LPS和CpG寡聚DNA对单核巨噬细胞的效应和作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
革兰氏阴性细菌胞壁外膜中的脂多糖(LPS)以及细菌DNA和含非甲基化CpG基序
    的寡聚脱氧核糖核苷酸(CpG ODN)等都被机体当成危险信号,可激活单核巨噬细胞、
    树突状细胞等抗原提呈细胞合成和分泌多种细胞因子及其它炎症介质。本研究主要探讨
    了一种新型树突状细胞来源的G蛋白信号转导调节蛋白(DC-RGS)、核受体过氧化体增
    殖物激活受体(PPAR)及主要组织相容性复合物Ⅱ类分子(MHC-Ⅱ)在LPS和CpG ODN
    活化单核巨噬细胞等抗原提呈细胞产生细胞因子及一氧化氮(NO)过程中的作用。我们
    通过基因转染研究发现DC-RGS对LPS诱导人单核细胞THP-1产生细胞因子(TNF-α、
    IL-1β、IL-6和IL-12p70)具有微调作用,但不影响IL-8的分泌;CpG ODN也具有与LPS
    相似的脱敏现象而且它们可以互相诱导对方脱敏;脱敏时THP-1分泌IL-8不受抑制;用
    PPAR的配体和基因转染研究发现PPARα和PPARγ能以配体和转录活性非依赖性机制抑
    制巨噬细胞RAW264.7产生IL-12p40和NO,但不影响THP-1细胞产生IL-8;脱敏后PPARγ
    表达增高提示其可能反馈性参与LPS和CpG ODN脱敏过程;抗小鼠MHC-Ⅱ的单克隆
    抗体B21-2能诱导APCs产生NO,合用LPS、CpG ODN、超抗原SEA或热休克蛋白
    HSP60则具有协同效应,表明MHC-Ⅱ的信号转导过程对LPS、CpG ODN、超抗原SEA
    和HSP60等危险信号的效应以及信号转导过程具有调节作用。这些发现对炎症感染、动
    脉粥样硬化和一些自身免疫性疾病的发病机制的了解以及防治具有一定的意义。
Part I: Identification of a Novel RGS Molecule and Its Tuning
    Effects on Cytokine Production by Lipopolysaccharide Treated
    THP-1 Monocytes
    
     Regulator of G-protein signaling (RGS) proteins are GTPase
    activating proteins that
    inhibit signaling in various cellular responses controlled by
    heterotrimeric G proteins. Here we
    report a novel RGS molecule cloned from human dendritic cells
    (DCs), designated DC-RGS,
    and its role in regulating the responsiveness of monocytes to
    lipopolysaccharide (LPS) in vitro.
    We show that DC-RGS is widely distributed and mainly expressed in
    myeloid cells. Inhibition
    of DC-RGS expression in THP-l cells by antisense technique
    differentially sensitized
    LPS-induced production of tumor necrosis factor (TNF)-ct,
    interleukin (IL)-1 j3, IL-6, IL-8 and
    11-12. Moreover, inhibition of DC-RGS expression partially
    restored secretion of TNF-ct and
    
    11-6 by LPS desensitized TFW-1 cells. Overexpression of DC-RGS in
    THP-1 cells did not
    significantly affect cytokine production compared with mock
    control. Thus, DC-RGS, a novel
    RGS cloned from DCs, plays a fine-timing role in LPS responses
    and participates in regulating
    responsiveness of monocytes to LPS. We proposed that RGS proteins
    together with G proteins
    might participate in innate immunity and subsequently affect the
    adaptive immune responses.
    
    
    
     Part II: Evidence for Activation-independent Repression
    Mechanism of PPARy in LPS and CpG ODN Responses: Relevance
    to Desensitization
    
     Lipopolysaccharide (LPS) desensitization or endotoxin tolerance,
    a state of hypo-
    responsiveness to LPS induced by pretreatment of low dose of LPS,
    is characterized by
    decreased proinflammatory factors production in response to
    secondary LPS challenge even in
    
    10
    
    
    
    high dose. Here we showedoligodeoxynucleotides containing
    unmethylated CpG motif (CpG
    ODN), similar to LPS, could also resulted in desensitization as
    evidenced from reduced nitric
    oxide (NO) and cytokine IL-12p40 production by murine macrophage
    Raw264.7 cells. LPS
    and CpG ODN could cross-desensitize each other to induce NO and
    IL-12p40 production but
    CpG ODN was more potential. Interestingly, 1-8 production by
    THIP-l human monocytes
    couldn't be desensitized by LPS or/and CpG ODN. We then tested
    the hypothesis that
    peroxisome proliferator-activated receptor (PPAR) a and PPARy,
    ligand-dependent nuclear
    receptors that have been implicated in negative-modulating
    macrophage cell activation, might
    be involved in desensitization state induction. We showed that
    pretreatment with ligands of
    PPARcC (agonist Wy-14643) and PPARy (agonist 15-d-PGJ2 and
    antagonist BADGE), but not
    with PPARy agonist pioglitazone, reduced LPS or CpG ODN-induced
    NO and IL-12p4O
    production. Further, enhanced expression of PPARQ or PPARy
    (including a dominant-negative
    PPARy mutant) by transient transfection, mimics desensitization
    induction, attenuated LPS or
    CpG ODN-induced NO and ]IL-l2p4O production, but did not affect
    IL-S production. Western
    blot analysis showed that LPS or CpG ODN treatment resulted in
    altered kinetics of PPAR7
    and NF-icB p50 subunit expression while no alteration of PPARcL
    expression in THP-1 cells.
    LPS or CpG ODN pretreatment significantly increased expression of
    PPART. Thus we suggest
    that PPARy might participate in signaling and desensitization
    induced by LPS and CpG ODN
    in activation-independent manner and constitutively.
    
    
    
     Part Ill: Modulating Effects of B21-2, a Monoclonal Antibody
    Against MHC class II molecules, on Danger Signals-Induced NO
    Production by Antigen-Presenting Cells
    
     Major histocompatibilty complex class II molecules (M1HC II) are
    efficiently expressed
    by antigen-presenting cells (APCs), including macrophages,
    dendritic cells (DCs) and B cells.
    Macrophages and DCs could be induced to produce nitric oxide (NO)
    by danger signals, such
    as bacterial endotoxin lipopolysaccharide (LPS)
引文
1. Kehrl, J. H. 1998. Heterotrimeric G protein signaling: roles in immune function and fine-tuning by RGS proteins. Immunity 8:1
    2. Hornquist, C. E., X. Lu. P. M. Rogers-Fani, U. Rudolph, S. Shappell, L. Birnbaumer. and G. R. Harriman. 1997. G(alpha)i2-deficient mice with colitis exhibit a local increase in memory CD4+ T cells and proinflammatory Thl-type cytokines. J. Immunol. 158:1068
    3. He, J., S. Gurunathan, A. Iwasaki, B. Ash-Shaheed, and B. L. Kelsall. 2000. Primary role for Gi protein signaling in the regulation of interleukin 12 production and the induction of T helper cell type 1 responses. J. Exp. Med. 191:1605
    4. Dohlman, H. G. and J. Thorner. 1997. RGS proteins and signaling by heterotrimeric G proteins. J. Biol. Chem. 272:3871.
    5. Herman, D. M. and A. G. Oilman. 1998. Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273:1269
    6. De Vries, L., and M. G. Farquhar. 1999. RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends. Cell. Biol. 9:138
    7. Hong, J. X., G. L. Wilson, C. H. .Fox, and J. H. Kehrl. 1993. Isolation and characterization of a novel B cell activation gene. J. Immunol. 150:3895.
    8. Newton, J. S., R. W. Deed, E. L. Mitchell, J. J. Murphy, and J. D. Norton. 1993. A B cell specific immediate early human gene is located on chromosome band 1q31 and encodes an a helical basic phosphoprotein. Biochim. Biophys. Acta. 1216: 314
    9. Siderovski, D. P., S. P. Heximer, and D. R. Forsdyke. 1994. A human gene encoding a putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in cycloheximide-treated blood mononuclear cells. DNA Cell. Biol. 12:125
    10. Beadling, C., K. M. Druey, G. Richter, J. H. Kehrl, and K. A. Smith. 1999. Regulators of G protein signaling exhibit distinct patterns of gene expression and target G protein specificity in human lymphocytes. J. Immunol. 162:2677
    11. Bowman, E. P., J. J. Campbell, K. M. Druey, A. Scheschonka, J. H. Kehrl, and E. C. Butcher. 1998. Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members. J. Biol. Chem. 273:28040
    12. Denecke, B., A. Meyerdierks, and E. C. Bottger. 1999. RGS1 is expressed in monocytes and acts as a GTPase-activating protein for G-protein-coupled chemoattractant receptors. J. Biol. Chem. 274:26860
    13. Moratz, C., V H. Kang, K. M. Druey, C. S. Shi, A. Scheschonka, P. M. Murphy, T. Kozasa, and J.H. Kehrl. 2000. Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling responses of B lymphocytes. J. Immunol. 164:1829
    14. Reif, K., and J. G. Cyster. 2000. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol. 164:4720
    
    
    15. Panetta, R., Y. Guo, S. Magder, and M. T. Greenwood. 1999. Regulators of G-protein signaling (RGS) 1 and 16 are induced in response to bacterial lipopolysaccharide and stimulate c-fos promoter expression. Biochem. Biophys. Res. Commun. 259:550
    16. Benzing, T., R. Brandes, L. Sellin, B. Schermer, S. Lecker, G. Walz, and E. Kim. 1999. Upregulation of RGS7 may contribute to tumor necrosis factor-induced changes in central nervous function. Nat. Med. 5:913
    17. Cao, X., W. Zhang, T. Wan, L. He, T. Chen, Z. Yuan, S. Ma, Y. Yu, and G. Chen. 2000. Molecular cloning and characterization of a novel CXC chemokine MIP-2gamma chemoattractant for human neutrophils and dendritic cells. J. Immunol. 165: 2588
    18. LaRue, K. E., and C. E. McCall. 1994. A labile transcriptional represser modulates endotoxin tolerance. J. Exp. Med 180:2269
    19. Hart, D. N. J. 1997. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood. 90:3245
    20. Jakway, J. P., and A. L DeFranco. 1986. Pertussis toxin inhibition of B cell and macrophage responses to bacterial lipopolysaccharide. Science. 234:743
    21. Zhang, X., and D. C. Morrison. 1993. Pertussis toxin-sensitive factor differentially regulates lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production in mouse peritoneal macrophages. J. Immunol. 150:1011
    22. Daniel-Issakani, S., A. M. Spiegel, and B. Strulovici. 1989. Lipopolysaccharide response is linked to the GTP binding protein, Gi2, in the promonocytic cell line U937. J. Biol. Chem. 264:20240
    23. Durando, M. M., K. E. Meier, and J. A. Cook. 1998. Endotoxin activation of mitogen-activated protein kinase in THP-1 cells; diminished activation following endotoxin desensitization. J. Leukoc. Biol. 64:259
    24. Yasui, K., E. L. Becker, and R. I. Sha'afi. 1992. Lipopolysaccharide and serum cause the translocation of G-protein to the membrane and prime neutrophils via CD14. Biochem. Biophys. Res. Commun. 183:1280
    25. Kugi, M., K. Kitamura, G. L. Cottam, and R. T. Miller. 1995. Expression of G alpha i2 mimics several aspects of LPS priming in a murine macrophage-like cell line. J. Inflamm. 45:175
    26. Solomon, K. R., E. A. Kurt-Jones, R. A. Saladino, A. M. Stack, I. F. Dunn, M. Ferretti, D. Golenbock, G. R. Fleisher, and R. W. Finberg. 1998. Heterotrimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both in vivo and in vitro responses to lipopolysaccharide. J. Clin. Invest. 102:2019
    27. Straub, R. H., and D. N. Mannel. 1999. How the immune system puts the brain to sleep? Nat. Med. 5:877
    28. Cook, J. A. 1998. Molecular basis of endotoxin tolerance. Ann. N. Y. Acad. Sci. 851:426
    29. Yoza, B., K. LaRue, and C. McCall. 1998. Molecular mechanisms responsible for endotoxin tolerance. Prog. Clin. Biol. Res. 397:209
    
    
    30. Fernando, L. P., M. Makhlouf, A. N. Fernando, S. Ashton, P. V. Halushka, and J. A. Cook. 1999. Tolerance to LPS decreases macrophage G protein content. Shock. 11:330
    31. Rieser. C, C. Papesh, M. Herold, G. Bock, R Ramoner, H. Klocker, G. Bartsch, and M. Thurnher. 1998 Differential deactivation of human dendritic cells by endotoxin desensitization: role of tumor necrosis factor-alpha and prostaglandin E2. Blood 91:3112
    32. Karp, C. L., M. Wysocka, X. Ma, M. Marovich, R. E. Factor, T. Nutman, M. Armant, L. Wahl. P. Cuomo, and G. Trinchien. 1998. Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance. Eur. J. Immunol. 28:3128
    33. Wittmann, M., V. A. Larsson, P. Schmidt, G. Begemann, A. Kapp, and T. Werfel. 1999. Suppression of interleukin-12 production by human monocytes after preincubation with lipopolysaccharide. Blood 94:1717
    34. Kaufmann, A., D. Gemsa, and H. Sprenger. 2000. Differential desensitization of lipopolysaccharide-inducible chemokine gene expression in human monocytes and macrophages. Eur. J. Immunol. 30:1562
    35. Shu, H., B. Wong, G. Zhou, Y. Li, J. Berger, J. W. Woods, S. D. Wright, and T. Q. Cai. 2000. Activation of PPARalpha or gamma Reduces Secretion of Matrix Metalloproteinase 9 but Not Interleukin 8 from Human Monocytic THP-1 Cells. Biochem. Biophys. Res. Commun. 267:345
    36. Hepler, J. R., D. M. Berman, A. G. Gilman, and T. Kozasa. 1997. RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Proc. Natl. Acad Sci. U. S. A. 94:428
    37. Bunemann M. and M. M. Hosey. 1998. Regulators of G protein signaling (RGS) proteins constitutively activate Gbeta gamma-gated potassium channels. J. Biol. Chem. 273:31186
    38. Ferrari D., P. Chiozzi, S. Falzoni, S. Hanau, and F. D. Virgilio. 1997. Purinergic modulation of interleukin-1 release from microglial cells stimulated with bacterial endotoxin. J. Exp. Med. 185, 579
    39. Petrova T.V., K. T. Akama, and L. J. Van Eldik. 1999. Selective modulation of BV-2 microglial activation by prostaglandin E(2) . Differential effects on endotoxin-stimulated cytokine induction. J. Biol. Chem. 274:28823
    40. Hoffmann, J. A., F. C. Kafatos, C. A. Janeway, and R. A. Ezekowitz. 1999. Phylogenetic perspectives in innate immunity. Science. 284:1313
    41. Fearon, D. T., and R. M. Locksley. 1996. The instructive role of innate immunity in the acquired immune response. Science. 272:50
    42. Trinchieri, G. 1995. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13:251
    43. Park IK, Klug CA, Li K, Jerabek L, Li L, Nanamori M, Neubig RR, Hood L, Weissman IL, Clarke MF. Molecular cloning and characterization of a novel regulator of G-protein signaling from mouse hematopoietic stem cells. J Biol Chem 2001;276(2) :915-923

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700