负载HCMV pp65_(341-349)抗原肽的HLA-A*2402四聚体的制备及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人巨细胞病毒(human cytomegalovirus,HCMV)是一种广泛存在的β疱疹病毒,其感染普遍存在于所有人群中,在免疫功能低下者可发生严重的HCMV疾病。最近研究表明,HCMV血清阳性和免疫衰老的许多生物标记相关,是预测老年群体死亡率的免疫参数之一。抗原特异性细胞毒T淋巴细胞(cytotoxic T lymphocytes,CTL)是抗细胞内感染和杀伤肿瘤细胞的重要效应细胞,在机体免疫防御中发挥着重要作用。主要组织相容性复合体Ⅰ类分子(MHCⅠ)四聚体技术(tetramer technology)灵敏度高、特异性强,目前已成为研究CTL免疫应答的核心技术。然而四聚体通用性差,每个MHCⅠ-肽四聚体均需针对特定MHCⅠ分子而设计,制备四聚体应首选基因频率相对较高的等位基因。HLA-A*2402是东亚群体中最常见的等位基因之一,尤其在日本(基因频率58.1%)及中国(基因频率32.9%)群体中常见,这说明值得制备HLA-A*2402四聚体。
     为研究HLA-A24~+人群中HCMV特异性CD8~+T细胞免疫应答规律,本文制备了负载HLA-A*2402限制性HCMV pp65_(341-349)抗原肽(QYDPVAALF,QYD)的可溶性HLA-A*2402-QYD四聚体,对HLA-A24~+健康供者外周血中HCMV特异性CD8~+T细胞的频率、表型及功能状态进行了深入分析。以RT-PCR方法克隆HLA-A*2402重链基因的cDNA,构建了HLA-A*2402重链胞外域与BSP(BirA substrate peptide)融合蛋白(HLA-A*2402-BSP)的原核表达载体,然而该融合蛋白在E.coli未见任何表达。通过同义突变将氨基端(N端)区域编码区的稀有密码子突变为E.coli偏好的密码子,并有效降低其G/C含量,突变型HLA-A*2402-BSP(mHLA-A*2402-BSP)在E.coli中获得了高水平表达,表明通过密码子优化提高HLA-A*2402在E.coli中的表达策略是成功的。在此基础上复性获得负载HLA-A*2402限制性HCMV pp65_(341-349)抗原肽QYD的可溶性HLA-A*2402-QYD单体分子和具有特异结合活性的HLA-A*2402-QYD四聚体,并对其最佳用量进行了滴定,结果表明0.35μg四聚体用于100μl全血时,特异性CTL染色结果最佳,即染色的CTL荧光强度保持较高水平而非特异性染色明显减少。进一步利用所构建的HLA-A*2402-QYD四聚体结合流式细胞术,对HLA-A24~+健康中国供者外周血中HCMV特异性CD8~+T细胞的频率、多种表型(CD62L、CCR7、CD127、CD28、CD27、PD-1)及穿孔素分泌水平进行了详细分析。结果显示QYD肽特异性CD8~+T细胞占总CD8~+T细胞的频率为0.11%~1.52%,这些细胞的表型及穿孔素分泌水平存在高度的异质性,提示这些细胞是由于处于不同分化阶段和不同功能状态的多种类型的细胞所组成。
     总之,我们通过密码子优化策略使mHLA-A*2402-BSP重组蛋白在E.coli获得了高效表达,并成功制备了负载HLA-A*2402限制性HCMV抗原肽QYD的可溶性HLA-A*2402-QYD四聚体;进一步利用该四聚体结合结合流式细胞术,对HLA-A24~+健康中国供者外周血中HCMV特异性CD8~+T细胞的频率、多种表型及穿孔素分泌水平进行了分析,从而为深入研究中国HLA-A24~+人群中HCMV特异性CD8~+T细胞应答提供了有价值的数据。
Human cytomegalovirus(HCMV) is a ubiquitous human persistent virus infecting most of the world populations and HCMV diseases are frequently seen in immunosuppressed individuals. Furthermore, recent studieshave demonstrated that HCMV seropositivity is one of immunological parameters which predicts incipient mortality in an elderly population. Major histocompatibility complex class I(MHC I) tetramer technology has been widely used for quantitation, phenotypic and functional characteristics of antigen-specific cytotoxic T lymphocytes(CTL), which are believed to play an essential role in the immune defense against cancer and infectious diseases. However, the high polymorphism of MHC I molecules-human leukocyte antigen(HLA) in humans—hampers the universal application of tetramer technology, thus the most frequently observed HLA class I alleles are preferable for tetramer construction. HLA-A*2402 is one of the most common HLA class 1 allele in East Asian populations, especially in the Japanese(allelic frequency 58.1%) and Chinese populations(allelic frequency 32.9%).
     In order to study the CD8~+ T cell responses in Chinese populations, we described here the generation and application of HLA-A*2402 tetramer loaded with HCMV pp65_(341-349) peptide (QYDPVAALF, QYD). The cDNA of HLA-A*2402 heavy chain was cloned by RT-PCR from one of the donors. DNA fragment encoding the ectodomain of HLA-A*2402 heavy chain fused at its carboxyl-terminal a BirA substrate peptide(BSP) was amplified by PCR with the cloned heavy chain cDNA as a template. The wild-type HLA-A*2402-BSP was not expressed in Escherichia coli(E. coli), while mutant HLA-A*2402-BSP with optimized codons was overexpressed as inclusion bodies in E. coli. Furthermore, the soluble HLA-A*2402-QYD monomers were generated by in vitro refolding of washed inclusion bodies in the presence ofβ_2-microglobulin and OYD peptide. The tetramer was formed by mixing HLA-A*2402-QYD monomers with streptavidin-PE at a molar ratio of 4: 1. Flow cytometry analysis indicated that this tetramer possessed binding activity with specific CTL from HLA-A24~+ donors. The titration of HLA-A*2402-QYD tetramer dosage was performed and the optimal dosage for 100μL whole blood was determined to be 0.35μg, under which the mean fluorescence intensity(MFI) of specific staining was higher while unspecific staining of CD8~+ T cells was quiet low. Furthermore, the HLA-A*2402-QYD tetramer was utilized and the the quantitation, phenotypic and functional characteristics(CD62L、CCR7、CD127、CD28、CD27、PD-1 and Perforin) of HCMV specific CTL from healthy Chinese HLA-A24~+ donors was investigated. The results showed the frequencies of tetramer~+ CTL were 0.11%-1.52%(mean 0.42%) within total CD8~+ T cells, while phenotypic and functional characteristics of tetramer~+ CD8~+ T cells indicated that they are highly heterogeneous, suggesting they may be composed of CD8~+ T cells at various differentiated stages.
     In conclusion, the cDNA of HLA-A*2402 heavy chain was successfully cloned and HLA-A*2402-BSP was overexpressed in E. coli by codon optimization. Furthermore, HLA-A*2402-QYD tetramer was prepared from this fusion protein and it was biologically functional. This tetramer was utilized and the quantitation, phenotypic and functional characteristics of HCMV-specific CTL from healthy Chinese HLA-A24~+ donors was investigated, which provides valuable data for further characterization of antigen-specific CD8~+ T cells from HLA-A24~+ subjects.
引文
[1] Sissons JG, Cannichael AJ, McKinney N, Sinclair JH, Wills MR. Human cytomegalovirus and immunopathology. Springer Semin Immunopathol, 2002, 24(2): 169-185
    
    [2] Harari A, Zimmerli SC, Pantaleo G. Cytomegalovirus (CMV)-specific cellular immune responses. Hum Immunol, 2004, 65(5):500-506
    [3] Reddehase MJ. Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol, 2002,2(11):831-844
    [4] Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A. Human immunosenescence: is it infectious? Immunol Rev 2005,205(1):257-268
    [5] Koch S, Solana R, Dela Rosa O, Pawelec G Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech Ageing Dev, 2006,127(6):538-543
    [6] Pawelec G, Koch S, Franceschi C, Wikby A. Human immunosenescence: does it have an infectious component? Ann N Y Acad Sci 2006,1067:56-65
    [7] Harty JT, Tvinnereim AR, White DW. CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol, 2000,18(1):275-308
    [8] Altaian JD, Moss PAH, Goulder PJR, Barouch DH, McHeyzer-Williams MG., Bell JI,McMichael AJ, Davis MM. Phenotypic analysis of antigen-specific T lymphocytes [Published erratum appears in Science 1998, 280(5371):1821]. Science, 1996,274(5284):94-96
    [9] Meidenbauer N, Hoffmann T K, Donnenberg A D. Direct visualization of antigen-specific T cells using peptide-MHC-class I tetrameric complexes. Methods, 2003,31(2):160-171
    [10] Appay V, Rowland-Jones SL. The assessment of antigen-specific CD8 T cells through the combination of MHC class I tetramer and intracellular staining. J Immunol Methods, 2002, 268(1):9-19
    
    [11] Date Y, Kimura A, Kato H, Sasazuki T. DNA typing of the HLA-A gene: population study and identification of four new alleles in Japanese. Tissue Antigens, 1996, 47(2):93-101
    
    
    [12]Imanishi T, Akaza T, Kimura A, Tokunaga K, Gojobori T. Allele and haplotype frequencies for HLA and complement loci in various ethnic group. In: Tsuji K, Aizawa M, Sasazuki T, eds. HLA 1991, Oxford: Oxford University Press, 1992, pp. 1065-1220
    [13] Garboczi DN, Hung DT, Wiley DC. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci USA, 1992, 89(8):3429-3433
    [14] Andrew JM, Christopher AO. A new look at T Cells. J Exp Med, 1998, 187(9):1367-1371
    [15] Silver M L, Parker K C, Wiley D C. Reconstitution by MHC restricted peptides of HLA-A2 heavy chain with beta 2-microglobulin,in vitro. Nature, 1991,350:619-622
    [16] Klenerman P, Cerundolo V, Dunbar P R. Tracking T cells with tetramers: new tales from new tools. Nat Rev Immunol, 2002, 2:263-272
    [17] Marsh SGE, Parham P, Barber L D. The HLA class Ⅰ and class Ⅱ loci. In: Marsh SGE, Parham P, Barber LD, eds. The HLA Facts Book. London: Academic Press, 2000, pp. 100-150
    [18] Kuzushima K, Hayashi N, Kimura H, Tsurumi T. Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8~+ T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood, 2001, 98(6):1872-1881
    [19] Akiyama Y, Maruyama K, Mochizuki T, Sasaki K, Takaue Y, Yamaguchi K. Identification of HLA-A24-restricted CTL epitope encoded by the matrix protein pp65 of human cytomegalovirus. Immunol Lett, 2002, 83:21-30
    [20] Kimura S, Iyanagi T. High-level expression of porcine liver cytochrome P-450 reductase catalytic domain in Escherichia coli by modulating the predicted local secondary structure of mRNA [Erratum in: J Biochem (Tokyo), 2005, 137(6):757] . J Biochem (Tokyo), 2003, 134(3):403-413
    [21] Sinclair G, Choy FY. Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr Purif, 2002, 26(1):96-105
    [22] 郑燕,赵蔚明,周亚滨,王红,栾怡,于修平.HPV6b野生型E7基因与优化密码E7基因mRNA表达的分析.山东大学学报(医学版),2003,41(4):355-361
    [23] Sprent J, Surh CD: T cell memory. Annu Rev Immunol, 2002, 20:551-579
    [24] Jameson SC. Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2002, 2:547-556
    [25] Antia R, Ganusov VV, Ahmed R. The role of models in understanding CD8~+ T-cell memory. Nat Rev Immunol, 2005, 5:101-111
    [26] Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation:implications for vaccine development. Nat Rev Immunol, 2002, 2:251-262
    [27] Badovinac, VP, Porter BB, Harty JT. CD8~+ T cell contraction is controlled by early inflammation Nat. Immunol, 2004, 5:809-817
    [28] Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol, 2004, 22:745-63
    [29] 吴长有.初始和记忆T细胞的研究进展.现代免疫学,2005,25(5):353-356
    [30] 吴长有.记忆CD8~+T细胞亚群在感染和肿瘤免疫应答中的作用.细胞与分子免疫学,2006,22(3):273-275
    [31] Klenerman P, Hill A. T cells and viral persistence: lessons from diverse infections. Nat Immunol, 2005, 6(9):873-879
    [32] Bouneaud C, Garcia Z, Kourilsky P, Pannetier C. Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J Exp Med, 2005, 201:579-590
    [33] Roberts AD, Ely KH, Woodland DL. Differential contributions of central and effector memory T cells to recall responses. J Exp Med, 2005 202:123-133
    [34] Williams MA, Bevan MJ. T cell memory: fixed or flexible? Nat Immunol, 2005, 6(8):752-754
    [35] Bachmann MF, Wolint P, Schwarz K, Jager P, Oxenius A: Functional properties and lineage relationship of CD8~+ T cell subsets identified by expression of IL-7 receptor alpha and CD62L. J Immunol, 2005, 175(7):4686-4696
    [36] Boettler T, Panther E, Bengsch B, Nazarova N, Spangenberg HC, Blum HE, Thimme R. Expression of the Interleukin-7 Receptor Alpha Chain (CD127) on Virus-Specific CD8~+ T Cells Identifies Functionally and Phenotypically Defined Memory T Cells during Acute Resolving Hepatitis B Virus Infection. J Virol, 2006, 80:3532-3540
    [37] Wherry EJ, Day CL, Draenert R, Miller JD, Kiepiela P, Woodberry T, Brander C, Addo M, Klenerman P, Ahmed R, Walker BD. HIV-specific CD8 T cells express low levels of IL-7R a: Implications for HIV-specific T cell. Virology, 2006, 353:366-373
    [38] Ester M. M. van Leeuwen, Godelieve J. de Bree, Ester B. M. Remmerswaal, Si-La Yong, Kiki Tesselaar, Ineke J. M. ten Berge, Rene A. W. van Lier. IL-7 receptor achain expression distinguishes functional subsets of virus-specific human CD8~+ T cells. Blood, 2005, 106(6):2091-2098
    [39]Paiardini M, Cervasi B, Albrecht H, Muthukumar A, Dunham R, Radziewicz H, Piedimonte G, Montroni M, Kaech SM, Altman JD, Sodora DL, Feinberg MB, Silvestri G Loss of CD127 Expression Defines an Expansion of Effector CD8~+ T Cells in HIV-Infected Individuals. J Immunol, 2004,174:2900-2909
    [40] Hoji A., Rinaldo CR Jr. Human CD8~+ T cells specific for influenza A virus Ml epitopes display broad expression of maturation-associated phenotypic markers and chemokine receptors. Immunology, 2005,115:239-245
    [41]Gourley TS, Wherry EJ, Masopust D, Ahmed R. Generation and maintenance of immunological memory. Seminars in Immunology, 2004,16:323-333
    [42] Sprent J, Surh CD. Generation and maintenance of memory T cells. Curr Opin Immunol,2001,13:248-254
    [43] Wherry EJ, Ahmed R. Memory CD8~+ T-Cell Differentiation during Viral Infection. J Virol,2004, 78:5535-5545
    [44] Masopust D, Kaech SM, Wherry EJ, Ahmed R. The role of programming in memory T ell development. Curr Opin Immunol, 2004,16:217-225
    [45] Welsh RM, Selin LK, Szomolanyi-Tsuda E. Immunological memory to viral infections.Annu Rev Immunol, 2004,22:711-743
    [46]Tomiyama H, Matsuda T, Takiguchi M. Differentiation of human CD8~+ T cells from a memory to memory/effector phenotype. J Immunol, 2002,168 (11):5538-5550
    [47] van Baarle D, Kostense S, van Oers MH, Hamann D, Miedema F. Failing immune control as a result of impaired CD8~+ T-cell maturation: CD27 might provide a clue. Trends Immunol,2002, 23(12):586-591
    [48] Ochsenbein AF, Riddell SR, Brown M, Corey L, Baerlocher GM, Lansdorp PM, Greenberg PD. CD27 Expression Promotes Long-Term Survival of Functional Effector-Memory CD8~+ Cytotoxic T Lymphocytes in HIV-infected Patients. J Exp Med, 2004, 200(11): 1407-1417
    [49] Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S. Characterization of naive, memory,and effector CD8~+ T cells: Effect of age. Exp Gerontol, 2004, 39:545-550
    [50]Vivier E, Daeron M. Immunoreceptor tyrosine-based inhibition motifs. Immunol Today,1997,18:286-291
    [51] Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies D, Lau J, Zhu G, Tamada K, Chen L. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res, 2005,65(3): 1089-1096
    [52] Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding and ITIM motif-carrying immunoreceptor.Immunity, 1999,11(2):141-151
    [53] Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A., Sasayama S,Mizoguchi A, Hiai H, Minato N, Honjo T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 2001,291(5502):319-322
    [54]Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol, 2005,23:515-548
    [55] Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med,2000,192(7): 1027-1034
    [56] Leonard WJ, Lin JX. Cytokine receptor signaling pathways. J Allergy Clin Immunol, 2000, 105: 877-888
    [57] Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, Collins M, Honjo T, Freeman GJ, Carreno BM. PD-1:PD-L inhibitory pathway affects both CD4~+ and CD8~+ T cells and is overcome by IL-2. Eur J Immunol, 2002, 32:634-643
    [58] Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, MackeyEW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M,Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed, R Freeman GJ, Walker BD. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature, 2006, 443:350-354
    [59]Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RE Upregulation of PD-1 expression on HIV-specific CD8~+ T cells leads to reversible immune dysfunction. Nat Med, 2006, 12:1198-1202
    [60] Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439(7077):682-687
    [61] Liu CC, Walsh CM, Young JD. Perforin:structure and function. Immunol Today, 1995, 16:194-201
    [62] Spaner D, Raju K, Radvanyi L, Lin YP, Miller RG. A role for perforin in activation-induced cell death. J Immunol, 1998, 160:2655-2664
    [63] 何贤辉,徐丽慧,刘毅,曾耀英.人β 2-微球蛋白基因克隆及其在大肠杆菌中的高效表达.生物工程学报,2004,20(1):99-103
    [64] He XH, Xu LH, Liu Y. Procedure for preparing peptide-major histocompatibility complex tetramers for direct quantification of antigen-specific cytotoxic T lymphocytes. World J Gastroenterol, 2005, 11(27):4181-4184
    [65] 徐丽慧,洪岸,何贤辉,汪炬.重组人bFGF的原核表达及其高效价抗血清的制备.免疫学杂志,2005,21(3):186-189
    [66] 何贤辉,徐丽慧,刘毅,蔡小嫦,曾耀英.加载HCMV抗原肽的HLA-A*0201单体及其四聚体制备和鉴定.生物工程学报,2004,20(3):382-388
    [67] He XH, Zha QB, Liu Y, Xu LH, Chi XY. High frequencies cytomegalovinas pp65495-503-specific CD8~+ T cells in healthy young and elderly Chinese donors: characterization of their phenotypes and TCRVβ usage. J Clin Immunol, 2006, 26:417-429
    [68] Akiyama Y, Kuzushima K, Tsunami T, Yamaguchi K. Analysis of HLA-A24-restricted CMVpp65 peptide-specific CTL with HLA-A*2402-CMVpp65 tetramer. Immunol Lett, 2004, 95:199-205
    [69] Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M, Hay JB, Butcher EC. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol, 2005, 6:889-894
    [70] Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol, 2005, 6(9):895-901
    [71] Harari A, Dutoit V, Cellerai C, Bart PA, Du Pasquier RA, Pantaleo G Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol Rev, 2006, 211:236-254
    [72] Pantaleo G, Harari A. Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat Rev Immunol, 2006,6:417-423

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700