RNA干扰CⅡTA控制大鼠肝移植急性排斥反应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验构建针对大鼠Ⅱ类主要组织相容性复合物反式转录激活因子(classⅡmajor histocompability complex transactivator,CⅡTA)基因的短发夹状RNA(small hairpin RNA,shRNA)质粒载体,通过体外转染大鼠骨髓源树突状细胞(dendritic cell,DC)和体内转染脾脏的方法,研究RNA干扰CⅡTA对于Ⅱ类主要组织相容性复合物(classⅡmajor histocompability complex,MHC-Ⅱ)基因表达的抑制效果,并筛选相对高效shRNA质粒;采用经门静脉注射质粒载体的方法体内转染肝脏研究基因转染效果;建立稳定的高应答大鼠原位肝移植模型,采用门静脉注射质粒载体方法干预供体,获得免疫原性减低的移植物用于肝移植,研究RNA干扰CⅡTA在高应答大鼠原位肝移植模型中控制移植排斥反应的作用并探讨其机制。
     第一部分CⅡTA-shRNA质粒载体构建及体外研究
     目的:构建针对大鼠CⅡTA基因的shRNA质粒载体,探讨体外RNA干扰CⅡTA的抑制效果和对于MHC-Ⅱ基因表达的调控作用,并筛选相对高效shRNA质粒。方法:体外培养大鼠骨髓源DC,构建针对大鼠CⅡTA基因的三个shRNA质粒载体,设置空白对照组、HK-shRNA阴性质粒对照组、转染剂Lipofectamine组和三个CⅡTA-shRNA质粒干预组,分别转染DC,以荧光实时定量PCR和流式细胞术检测DC转染后CⅡTA和MHCⅡ的表达变化。结果:大鼠骨髓源DC培养成功,CⅡTA-shRNA质粒载体构建成功;与空白对照组、HK-shRNA阴性质粒对照组和Lipofectamine组相比,三个CⅡTA-shRNA质粒干预组DC转染后的CⅡTA和MHC-Ⅱ的mRNA转录水平及MHC-Ⅱ抗原表达水平均显著性减低(P<0.01),CⅡTA与MHC-Ⅱ基因表达具有明显正相关;pCⅡTA1-shRNA干预组对目的基因表达抑制最为明显,CⅡTA mRNA转录水平为10.75±3.31%,MHC-ⅡmRNA转录水平为15.25±5.73%,MHC-Ⅱ抗原表达水平为25.01±5.16%。
     结论:应用成功构建的CⅡTA-shRNA质粒载体转染大鼠骨髓源DC,可显著抑制DC的CⅡTA和MHC-Ⅱ基因表达;CⅡTA与MHC-Ⅱ的基因表达具有明显正相关,说明CⅡTA严格调控MHC-Ⅱ表达,RNA干扰CⅡTA可明显抑制MHC-Ⅱ基因表达:pCⅡTA1-shRNA为相对高效的shRNA质粒,可进一步应用于体内实验和动物实验。
     第二部分经门静脉注射质粒载体的体内研究
     目的:评价经门静脉注射质粒载体方法体内转染肝脏的转染效果,探讨体内RNA干扰CⅡTA的抑制效果和对于MHC-Ⅱ基因表达的调控作用,并筛选相对高效shRNA质粒。方法:设置生理盐水对照组和质粒载体组,经门静脉注射方法体内干预大鼠肝脏,采取转染后第一天和第三天肝脏标本,应用全波长酶标仪检测和荧光显微镜观察的方法评价体内肝脏转染效果;设置生理盐水对照组、HK-shRNA阴性质粒对照组和三个CⅡTA-shRNA质粒干预组,通过经门静脉注射方法体内干预大鼠脾脏,转染3天后取脾脏标本,以荧光实时定量PCR和流式细胞术检测脾脏转染后CⅡTA和MHC-Ⅱ的表达变化。结果:第一天和第三天质粒载体组的增强型绿荧光蛋白(enhanced green fluorescent protein,EGFP)荧光强度均显著强于盐水对照组(P<0.01),质粒载体组第三天荧光强度强于第一天(P<0.01);与盐水对照组和HK-shRNA阴性质粒对照组相比,三个CⅡTA-shRNA质粒干预组脾脏转染后的CⅡTA和MHC-Ⅱ的mRNA转录水平及MHC-Ⅱ的抗原表达水平均显著性减低(P<0.01),CⅡTA与MHC-Ⅱ基因表达具有明显正相关;pCⅡTA1-shRNA干预组对目的基因表达抑制最为明显,CⅡTA mRNA转录水平为9.24±1.12%,MHC-ⅡmRNA转录水平为17.81±3.61%,MHC-Ⅱ抗原表达水平为23.87±5.45%。结论:经门静脉注射质粒载体方法可使shRNA质粒在体内肝脏获得高效转染;应用成功构建的CⅡTA-shRNA质粒载体体内转染大鼠脾脏,可显著抑制脾脏的CⅡTA和MHC-Ⅱ基因表达,CⅡTA与MHC-Ⅱ基因表达具有明显正相关,说明CⅡTA严格调控MHC-Ⅱ表达,在体内采用RNA干扰技术抑制CⅡTA可明显抑制MHC-Ⅱ基因表达;pCⅡTA1-shRNA为相对高效的shRNA质粒,可进一步应用于动物实验。第三部分RNA干扰CⅡTA在高应答大鼠原位肝移植模型中的实验研究
     目的:观察经门静脉注射CⅡTA-shRNA质粒方法干预供体移植物对高应答大鼠原位肝移植模型中移植排斥反应的影响,探讨其抗排斥机制。方法:建立高应答大鼠原位肝移植模型;采用经门静脉注射pCⅡTA1-shRNA方法干预供体大鼠肝脏,干预后3天取移植物进行肝移植,同时设置盐水对照组、HK-shRNA阴性质粒对照组和环孢素A治疗组,每组各12只大鼠,于移植术后第4天随机选取6只大鼠取出移植肝脏,病理学检查评定排斥反应分级,荧光实时定量PCR方法检测标本中CⅡTA、MHC-Ⅱ、IL-2和IFN-γ的mRNA转录水平变化,免疫组化方法检测MHC-Ⅱ抗原表达变化,其余6只用于观察存活期。结果:稳定建立高应答大鼠原位肝移植模型;与盐水对照组和HK-shRNA阴性质粒对照组相比,CⅡTA1-shRNA质粒干预组大鼠存活时间明显延长(中位生存期8天vs5天和5天,P<0.01),排斥反应病理分级明显降低(P<0.01),CⅡTA、MHC-Ⅱ、IL-2和IFN-γ的mRNA转录水平均明显降低(P<0.01),MHC-Ⅱ抗原表达水平明显降低(P<0.01)。环孢素A治疗组大鼠均获得了长期存活(超过100天)。
     结论:高应答大鼠原位肝移植模型是研究肝移植排斥反应的理想动物模型;CⅡTA与MHC-Ⅱ基因的表达与肝移植排斥反应病理分级具有明显正相关,采用经门静脉注射CⅡTA-shRNA质粒方法干预供体移植物可明显减轻肝移植排斥反应,延长存活时间;其机制为移植物免疫原性减低抑制了受体对移植物的直接识别,从而减少排斥反应相关细胞因子的分泌,降低了排斥反应强度。
In this study, small hairpin RNA (shRNA) plasmid vectors targeting rat classⅡmajor histocompability complex transactivator (CⅡTA) gene were constructed. Invitro transfection of rat myeloid dendritic cell (DC) and in vivo transfection of ratspleen were performed to investigate the inhibiting effect on classⅡmajorhistocompability complex (MHC-Ⅱ) expression by shRNA interfering CⅡTA. AshRNA plasmid with efficient inhibitory effect was chosen for further study. Genetransfection efficiency was confirmed by the direct injection of naked plasmid throughportal vein. High responder model of rat orthotopic liver transplantation wasestablished. Graft with lower immunogenicity for liver transplantation was acquiredfrom the donor that received shRNA plasmid delivered by portal vein injection. Theinhibitory effect of shRNA interfering CⅡTA on acute rejection in high respondermodel of rat orthotopic liver transplantation and the underlying 'mechanism wereinvestigated.
     PartⅠConstruction and in vitro Characterization of CⅡTAshRNA Plasmid Vector
     Objective: To construct shRNA plasmid vector targeting rat CⅡTA gene anddetermine the inhibiting effect of shRNA on CⅡTA and the regulating effect onMHC-Ⅱexpression by CⅡTA-shRNA plasmid in vitro. Methods: In vitro culture of the rat myeloid DC was performed and three shRNA plasmids targeting CⅡTA genewere constructed. There were totally 6 groups for DC transfection: threepCⅡTA-shRNA experimental groups, control group, pHK-shRNA control group andLipofectamine group. Real time QRT-PCR and flow cytometry (FCM) wereperformed to analyze the expression changes of CⅡTA and MHC-Ⅱin DC aftertransfection. Results" Sufficient rat myeloid DC were obtained by in vitro culture andCⅡTA-shRNA plasmids were successfully constructed and confirmed by DNAsequencing. Compared to control group, pHK-shRNA control group andLipofectamine group, the transcription levels of CⅡTA and MHC-Ⅱand theexpression level of MHC-Ⅱwere significantly inhibited in all three pCⅡTA-shRNAexperimental groups (P<0.01). There was positive correlation between the expressionof CⅡTA and MHC-Ⅱ. Among the three pCⅡTA-shRNA groups, p CⅡTA1-shRNAshowed the strongest inhibiting effect on targeting gene expression. The transcriptionlevels of CⅡTA and MHC-Ⅱwere 10.75±3.31% and 15.25±5.73% and theexpression level of MHC-Ⅱwas 25.01±5.16%. Conclusion: The expressions ofCⅡTA and MHC-Ⅱin rat DC are inhibited after pCⅡTA-shRNA transfection. Theregulating effect on MHC-Ⅱexpression by CⅡTA were confirmed by the significantpositive correlation between them. shRNA interfering CⅡTA significantlydownregulates the MHC-Ⅱexpression, pCⅡTA1-shRNA is more effective ininterfering CⅡTA and could be applied for further studies.
     PartⅡIn vivo study of the effect of shRNA Plasmid Vectorthrough Portal Vein Injection
     Objective: To evaluate the transfection efficiency to liver by direct portal veininjection of naked plasmid vector and determine the inhibiting effect of shRNA onCⅡTA and MHC-Ⅱexpression by CⅡTA-shRNA plasmid in vivo. Methods: Normal saline group and plasmid vector groups were established for comparison anddirect portal vein injection was performed to transfect liver. Liver specimens wereharvested on day 1 and day 3 after transfection. Spectrofluorometer was used to detectthe enhanced green fluorescent protein (EGFP) intensity and EGFP expression wasalso determined by fluorescence microscope. Totally 5 groups, including three pCⅡTA-shRNA groups, normal saline control group and pHK-shRNA control group,received splenic transfection by portal vein injection. Real time QRT-PCR and FCMwere performed to determine the expression of CⅡTA and MHC-Ⅱin spleen 3 daysafter transfection. Results: The EGFP intensities in liver of plasmid vectortransfection groups were significantly higher than normal saline group in the twoexperimental time points (P<0.01) and the intensity showed higher in the day 1than in the day 3 for the plasmid groups (P<0.01). Compared to normal saline controlgroup and pHK-shRNA control group, the transcription levels of CⅡTA and MHC-Ⅱand the expression level of MHC-Ⅱwere significantly inhibited in all three pCⅡTA-shRNA groups (P<0.01). There was apparent positive correlation between theexpression of CⅡTA and MHC-Ⅱ. Among the three pCⅡTA-shRNA groups, pCⅡTAI-shRNA showed the strongest inhibitory effect on targeting gene expression. Thetranscription levels of CⅡTA and MHC-Ⅱwere 9.241±1.12%and 17.81±3.61%andthe expression level of MHC-Ⅱwas 23.87±5.45%. Conelusion: Highly efficientliver transfection can be achieved by direct portal vein injection of naked plasmid.The expressions of CⅡTA and MHC-Ⅱin rat spleen are significantly inhibited afterpCⅡTA-shRNA were transfected to spleen in vivo. CⅡTA strictly regulates MHC-Ⅱexpression indicated by the significant positive correlation between them. shRNAinterfering CⅡTA significantly downregulates the MHC-Ⅱexpression in vivo. pCⅡTAI-shRNA is the most efficient plasmid here and could be applied in further study.
     PartⅢThe study of the Effect of shRNA Interfering CⅡTAin High Responder Model of Rat Orthotopic Liver Transplantation
     Objective: To determine the effect of shRNA interfering CⅡTA of graft on acutetransplantation rejection in high responder model of rat orthotopic livertransplantation and investigate its anti-rejection mechanisln. Methods: The highresponder model of rat orthotopic liver transplantation was established. There were 4groups: normal saline control group, pHK-shRNA control group, pCⅡTA1-shRNAtreating group and ciclosporin A (CsA) treating group. The donors in the first 3 groupsreceived portal vein injection of normal saline or shRNA plasmid 3 days beforetransplantation. 6 recipients in each group were randomly chosen and sacrificed fortheir liver as specimen 4 days after transplantation and the remaining 6 recipients'were monitored for survival. The data of pathological rejection grading, MHC-Ⅱexpression level, transcription levels of CⅡTA, MHC-Ⅱ,IL-2 and IFN-γinspecimens were collected by pathological examination, immunohistochemistrystaining and real time QRT-PCR. Results: The high responder, model of rat orthotopicliver transplantation was stably established. Compared to normal saline control groupand pHK-shRNA control group, the survival time of pCⅡTA1-shRNA groupextended significantly (median survival time 8 days vs 5 days and 5 days, P<0.01),pathological rejection grading significantly depressed (P<0.01), MHC-Ⅱexpressionlevel significantly decreased (P<0.01) and transcription levels of CⅡTA,MHC-Ⅱ,IL-2 and IFN-γalso significantly decreased (P<0.01). All recipients ofCsA treating group showed long-term survival (more than 100 days). Conclusion:High responder model of rat orthotopic liver transplantation is an ideal animal modelfor the study of liver transplantation rejection. The expressions of CⅡTA andMHC-Ⅱshow apparent positive correlation with pathological rejection grading ofliver transplantation. Acute rejection reaction can be significantly relieved and survival time is extended by pretreatment of graft and donor with portal vein injectionof CⅡTA-shRNA plasmid. The anti-rejection mechanism of shRNA interfering CⅡTAcould be the inhibition of direct immunological recognition due to reduced graftimmunogenicity and depressed secretions of rejection related cytokines.
引文
1. Harton JA, Ting JP. Class Ⅱ transactivator: mastering the art of major histocompatibility complex expression[J]. Mol Cell Biol, 2000, 20(17): 6,185
    2. Kadota Y, Okumura M, Miyoshi S, et al. Altered T cell deovelopment in human thymoma is related to impairment of MHCclass Ⅱ transactivator expression induced by interferon-gamma (IFN-gamma) [J] Clin Exp Immunol, 2000, 121(1): 59
    3.马琳琳.RNA干涉.国外医学遗传学分册,2003,26(4):189-194
    4. Bell D,Young JW, Banchereau J. Dendritic cells. Adv Immunol, 1999, 72(3): 255-322.
    5. Wan H, Dupasquier M. 2005.Dendritic cells in vivo and in vitro. Cell Mol Immunol. 2005 Feb;2(1):28-35.
    6.王书奎,周振英。实用流式细胞术彩色图谱。第二军医大学出版社,2004
    7.Hanoon GJ主编.RNAi-基因沉默指南.第一版.化学工业出版社,2004,266-297
    8.司徒镇强,吴军正。细胞培养[M]。西安,世界图书出版社,1996:279-280
    9. Transfecting plasmid DNA and RNAi into mammalian cells using lipofectamine 2000. Invitrogen, 2005.
    10. Alexey L, Andreas K, Willian M. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics,2005,6(62): 1471-2105.
    11. Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. Journal of Molecular Endocrinology, 2000, 25(2): 169-193.
    12. Omani N, Gruner S, Braug D, et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Meal,1994,180:83
    13. Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems[J]. Journal of Molecular Endocrinolgy, 2002, 29(1): 23-39.
    14. Crockett A O, Wittwer C T. Fluorescein-labeled oligonucleotides for real-time pcr: using the inherent quenching of deoxyguanosine nucleotides[J]. Analytical Biochemistry, 2001, 290(1): 89-97.
    15. Fang X, Li J J, Perlette J, et al. Molecular beacons: novel fluorescent probes[J]. Analytical Chemistry, 2000, 72(23): 747A-753A.
    16. Drozina G, Kohoutek J, Jabrane-Ferrat N, et al. Expression of MHC Ⅱ genes[J]. Curr Top Microbiol Immunol. 2005,290(4):147
    17. Piskurich JF, Gilbert CA, Ashley BD,et al. Expression of the MHC class Ⅱ transactivator (CIITA) type Ⅳ promoter in B lymphocytes and regulation by IFN-gamma[J]. Mol Immunol. 2006, 43(6):519
    18. Tae Woon Kim, Young Mi Choi,Jae Nam Seol,et al. Delayed allograft rejection by the suppression of class Ⅱ transactivator[J]. Experimenta And Molecular Medicine.2006,38(3):210
    19. Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC classⅡ gene expression by the class Ⅱ transactivator[J]. Nat Rev Immunol. 2005,5(10):793
    20. Takayama T, Morelli AE, Robbins PD, et aI. Feasibility of CTLA-4Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen-specific T cell anergy in vitro. Gene Ther, 2000,7(15):1265-1273.
    21. Jenne J, Schuler G, Steinkasserer A. Viral vectors for dendriticcell-based immunotherapy. Trends Immunol, 2001,22(2): 102-107.
    22. Wu XY, Wakefield J K, Liu HM, et al. Development of a novel translentiviral vector that affords predictable safety. Mol Ther,2000,2(1):47.
    23.李劲松,叶展,赵涵芳,陈诗书。阳离子脂质体介导的基因转染真核细胞的研究。上海第二医科大学学报,2005,25(10):1025-1029
    24. Kawaura C, Noguchi A, Furuno T et al. Atomic force microscopy for studying gene transfection mediated by cationic liposomes with a cationic cholesterol derivative.FEBS Lett,1998,421(1):69-72
    25. Xu Y, Szoka FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry, 1996,35:5616-5623
    26. Tz M.B., Kukutsch N.,J. Ogilvie, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods, 1999, 223:77-92.
    27.谢遵江,贾立敏,贺业春,等.体外培养小鼠骨髓树突状细胞的扩增、鉴定及形态学观察.解剖科学进展,2005,11(3):240~243.
    28. Fay JW. Hematopoietic growth factors, dendritic cell biology, and vaccine therapy of cancer.Curr Opin Hematol, 2002, 9(3):202-206.
    29. Macrophage colony-stimulating factor in the mobilization of peripheral blood stem cells. Curr Opin Hematol, 2002, 9(3): 190-198.
    30. Xu ZX, Xu Y, Zhu JK, et al. Recombinant human Flt3 ligand exerts both direct and indirect effects on hematopoiesis. Chin Med J, 2002, 115(2):202-205.
    31. Luft T, Luetjens P, Hochrein H, et al. IFN-alpha enhances CD40ligand-mediated activation of immature monocyte-derived dendritic cells. Int Immunol, 2002,14(4):367-380.
    32. Basak SK, Harui A, Stolina M, et al. Increased dendritic cell number and function following continuous in vivo infusion of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood, 2002, 99(8): 2869-2879.
    33.谢遵江,贾立敏,贺业春,等.体外培养小鼠骨髓树突状细胞的扩增、鉴定及形态学观察.解剖科学进展,2005,11(3):240~243.
    34.任颖,银平章,孔令非等.树突状细胞的制备及生物学特性的研究.实用诊断与治疗杂志,2004,18(3):183-185
    35. Brenan M, Puklavec M. The MRC OX-62 antigen: a useful marker in the purification of rat veiled cells with the biochemical properties of an integrin. J Exp Med, 1992 ,175 :1457
    36. Brenan M , Rees DJ G. Sequence analysis of rat integrinαE 1 andαE2 subunits : tissue expression reveals phenotypic similarities between intraepithelial lymphocytes and dendriticcells in lymph. Eur J Immuol ,1997 ,27 :3 070
    37. Cai Yong, Zhou Peijun .Anergic cells induced by the blockade of:CD40-CD154 and CD28-B7 costimulatory pathways act as potent immunoregulatory cells in vitro and vivo. Chinese Medical Journal ,2004,117 (8): 11778-1183.
    38. Marc D, Bianca O, Jan H, et al. Mature dentritic cells from human monocytes within 48 hours A novel strategy for dendritic cell differentiation from blood precursors. J Immunol 2003,170(4):4069-4076.
    39. Fay JW. Hematopoietic growth factors, dendritic cell biology, and vaccine therapy of cancer.Curr Opin Hematol, 2002, 9(3):202-206.
    40. Zeng Z, Liu X, Jiang YH,et al. Biophysical Studies on the Differentiation of Human CD14~+ Monocytes Into Dendritic Cells. Cell Biochem Biophys. 2006;45(l):19-30.
    41. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998, 392(6673):245-252
    42. Check E. Cancer risk prompts US to curb gene therapy. Nature 2003; 422: 7
    43. Marwick C. FDA halts gene therapy trials after leukaemia case in France. BMJ 2003;326: 181
    44. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6: 1258-1266
    45. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10: 1735-1737
    46. Maruyama H, Higuchi N, Nishikawa Y, Kameda S, Iino N, Kazama JJ, Takahashi N, Sugawa M, Hanawa H, Tada N, Miyazaki J, Gejyo F. High-level expression of naked DNA delivered to rat liver via tail vein injection. J Gene Med 2002; 4: 333-341
    47. Herweijer H , Zhang G, Subbotin VM, et al . Time course of gene expression after plasmid DNA gene transfer to the liver [J ] . J GeneMed , 2001 , 3 :28022911
    48. Jiang J, Yamato E, Miyazaki J. Intravenous delivery of naked plasmid DNA for in vivo cytokine expression. Biochem Biophys Res Commun 2001; 289: 1088-1092
    49. Budker V , Budker T , Zhang G, et al. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor2mediated process [J ] . J Gene Med , 2000 , 2:76-881
    50. Liu F , Huang L. Improving plasmid DNA-mediated liver gene transfer by prolonging its retention in the hepatic vasculature [J ] . J Gene Med , 2001 , 3:569-5761
    51. G. Zhang and X. Gao et al., Hydroporation as the mechanism of hydrodynamic delivery, Gene Ther. 11 (2004) (8),. 675-682.
    52. Kobayashi N, Nishikawa M, Hirata K, Takakura Y. Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med 2004; 6: 584-592
    53. Liu F , Huang L. Noninvasive gene delivery to the liver by mechanical massage [J ] . Hepatology , 2002 , 35 :13142-13191
    54. V. Budker and G. Zhang et al., Naked DNA delivered intraportally expresses efficiently in hepatocytes, Gene Ther. 3 (1996) (7): 593-598
    55. G. Zhang and D. Vargo et al., Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers, Hum. Gene Ther. 8 (1997) (15): 1763-1772.
    56. U.R. Hengge and P.S. Walker et al., Expression of naked dna in human, pig, and mouse skin, J. Clin. Invest. 97 (1996) (12): 2911-2916.
    57. H. Herweijer and J.A. Wolff, Progress and prospects: Naked DNA gene transfer and therapy, Gene Ther. 10 (2003) (6): 453-458.
    58. G. Zhang and B. Fetterly et al., Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model for Duchenne muscular dystrophy, Hum. Gene Ther (2004).
    59. Y. Tsurumi and M. Kearney et al., Treatment of acute limb ischemia by intramuscular injection of vascular endothelial growth factor gene, Circulation 96 (1997)(9 Suppl. S),. 382-388.
    60. J.A. Wolff and J.J. Ludtke et al., Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle, Hum. Mol. Genet. 1 (1992) (6), . 363-369.
    61. G. Zhang and V. Budker et al., Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates, Hum. Gene Ther. 12 (2001),. 427-438.
    62. N.B. Romero and O. Benveniste et al., Current protocol of a research phase I clinical trial of full-length dystrophin plasmid DNA in Duchenne/Becker muscular dystrophies. II. Clinical protocol, Neuromusc. Disord. 12 (2002) (Suppl. 1),. S45-S48.
    63. Maruyama H, Higuchi N, Nishikawa Y, Hirahara H, lino N, Kameda S, Kawachi H, Yaoita E, Gejyo F, Miyazaki J. Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther 2002; 13: 455-468
    64. Herweijer H et al. Retrograde coronary venous delivery of naked plasmid DNA. Mol Ther 2000; 1: S202.
    65. B.L. Hodges and R.K. Scheule, Hydrodynamic delivery of DNA, Expert Opin. Biol. Ther. 3 (2003) (6),. 911-918.
    66. Yang PL, Althage A, Chung J, Chisari FV. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci USA 2002; 99: 13825-13830
    67. Kobayashi N, Kuramoto T, Yamaoka K, Hashida M, Takakura Y. Hepatic uptake and gene expression mechanisms following intravenous administration of plasmid DNA by conventional and hydrodynamics-based procedures. J Pharmacol Exp Ther 2001; 297: 853-860
    68. Kobayashi N, Nishikawa M, Takakura Y. The hydrodynamics-based procedure for controlling the pharmacokinetics of gene medicines at whole body, organ and cellular levels. Adv Drug Deliv Rev 2005; 57: 713-731
    69. Lecocq M, Andrianaivo F, Warnier MT, Wattiaux-De Coninck S, Wattiaux R, Jadot M. Uptake by mouse liver and intracellular fate of plasmid DNA after a rapid tail vein injection of a small or a large volume. J Gene Med 2003; 5: 142-156
    70. Andrianaivo F, Lecocq M, Wattiaux-De Coninck S, Wattiaux R, Jadot M. Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med 2004; 6: 877-883
    71. Lecocq M, Andrianaivo F, Warnier MT, Wattiaux-De Coninck S, Wattiaux R, Jadot M. Uptake by mouse liver and intracellular fate of plasmid DNA after a rapid tail vein injection of a small or a large volume. J Gene Med 2003; 5: 142-156
    72. Kobayashi N, Matsui Y, Kawase A, Hirata K, Miyagishi M, Taira K, Nishikawa M, Takakura Y. Vector-based in vivo RNA interference: dose- and time-dependent suppression of transgene expression. J Pharmacol Exp Ther 2004; 308: 688-693
    73. Matsui Y, Kobayashi N, Nishikawa M, Takakura Y. Sequence-specific suppression of mdr1a/1b expression in mice via RNA interference. Pharm Res 2005; 22: 2091-2098
    74. Takahashi Y, Nishikawa M, Kobayashi N, Takakura Y. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases. J Control Release 2005; 105: 332-343
    75. Zhang G et al. Surgical procedures for intravascular delivery of plasmid DNA to organs. Methods Enzymol 2002; 346: 125-133.
    76. Rossmanith W, Chabicovsky M, Herkner K, Schulte-Hermann R. Cellular gene dose and kinetics of gene expression in mouse livers transfected by high-volume tail-vein injection of naked DNA. DNA Cell Biol 2002; 21: 847-853
    77. Miao CH, Thompson AR, Loeb K, Ye X. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 2001; 3: 947-957
    78. Zhang G, Song YK, Liu D. Long-term expression of human alpha 1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure. Gene Ther 2000; 7: 1344-1349
    79. Yew NS et al. High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 2001; 4: 75-82.
    80. Miao CH et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1:522-532.
    81. Yew NS et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 2002; 5: 731-738.
    82. Krieg AM. Now I know my CpGs. Trends Microbiol 2001; 9: 249-252.
    83. Krieg AM, Davis HL. Enhancing vaccines with immune stimulatory CpG DNA. Curr Opin Mol Ther 2001; 3: 15-24.
    84. McCaffrey AP et al. Gene expression: RNA interference in adult mice. Nature 2002; 418: 38-39.
    85. Lewis DL et al. Efficient delivery of siRNA and inhibition of gene expression in post-natal mice. Nat Genet 2002; 32: 107-108.
    86. An International Panel. Banff schema for grading acute liver allograft rejetiion: An international consensus document. HepatoloQy 1997;25:658
    87. Engemann R, Ulrichs K, Thiede A, et al. Value of a physiological liver transplant model in rats. Induction of specific graft tolerance in a fully allogeneic strain combination. Transplantation. 1982:33(51:566-8.
    88.郑树森.肝脏移植.北京:人民卫生出版社.2001
    89. Kamada N, Calne RY. A surgical experience with five hundred thirty liver transplants in the rat. Surgery. 1983; 93:64-9.
    90.姜明山,韩德恩.不同品系大鼠之间原位肝移植的实验观察[J].中华实验外科杂志,2004,21(4):428-429.
    91. Kamada N. The immunology of experimental liver transplantation in the rat[J]. Immunology, 1985,55(3):369-389.
    92. Neuberger J, Adams DH. What is the significance of acute liver allograft rejection? [J]. J Hepatol, 1998,29:143-150.
    93. Mazariegos GV, Reyes J, Marino I, et al. Risks and benefits of weaning immunosuppression in liver transplant recipients: long-term follow-up [J]. Transplant Proc, 1997,29(1-2): 1174-1177.
    94.陈振光,孙培吾,项鹏等.同种移植大鼠心脏11类主要组织相容性抗原表达及其机制探讨.中华心血管病杂志2003,31(2):145-148
    95. Hubscher SG, Adams DH, Elias E. Changes in the expression of major histocolnpatibility complex class Ⅱ antigens in liver allograft rejection. J Pathol. 1990 Oct;162(2):165-71
    96. Luder CG, Lang C, Giraldo VM, et al. Toxoplasma gondii inhibits MHC class 11 expression in neural antigen-presenting cells by down-regulating the class Ⅱ transactivator CⅡTA. J Neuroimmunol, 2003,134: 12-24
    97. June Brickey W, Felix N J, Griffiths R, et al. Prolonged survival of classⅡ transactivator-deficient cardiac allografts. Transplantation, 2002 Nov 15L 74(9): 1341-1348
    98. Waddell TK, Gorczynski RM, DeCampos KN, et al. Major histocompatibility complex expression and lung ischemia reperfusion in rats. Ann Thorac Surg, 1996,Sep;62(3):866-872
    99. Eastman SJ et al. Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum Gene Ther 2002; 13: 2065-2077.
    100.Chen ZY et al. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther 2001; 3: 403-410.
    101.Yew NS et al. High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 2001; 4: 75-82.
    102.Somiari S et al. Theory and in vivo application of electroporative gene delivery. Mol Ther 2000; 2: 178-187.
    103.Hartikka J et al. Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol Ther 2001; 4: 407-415.
    104.Terada Y et al. Efficient and ligand-dependent regulated erythropoietin production by naked DNA injection and in vivo electroporation. Am J Kidney Dis 2001;38:S50-S53.
    105.Vilquin JT et al. Electrotransfer of naked DNA in the skeletal muscles of animal models of muscular dystrophies. Gene Ther, 2001; 8: 1097-1107.
    106.Waldmann TA, O'Shea J.The use of antibodies against the IL-2 receptor in transplantation. Curr Opin hnmunol, 1998, 10(5):507-12.
    107.Benichou G, Valujskikh A, Heeger PS. Contributions of direct and indirect T cell alloreactivity during allograft rejection in mice[ J ]. J Immunol, 1999, 162 (1):352 -358.
    108.Benichou G. Direct and indirect antigen recognition: the pathways to allograft immune rejection. Front Biosci, 1999 May 15;4:D476-80
    109.Jurcevic S, Chandler P, Sacks SH, et al. Rapid rejection of HLA-A2 transgenic skin graft due to indirect allorecognition. Transplantation, 2001 Sep 27;72(6):994-7
    
    110.Yoshie Itoh-Lindstrom, Janet F. Piskurich, Nathan J. Felix, et al. Reduced IL-4-, Lipopolysaccharide-, and IFN-g-Induced MHC Class II Expression in Mice Lacking Class II Transactivator Due to Targeted Deletion of the GTP-Binding Domain. J Immunol, 1999 Sep 1;163(5):2425-31
    111.Gould DS, Auchincloss H Jr. Direct and indirect recongnition: the role of MHC antigens "in gragt rejection. Immunol Today, 1999 Feb;20(2):77-82.
    112.Mirenda V, Berton I, Read J, et al. Modified dendritic cells coexpressing self and allogeneic major histocompatability comp lex molecules: an efficientway to induce indirect pathway regulation[J]. J Am Soc N ephrology, 2004, 15 (4) : 987 -997.
    113.Game DS, Lechler RI. Pathways of allorecognition: implications for transplantation tolerance. Transpl Immunol, 2002 Aug; 10(2-3): 101-8
    114.Boisgerault F, Liu Y, Anosova N, et al. Role of CD4+ and CD8+ cells in allorecognition: lessons from corneal transplantation. J Immunol, 2001 Aug 15;167(4):1891-9
    115.Kobayashi S, Dono K, Takahara S, et al. Eletroporation-mediated ex vivo gene transfer into graft not requiring injection pressure in orthotopic liver transplantation. J Gene Med, 2003 Jun;5(6):510-7
    1. Harton JA, Ting JP. Class Ⅱ transactivator:mastering the art of major histocompatibility complex expression[J]. Mol Cell Biol, 2000, 20(17):6, 185
    2. Segatelli TM, Almeida CC, Pinheiro PF, et al.Kinetics of spermatogenesis in the Mongolian gerbil[J].Tissue Cell, 2002, 34(1):7
    3. Tooze RM, Stephenson S, Doody GM. Repression of IFN-gamma induction of class Ⅱ transactivator: a role for PRDM1/Blimp-1 in regulation of cytokine signaling[J]. J Immunol. 2006, 177(7): 4, 584
    4. Hegde NR, Chevalier MS, Johnson DC.Viral inhibition of MHC class Ⅱ antigen presentation[J].Trend Immuol, 2003, 24(5):278
    5. Morris AC, Beresford G W, M ooney M R, et al. Kinetics of a gamma interferon response:expression and assembly of CⅡTA promoter Ⅳand inhibition by methylation[J]. Mol Cell Biol, 2002, 22(13):4, 781
    6. Fontes JD, Jiang B, Peterlin BM.The classⅡ trans activator CⅡTA interacts with the TBP-associated factor TAFII32[J]. Nucleic Acids Res, 1997, 25(12):2, 522
    7. Sisk TJ, Roys S, Chang CH. Self-Association of CⅡTA and Its Transactivation Potential[J]. Mol Cell Biol, 2001, 21 (15):4, 919
    8. Raval A, Weissman JD, Howcroft TK, et al. The GTP-bindingdomain Of classⅡ transactivator regulates its nuclear export[J].Immuno 1, 2003, 170(2):922
    9. Harton JA, Cressman DE, Chin KC, et al.GTP binding by classⅡ transactivator:role in nucleal import[J]. Science, 1999, 285(5432): 1,402
    10. Hake SB, Masternak K. Kammerbauer C. et al. CⅡTA leucine-Rich retreats control nuclear localization, in vivo recruitment to the major histocompatibility complex (MHC ) class II enhanceosome, and MHC class II gene transactivation[J]. Mol Cell Biol, 2000, 20(20):7, 7I6
    11.Fontes JD. Jiang B, Peterlin BM . The class Ⅱ transactivator CⅡTA interacts with the TBP-associated factor TAFII32[J]. Nucleic Acids Res, 1997, 25(12):2, 522
    12. De Lema Barharo A , Procopio FA, Mortara L, et al.The MHC class Ⅱ transactivator(C Ⅱ TA) mRNA stability is critical for the HLA class II gene expression in myelomonocytic cells[J].Eur Immunol, 2005, 35(2):603
    13.Kadota Y, Okumura M, Miyoshi S , et al. Altered T cell de-velopment in human thymoma is related to impairment of MHC class II transactivator expression induced by interferon-gamma (IFN-gamma) [J] . Clin Exp Immunol , 2000, 121(lj:59
    14. Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II transactivator[J]. Nat Rev Immunol. 2005 , 5(10):793
    15.Drozina G, Kohoutek J, Jabrane-Ferrat N, et al.Expression of MHC II genes[J]. Curr Top Microbiol Immunol. 2005, 290(4): 147
    16.Zika E, ting JP.Epigenetic control of MHC- II :interplay between CⅡTA and histone-modifying enzymes [J].Curr Opin Immunol, 2005, 17(1):58
    
    17. Krawczyk M, Peyraud N, Rybtsova N, et al.Long distance control of MHC class II expression by multiple distal enhancers regulated by regulatory factor X complex and CⅡTA[J].Immunol, 2004, 173(10):6, 200
    
    18. Piskurich JF, Gilbert CA, Ashley BD, et al. Expression of the MHC class II transactivator (CIITA) type IV promoter in B lymphocytes and regulation by IFN-gamma[J]. Mol Immunol. 2006, 43(6):519
    19.吴岚晓, 郭坤元,秦煜,异基因MHCⅠ修饰对骨髓细胞的免疫学特性的影响[J]. 中国免疫学杂志 , 2003,19(6):401
    20. Tae Woon Kim, Young Mi Choi, Jae Nam Seol, et al. Delayed allograft rejection by the suppression of class IItransactivator[J] . Experimenta And Molecular Medicine.2006, 38(3):210
    21.Inukai A Kuru S Liang Y et al. Expression of HLA-DR and its enhancing molecules in muscle fibers in polymyositis[J]. Muscle Nerve, 2000, 23(3):385
    
    22. Mora C, Wong FS, Chang CH, et al.Pancreatic infiltration but not diabetes occurs in the relative absence of MHC class II-restricted CD4 T cells:studies using NOD/ C II TA-deficient mice[J]. J Immunol, 1999, 162 (8):4, 576
    
    23. Mori-Aoki A, Pietrarelli M, et al.Class Transactivator suppresses transcription of thyroidspecific genes[J]. Biochem Biophys Res Commun, 2000, 278(1):58
    
    24. Martin BK, Frelinger JG, Ting PY. Combination gene therapy with CD86 and the MHC class II transactivator in the control of lung o growth[J].Immunol, 1999, 162(11):6, 663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700