial Intelligence in Medicine,2003,27(2):113~127.
    [131]Zhang Z. L., Sun S. H., Zheng F. C. Image fusion based on median filters and SOFM neural networks:a three-step scheme [J]. Signal Processing, 2001,81 (6):1325~1330.
    [132]Papamarkos N. Color reduction using local features and a SOFM neural network[J]. International Journal of Imaging Systems and Technology,1999,10(5):470~476.
    [133]Kurdthongmee W. A novel hardware-oriented Kohonen SOM image compression algorithm and its FPGA implementation[J]. Journal of Systems Architecture,2008,54(10):983~994.
    [134]Huang H. Y., Chen Y. S, Hsu W. Color image segmentation using a self-organizing map algorithm[J]. Journal of Electronic Imaging,2002, 11(2):136~148.
    [135]Jiang Y., Zhou Z. H. SOM Ensemble-Based Image Segmentation[J]. Neural Processing Letters,2005,20(3):171~178.
    [136]Pluim J. P. W., Maintz J. B. A., Viergever M. A. Mutual-information-based registration of medical Images:A Survey [J]. IEEE Transact-ions on Medical Imaging,2003,22(8):986~1004.
    [137]Studholme C., Hill D. L. G., Hawkes D. J. An overlap invariant entropy measures of 3D medical image alignment[J]. Pattern Recognition, 1999,32(1):71~86.
    [138]Merck D., Tracton G., Saboo R., et al. Training models of anatomic shape variability[J]. Medical Physics,2008,35(8):84~96.
    [139]Hill D. L. G., Maurer C. R., Maciunas J, et al. Measurement of intraoper-ative brain surface deformation under a craniotomy[J]. Neurosurgery,1998,43(3):514~526.
    [140]Studholme C., Constable R. T., Duncan J. S. Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model[J]. IEEE Transactions on Medical Imaging,2000,19 (1):1115~1127.
    [141]Arun K. S., Huang T.S., Blostein S. D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(5):698~700.
    [142]Besl P. J., Mckay N. D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14 (2):239~256.
    [143]Chen Y., Medioni G. Object modeling by registration of multiple range images[J]. Image and Vision Computing,1992,10(3):145~155.
    [144]Bergevin R., Soucy M., Gagnon H., et al. Towards a general multi-view registration technique[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996.18(5):540~547.
    [145]Rusinkiewicz S., Levoy M. Efficient variants of the ICP algorithm[C]. Proceedings of the 3rd International Conference on 3-D Digital Imaging and Modeling, Quebec,2001,145~152.
    [146]Park S. Y., Subbarao M. Automatic 3D model reconstruction based on novel pose estimation and integration techniques[J]. Image and Vision Computing,2004,22(8):623~635.
    [147]Gelfand N., Ikemoto L., Rusinkiewicz S., et al. Geometrically stable sampling for the ICP algorithm[C]. Proceedings of the 4th International Conference on 3-D Digital Imaging and Modeling. Stanford University, CA, USA,2003:260~267.
    [148]李世飞,王平,沈振康.迭代最近点算法研究进展[J].信号处理,2009,25(10):1582-1588.
    [149]Kaneko S., Kondo T., Miyamoto A. Robust matching of 3D contours using iterative closest point algorithm improved by M-estimation [J]. Pattern Recognition,2003,36(9):2041~2047.
    [150]Pullman N. J. Matrix theory and its applications. Marcel Dekker, New York,1976.102~117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700