用户名: 密码: 验证码:
草地螟迁飞、越冬规律及暴发机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草地螟Loxostege sticticalis L.是一种世界性害虫,主要分布在北温带干旱少雨地区。在我国主要分布在华北、东北和西北地区,是我国北方农牧区重要的迁飞性害虫。幼虫可严重为害大豆、甜菜、苜蓿、向日葵等作物及牧草。草地螟具有间歇性暴发的特点,新中国成立以来已经3次暴发成灾,给农牧业生产造成了巨大的经济损失。目前人们对草地螟的发生规律尚缺乏全面了解。为此,本研究应用大气数值模拟、轨迹分析、天气分析、相关分析等方法,探索草地螟迁飞、越冬规律和暴发机制,为提高草地螟预测预报水平提供科学的依据。主要研究结果如下:
     1.草地螟迁飞规律。
     (1)东北草地螟越冬代成虫主要来自当地及境外越冬区,即东亚荒漠带以北的区域。华北草地螟“发生基地”对东北草地螟发生有重要影响,但并非主要虫源地。另外,在某些年份中,境外越冬代成虫还能够大规模迁入华北,这是第三个暴发周期以来一个新出现的现象。在分析、整理历年草地螟迁飞过程的基础上,绘制了我国草地螟越冬代成虫主要迁飞路径图。
     (2)东北地区在草地螟一代成虫发生期间,以西南风为主,北风、东北风频率较低,不利于成虫向华北迁飞;在二代成虫发生期间,东北风、北风频率有所上升,但西南风仍然占优势且风向变化频繁,仍不利于成虫向华北草地螟“发生基地”迁飞,但有利于成虫向环渤海湾地区迁飞。在1979年以来的20个发生年份中,东北草地螟夏季种群成功迁入关内的事件仅发生了4次,其中仅有1次迁至华北草地螟“发生基地”,另外3次迁至环渤海湾地区,而向内蒙古东部和境外迁飞的现象出现了3次。因此,东北夏季种群迁飞到华北的机率是极低的,通常不能构成华北一代成虫虫源。松嫩平原地区当地羽化的一代成虫种群往往受到夏季高温的影响而急剧回落。
     (3)华北草地螟夏季种群往往呈现局地短距离扩散模式。南部平川区在6月末至7月上旬羽化的一代成虫通常向北扩散到北部高海拔冷凉地区,发生二代幼虫。北部高海拔地区在7月末至8月上中旬羽化的一代或二代成虫如果向南扩散到平川地区,则能够发生二代或三代幼虫。在气候异常的情况下,华北草地螟夏季种群亦能出现远距离迁飞的现象。
     (4)滞留在华北北部的草地螟种群存在非典型的世代间往返迁飞、扩散活动,远距离迁飞的草地螟种群的后代基本无法迁回虫源地,即不存在世代间往返迁飞的现象。
     2.我国草地螟一代成虫异地迁入种群暴发机制。包括以下几个环节:(1)境外上年秋季存有广阔的越冬区;(2)当年5-6月份,东亚荒漠带或漠北草原带上降水异常偏多,导致一代幼虫在境外大量繁殖;(3)一代成虫羽化后,境外出现恶劣的气候条件,促使成虫大量迁入我国。
     3.境外及我国东北地区草地螟越冬区形成机理。(1)漠北草原带降水条件良好,但在90年代以前,积温不足以完成两个完整世代,因此很少出现集中越冬区。90年代以来,随着气候变暖,漠北草原带上积温增加,有利于二代幼虫的发生并留下集中越冬区。(2)东亚荒漠带及草原带南部的积温可以使其完成两个世代,但严重干旱限制了草地螟的发生。只有在降水异常偏多的条件下,才有可能发生二代幼虫,出现集中越冬区。(3)东北平原区夏季高温是草地螟一代成虫发生的主要制约因素。最高气温通常出现在7月下旬,成虫能否避开这一高温时段,是其种群能否得以延续的关键。当地一代成虫在7月中旬前后羽化,只有向西迁飞到内蒙古东部高海拔地区才能发生数量较多的二代幼虫。异地虫源如果在7月末以后迁入,则可在平原区发生二代幼虫,部分可滞育越冬。
     4.草地螟远距离迁飞活动与气候背景的关系。(1)华北草地螟越冬代成虫向东北的远距离迁飞活动受到虫源区位置、气候因素、风场条件等因素的影响。(2)境外虫源大规模迁入我国的气候背景在不同区域之间存在明显的差异。如果虫源区位于东亚荒漠带上,由于当地环境条件极为恶劣,因此无论是越冬代成虫还是一代成虫在羽化后都将外迁。如果虫源区位于漠北草原带上,由于降水是草原上草地螟繁殖的主要影响因素,因此在严重干旱的春季,成虫将大举外迁,在雨水丰沛的春季,成虫将滞留在草原带上发生一代幼虫。当夏季出现异常的高温、干旱,一代成虫将大量外迁。如果虫源区位于森林草原带上,由于6月、8月的低温是草地螟繁殖的主要制约因素,因此气温波动将促使成虫迁出。
     5.草地螟迁飞过程与天气背景的关系。
     (1)利用吉林植保所1999年在镇赉县对草地螟迁飞活动的雷达观测结果,分析了草地螟空中虫群对风温场的响应机制。结果表明,草地螟空中虫群的成层行为是对温度和风速综合作用的响应。在高温天气中,温度不是草地螟飞行的限制因素,蛾群通常受到低空急流的集聚作用,在最大风速带中成层;在低温天气中,低温成为草地螟飞行的限制因素,蛾群在高于低温域值的区域内成层。草地螟空中虫群飞行的低温域值可能在12-12.5℃之间。在温度条件适宜的夜晚,如果没有低空急流,空中蛾群将可能分布在较高的高度上,而且虫层范围也会更宽。
     (2)对2004年5月24-25日华北北部草地螟一次迁飞过程进行了模拟,结果显示大同等地5月24日晚草地螟成虫的大规模外迁与冷锋过境有密切的关系。迁出种群大部分向东北方向迁飞,途经丰宁等地时发生了迫降,迫降是由强下沉气流引发的。
     (3)归纳了草地螟起飞、降落、远距离迁飞的天气背景。恶劣天气结束、冷锋过境、恶劣天气来临会诱发草地螟大规模外迁。降水、下沉气流、气流辐合区、冷锋锋面会导致草地螟集中降落。北方气旋与我国草地螟春季种群的远距离迁飞迁飞有密切关系,台风北上有利于我国东北草地螟夏季种群向关内方向迁飞,反气旋则影响着欧洲草地螟向西迁飞。
     6.我国草地螟春季种群异常波动的气候背景。东北6月份高温、干旱是草地螟大发生的必要条件,而异常低温或多雨天气的出现将导致种群数量急剧回落;华北5-6月份降水偏多将有利于草地螟暴发。计算了关键气候因子与前期海温场、位势高度场的相关系数分布,利用显著相关区建立了预测方程。另外还发现,东北地区草地螟种群崩溃与大火山喷发存在密切关系。
     7.近百年来欧亚大陆草地螟种群时空动态。从20世纪20年代末至今,欧亚大陆草地螟种群先后经历了四个群发期,分别为1928-1935年、1948-1960年、1970-1989年和1997年至今。草地螟发生区存在洲际间转移的现象。我国草地螟的暴发具有稳定的准20年的周期。俄罗斯欧洲部分草地螟的暴发周期则存在年代际变化。
     8.我国草地螟的分布范围在不同年代间存在明显的变迁,发生区重心不断北移。原因在于,在50年代华北地区草地螟很少向东北迁飞,而70年代以来则可频繁迁入东北;在50年代东北极少有草地螟越冬现象,而90年代以来,却频繁出现。草地螟迁飞、越冬规律的变化均与气候变暖有关。气候变暖不但导致华北草原严重干旱化,还促使越冬茧羽化期提前,导致成虫期与雨季相背离,促使成虫大量外迁。同时,气候变暖还增加了蒙古国东部、内蒙古东部和俄罗斯赤塔州二代幼虫发生频率,进而留下大量越冬虫茧。
     9.草地螟间歇性暴发的可能机制。(1)我国草地螟种群数量在华北北部7月降水偏多时期开始回升并进入一个新的暴发周期。东亚高空西风急流位置存在年代际间南北振荡,导致华北北部7月降水量出现年代际波动,进而影响了我国草地螟间歇性暴发。(2)我国草地螟暴发周期的结束是天敌和恶劣气候共同作用的结果。然而,在当前的第三个周期中,由于草地螟重发区的北移,华北草地螟“发生基地”内的天敌种群数量无法得到稳定的增长,因此天敌对草地螟的抑制作用减弱了。这正是第三个周期持续时间如此之长的原因。(3)俄罗斯欧洲部分草地螟的暴发周期与6-7月降水量年代际波动相吻合。6-7月降水量年代际变化与海平面气压场年代际变化相对应。
Meadow moth, Loxostege sticticalis L., is a worldwide pest, mainly distributed in the drought areas of northern temperate regions. It is an important migratory pest in agro-pastoral areas of northern China, including North, Northeast and Northwest China. Its larvae can seriously damage crops, such as soybean, sugar beet, alfalfa, sunflower, and pasture. The outbreak of meadow moth is intermittent. Since the foundation of the People's Republic of China in 1949, meadow moth had three outbreaks and caused significant economic loss to agro-pastoral production. To date, the comprehensive understanding of the occurrence of meadow moth is still limited. The objective of this study is to explore the regulation of migration, overwintering and mechanisms underlying outbreak of meadow moth by combining atmospheric numerical simulation, trajectory analysis, weather analysis and correlation analysis and to provide a scientific basis for improving the forecast accuracy of meadow moth. The major findings are as follows:
     1. Migration of meadow moth.
     (1) The majority of the spring population of meadow moths in Northeast China are from local overwintering areas or neighboring countries, that is, from the north of East Asia desert. The "permanent breeding area" in North China has important effect on the outbreak in Northeast China, but is not the key source. In some years, overwintering generation adults in neighboring countries can also immigrate into North China on a large scale. This is a new phenomenon in the third outbreak period. Based on analysis of the migration process, a map showing the major migration routes of overwintering generation adults of meadow moth is drawn.
     (2) During the occurrence period of the first generation adults of meadow moth in Northeast China, southwest winds are prevailing, and north and northeast winds seldom occur. This situation goes against meadow moth migrating to North China. In the period of the second generation, frequencies of northeast and north winds increase, southwest wind is still predominant, and wind direction changes frequently. Under these conditions, adult migration to the "permanent breeding area" in North China is unfavorable, but conducive for migration to the Bohai Bay area. Among the 20-year occurrence of meadow moth since 1979, the events that the summer population of meadow moth in Northeast China migrated to North China only occurred 4 times, including 1 time to the "permanent breeding area" and 3 times to the Bohai Bay area, and migration to eastern Inner Mongolia and neighboring countries occurred 3 times. Therefore, the summer population of meadow moth in Northeast China seldom migrates to North China, and can't be the source of the first generation adults in North China. The first generation adults emerged in Songnen Plain are usually depressed due to high summer temperatures.
     (3) The summer population of meadow moth in North China often disperses over a short distance. The first generation adults emerged in the southern plain region during the end of June and early July are usually spread northward to the northern high-altitude region, and the second generation of larvae occurred there. If the first or second generation of adults emerged in northern high-altitude region during the end of July and first half of August spread to the south region, the second or third generation of larvae will occur there. Under abnormal climatic conditions, the summer population of meadow moth in North China may take long-distance migration.
     (4) Meadow moth staying in North China has atypical migration cycle between generations. For the meadow moth taking long-distance migration, their offspring can not migrate back to their native source area, thus no migration cycle occurs between generations.
     2. Outbreak mechanism of the immigration population of the first generation adults of meadow moth in China.
     Outbreak of the immigration population occurs when (1) there was a broad overwintering area in the neighboring countries in last autumn; (2) the precipitation in the East Asia desert or steppe was abnormally high in May and June, leading to the large scale propagation of the first generation larva in neighbor countries; (3) the adverse weather conditions after emergence of the first generation adults promoted the moth immigration into China massively.
     3. Formation of overwintering area in neighboring country and Northeast China.
     (1) The precipitation in steppe is good. But before 1990s, the accumulated temperature in steppe is not high enough for meadow moth to complete two generations, and overwintering areas are rare. Since 1990s, the accumulated temperature has been increasing along with the global warming, which was beneficial to the occurrence of second-generation larvae and formation of overwintering areas.
     (2) The accumulated temperature in East Asia desert and south part of steppe is high enough for meadow moth to complete two generations, but the severe drought has limited the occurrence of meadow moth. Only when the precipitation is abnormally abundant, second generation larvae may occur, and form overwintering areas.
     (3) The high summer temperature of the Northeast China Plain is a key constraint factor for the occurrence of first generation adults. Highest temperature usually emerges in the late July, and whether the adults could avoid it is a key for the continuity of the population. Local first generation adults emerge in mid-July. Only when they migrate westward to the high altitude areas of eastern Inner Mongolia, a larger number of second generation larvae could be produced. If immigrating first generation adults emerge after the end of July, they can produce the second generation larvae in Northeast China Plain and some of them may overwinter.
     4. The relationship between long-distance migration of meadow moth and climate.
     (1) Long-distance migration of overwintering generation adults of meadow moth in North China towards Northeast China is restricted by the location of source areas, climate factors, wind field and so on.
     (2) The climates of massive immigration for the adults from neighboring countries into China have significant difference. If the source area locates in the East Asia desert, due to the harsh environmental conditions, both the overwintering generation and the first generation adults will emigrate after eclosion. If the source area locates in steppe where precipitation is a major factor for the propagation of meadow moth, adults will emigrate when severe drought occurs in the spring, or stay when the spring has abundant waterfall. When the abnormal summer high temperature and drought comes, first generation adults will emigrate massively. If the source area locates in forest-steppe, since the low temperature in June and August is a major constraint for meadow moth, temperature fluctuations will promote emigration.
     5. The relationship between migration process of meadow moth and weather.
     (1) The responding mechanism of meadow moth in air to wind and temperature is analyzed based on the radar observations of meadow moth migration by Jilin Plant Protection Institute at Zhenlai County in 1999. The results show that the layer formation of meadow moth in the air is a response to the combination of effects of temperature and wind speed. In hot weather, the temperature is not a constraint factor to meadow moth flight, and moth layer form in the maximum wind due to the accumulation of low-level jet; in cold weather, low temperature is a constraint factor to meadow moth flight, moth layer form in the area of temperatures above the threshold for fight. The low-temperature threshold for meadow moth flight may be between 12.0-12.5℃. During the nights with favorable temperature conditions and without low-level jet, the moth in the air will be distributed by higher altitude and the layer may be wider.
     (2) A migration process that occurred in North China during 24-25 May,2004 is simulated. The results showed that the massive takeoff of meadow moth in Datong and other regions in the night of May 24 was closely related with the passage of a cold front. Most of the emigrating population flew northeast and landed involuntarily in Fengning County due to the atmospheric subsidence.
     (3) The weather background for taking-off, landing, and long-distance migration of meadow moth are summarized. Termination of adverse weather events, passage of cold fronts, and coming of adverse weather will trigger massive emigration of meadow moth. Precipitation, atmospheric subsidence, air convergence, and cold front will lead convergent landing of meadow moth. Northern cyclone is closely related to the long-distance migration of the spring population of meadow moth in China;. Typhoon moving northward is favorable to the migration of the summer population of meadow moth in Northeast China towards North China; anticyclone affects the migration of meadow moth in Europe to west.
     6. Climates of abnormal fluctuations of spring populations of meadow moth in China.
     In Northeast China, high temperature and drought in June are necessary for meadow moth outbreak, while extreme cold or wet weather will lead to a sharp drop in population. In North China, excessive precipitation in May and June is conducive to meadow moth outbreak. The coefficient distribution of key climatic factors and early sea surface temperature and geopotential height field were calculated and prediction equations were setup using the significant correlation zone. In addition, the collapse of the meadow moth population in Northeast China is found to be closely related to volcanic eruption.
     7. Space-time dynamics of meadow moth population in Eurasia of the past 100 years.
     Since the late of 1920s, meadow moth in Eurasia has undergone four long periods of outbreaks. They are 1928-1935,1948-1960,1970-1989 and 1997 to present. Occurrence areas of meadow moth have intercontinental shift. Meadow moth outbreak in China has a quasi-stable cycle of 20-years. The outbreak cycle of meadow moth in the European part of Russia changes between decades.
     8. The distribution of meadow moth in China has significant changes between decades, and the occurrence area keeps moving northwards.
     The cause is that meadow moth in North China seldom migrate northeastwards in 1950s, but they immigrate into Northeast China frequently since 1970s; overwintering areas seldom emerged in Northeast China in 1950s, but frequently after 1990s. Changes of the regulation of migration and overwintering of meadow moth are related with global warming. Warming not only make grasslands in North China severe drought, but also advanced the eclosion of overwintering cocoons and separated the adult stage and rainy season, consequently leading to massive emigrating of adults. Moreover, warming increased the frequency of second-generation larvae in East Mongolia, East Inner Mongolia and Chita of Russia, further leaving a large number of overwintering cocoons.
     9. Possible mechanisms of meadow moth intermittent outbreaks.
     (1) The population of meadow moth in China began to rise during the stage with excessive precipitation in July in North China and entered a new outbreak cycle. The high-altitude westerly jet in East Asia has decadal shift in North-South direction, resulting in the decadal fluctuations of precipitation in North China in July, consequently affecting the intermittent outbreaks of meadow moth.
     (2) Termination of the outbreak cycle of meadow moth in China is an interaction of natural enemies and adverse climate. However, in the current third cycle, serious occurrence areas moved northwards, the population of natural enemies at the "permanent breeding area" in North China can not increase steadily, thus the inhibition of natural enemies to meadow moth became weakened. This is the reason why the third cycle lasts so long.
     (3) The outbreak cycles of meadow moth in the European part of Russia are coincident with the decadal fluctuations of precipitation in June and July, which is corresponding to the decadal changes of sea level pressure field.
引文
1. Macarova et al农作物害虫远距离迁飞与大气过程的关系.国外农学(农业气象),1983,(1):38-39.
    2. 包云轩,程极益,程遐年.盛夏褐飞虱北迁大发生的气象背景:个例分析.南京农业大学学报,1999,22(4):35-40.
    3. 包云轩,翟保平,程遐年.褐飞虱迁飞参数的数值模拟.生态学报,2005,25(5):1107-1114.
    4. 蔡晓明.昆虫的迁飞.昆虫知识,1980,17(4):188-191.
    5. 曹卫菊,罗礼智,徐建华.我国草地螟的迁飞规律及途径.昆虫知识,2006,43(3):279-283.
    6. 陈瑞鹿,暴祥致,王素云,等.草地螟迁飞活动的雷达观测.植物保护学报,1992,19(2):171-174.
    7. 陈瑞鹿,王素云,暴祥致,等.草地螟滞育的研究:光照周期、温度与发育及滞育的关系.植物保护学报,1987.14(4):253-258.
    8. 陈晓,陈继光,薛玉,郝丽萍,张友,赵奎军.东北地区草地螟1999年大发生的虫源分析.昆虫学报,2004,47(5):599-606.
    9. 杜俊岭,赵晓丽,魏倩,等.草地螟幼虫食量和为害损失率的测定.病虫测报,1987.增刊第一号:19-26.
    10.封传红,翟保平,张孝羲,等.我国北方稻区1991年稻飞虱大发生虫源形成.生态学报,2002.22(8):1302-1314.
    11.顾成玉.草地螟发生危害及其防治.见:嫩江地区植保植检站汇编的《嫩江地区草地螟的发生及防治》,1980年.36-39.(油印本)
    12.顾成玉等.草地螟发生为害特点与防治策略的探讨.病虫测报,1987.增刊第1号:32-34.
    13.郭元朝,张玉龙.一九八二年正镶白旗草地螟发生概况.内蒙古农业科技,1983,(3):45-46.
    14.寒川一成,高桥明彦.依靠亚洲季风的稻飞虱大范围迁飞.1997年度日本气象环境研究会“大气生物扩散问题的现状及展望”.中国水稻研究所,中日合作项目办公室,1998.
    15.河北省农作物病虫测报站,1984,《河北省1979-1983年草地螟工作小结》(油印本)
    16.河北省植保站.1982年.《河北省草地螟发生规律与虫源基地的调查报告》(油印本)
    17.黑龙江省植保植检站,1981,《草地螟资料》(油印本)
    18.黑龙江省植保植检站,1982,《草地螟资料选编》(油印本)
    19.呼伦贝尔盟草地螟研究协作组.草地螟发生规律及预测预报和防治研究.病虫测报,1987.增刊第1号:70-82.
    20.胡伯海,赵中华,李春广,等.中国植物保护五十年发展概况.见:陈斗生,胡伯海主编.中国 植物保护五十年.北京:中国农业出版社,2003.3-37.
    21.胡高,包云轩,王建强,翟保平.褐飞虱的降落机制.生态学报,2007,27(12):5068-5075.
    22.胡继超,程极益,储长树,等.褐飞虱在我国东部地区秋季回迁的三维轨迹研究.中国农业气象,1997,18(5):1-6.
    23.黄刚NCEP/NCAR和ERA-40再分析资料以及探空观测资料分析中国北方地区年代际气候变化.气候与环境研究,2006,11(3):310-320.
    24.黄绍哲,江幸福,雷朝亮,等.草地螟周期性大发生与太阳黑子活动的相关性.生态学报,2008,28(10):4823-4829.
    25.吉林省草地螟科研协作组.吉林省草地螟发生规律及防治技术研究报告.病虫测报,1987.增刊第1号:34-52.
    26.贾淑英,孟正平等.乌兰察布盟1997年草地螟大发生特点及原因分析.内蒙古农业科技,2000(2):31-32.
    27.姜玉英,张跃进,杨宝胜,等.草地螟2008年越冬虫源分布特点和2009年发生趋势分析.中国植保导刊,2009,29(1):39-41.
    28.康爱国,樊荣贤,张玉慧,等.草地螟第三个暴发周期的发生特点、成因及防治对策.昆虫知识,2003,40(1):75-79.
    29.康爱国,樊荣贤,张玉慧,等.草地螟卵和越冬幼虫发生分布调查.植保技术与推广,1999.19(2):3-4.
    30.康爱国,杨海珍,李强,等.草地螟越冬代虫量与第一代草地螟发生关系的研究.昆虫知识,2004,41(1):70-72.
    31.李朝绪,罗礼智,潘贤丽.草地螟滞育和非滞育幼虫抗寒能力的研究.植物保护,2006,32(2):41-44.
    32.李祯,祁承留,孙文昌.东北地区自然地理.北京:高等教育出版社,1993.68-71.
    33.辽宁省农作物病虫测报站.辽宁省草地螟发生规律及防治研究总结.中国植保导刊,1987,7(1):53-59.
    34.刘光涛,郭向东,张金,等.草地螟的生物学习性及其发生与条件环境的关系.病虫测报,1987.增刊第1号:59-64.
    35.刘振隆主编.天气学.北京:气象出版社,1986.190-191.
    36.罗礼智,黄绍哲,江幸福,等.我国2008年草地螟大发生特征及成因分析.植物保护,2009,35(1):27-33.
    37.罗礼智,李光博,曹雅忠.草地螟第3个猖獗危害周期已经来临.植物保护,1996.22(5):50-51.
    38.罗礼智,李光博.草地螟不同蛾龄成虫飞行能力和行为的研究.青年生态学者论丛,1992,2: 303-308.
    39.罗礼智,李光博.草地螟的有效积温及其世代区的划分.昆虫学报,1993a,36(3):332-338.
    40.罗礼智,李光博.温度对草地螟成虫产卵和寿命的影响.昆虫学报,1993b,36(4):459-464.
    41.罗礼智,屈西峰.我国草地螟2004年危害特点及2005年一代危害趋势分析.植物保护,2005,31(3):69-71.
    42.罗礼智.我国2004年一代草地螟将暴发成灾.植物保护,2004,30(3):86-88.
    43.孟翠勉.草地螟在张家口市暴发成灾.植保技术与推广,1997,17(5):40-41.
    44.孟正平,陈玉宝,刘一凌.草地螟生殖力及卵孵化与湿度的关系.病虫测报,1987.增刊第1号:115-120.
    45.孟正平,陈玉宝.草地螟迁飞习性的观察研究.乌盟农牧渔业科技,1986,(2):30-37.
    46.内蒙古自治区植保站.《内蒙古1980年草地螟发生防治总结》(油印本)
    47.屈西峰,邵振润,王建强.我国北方农牧区草地螟暴发周期特点及原因剖析.昆虫知识,1999a.36(1):11-14.
    48.屈西峰,邵振润.对我国北方年几年草地螟越冬虫源的初步分析.植保技术与推广,1999b,19(6):5-7.
    49.屈西峰,夏冰.2003年中国草地螟的发生特点和成功治理经验.中国植保导刊,2004,24(1):22-24.
    50.全国草地螟科研协作组.草地螟发生及测报和防治的研究.病虫测报,1987.增刊第1号:1-9
    51.沙万英,邵雪梅,黄玫.20世纪80年代以来中国的气候变暖及其对自然区域界限的影响.中国科学(D),2002,32(4):317-326.
    52.山西省草地螟科研协作组.山西省草地螟发生规律,预测预报及其综合治理的研究.病虫测报,1987.增刊第1号:82-97.
    53.孙雅杰,陈瑞鹿.草地螟迁飞,发生区与生活史的研究.华北农学报,1995.10(4):86-91
    54.孙雅杰,高月波,李典漠主编.东北地区草地螟越冬代成虫虫源地分析.当代昆虫学研究—中国昆虫学会成立60周年纪念大会暨学术论文会论文集.北京:中国农业科学技术出版社.2004.230-232.
    55.孙雅杰,高月波.粘虫和草地螟空中迁飞种群的雷达监测与地面发生预报.中国昆虫学会2000年学术年会论文集.北京:中国科学技术出版社.2000.457-460.
    56.陶诗言,卫捷.再论夏季西太平洋副热带高压的西伸北跳.应用气象学报,2006,17(5):513-525.
    57.田绍义,高世金.草地螟滞育性的研究.病虫测报,1987.增刊第1号:65-69.
    58.田绍义.草地螟及其防治研究.河北农学报,1963,2(3):15-22.
    59.王春荣,陈继光,宋显东,等.黑龙江省草地螟第三个暴发周期特点及成因分析.昆虫知识, 2006,43(1):98-104.
    60.王春荣,徐兆飞,许百成,等.2004年黑龙江省草地螟发生特点与暴发成因分析.大豆通报,2005,4:21-22.
    61.王海扣.用轨迹分析法探索褐飞虱夏季迁入虫源.1990.南京农业大学硕十论文.
    62.王秋荣,张友,陈晓.呼伦贝尔市草地螟越冬情况调查.中国植保导刊,2005,25(6):34-36.
    63.王睿文,唐铁朝,康爱国,等.1997年草地螟暴发原因分析及其防治对策.植保技术与推广,1998,18(2):16-19.
    64.魏倩,崔万里,杜俊岭,等.黑龙江省草地螟发生规律,预测预报及综合防治的研究.病虫测报,1987a,增刊第1号:98-107.
    65.魏倩,赵晓丽,杜俊岭,等.草地螟成虫生殖力与温湿度关系的研究.病虫测报,1987b.增刊第1号:9-13.
    66.武向文.我国东北地区昆虫迁飞的Pied piper效应.2001.南京农业大学硕士论文.
    67.席建英.草地螟第三个暴发周期特点及分析.《面向21世纪的植物保护发展战略》.中国科技出版社.2001年.
    68.徐群.1983年气候异常的成因和长江中下游汛期长期预报.自然杂志,1985,8(8):589-594.
    69.徐群.皮纳图博火山云对1992年大范围气候的影响.应用气象学报,1995,6(1):35-42.
    70.杨素钦,马桂椿.草地螟迁飞路径的探讨.病虫测报,1987.增刊第1号:122-128.
    71.尹姣,曹雅忠,罗礼智,等.草地螟对寄主植物的选择性及化学生态机制.生态学报,2005,25(8):1844-1852.
    72.尹姣,曹雅忠,罗礼智,等.寄主植物对草地螟种群增长的影响.植物保护学报,2004,31(2):173-178.
    73.尹姣,曹雅忠,罗礼智.温湿度对草地螟产卵的影响.《面向21世纪的植物保护发展战略》.中国科学技术出版社.2001年.908-911.
    74.尹明浩,吴金花,周存.兴安盟草地螟发生与防治.内蒙古农业科技,2003,(6):24-26.
    75.翟保平,陈瑞鹿.我国东北地区自然地理特征的Pied piper效应.中国昆虫协会成立五十周年纪念暨学术讨论会论文摘要集(1994):238
    76.翟保平,张孝羲.昆虫迁飞行为的参数化.Ⅱ模式与检验.生态学报,1997,17(2):190-199.
    77.翟保平.昆虫行为研究中日长的计算.昆虫知识,2004,41(2):178-184.
    78.翟保平.迁飞过程中昆虫的行为与轨迹分析.1993.南京农业大学博士论文.
    79.张云慧,陈林,程登发,等.草地螟2007年越冬代成虫迁飞行为研究与虫源分析.昆虫学报,2008,51(7):720-727.
    80.张志涛.昆虫迁飞与迁飞场.植物保护,1992.18(1):48-50.
    81.周立阳,张孝羲,程极益.江淮稻区稻纵卷叶螟的轨迹分析.南京农业大学学报,1995,18(2): 53-58.
    82.周琳主编.东北气候.北京气象出版社,1991.
    83.朱世模.山西中部草地螟发生规律及防治研究.山西农业科学,1963,(2):16-20.
    84.朱艳秋,廖洞贤.三维空气质点轨迹的计算.应用气象学报,1992,3(3):328-333.
    85. Akiko Furuno, Masamichi Chino, Akira Otuka, et al. Development of a numerical simulation model for long-range migration of rice planthoppers. Agricultural and Forest Meteorology,2005,133: 197-209.
    86. Akira Otuka, Jimy Dudhia, Tomonari Watanabe, et al. A new trajectory analysis method for migratory planthoppers, Sogatella furcifera (Horvath) (Homoptera: Delphacidae) and Nilaparvata lugens (Stal), using an advanced weather forecast model. Agricultural and Forest Entomology, 2005a,7:1-9.
    87. Akira Otuka, Tomonari Watanabe, Yoshito Suzuki, et al. Real-time prediction system for migration of rice planthoppers Sogatella furcifera (Horvath) and Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Appl. Entomol. Zool.,2005c,40 (2):221-229.
    88. Akira Otuka, Tomonari Watanabe,Yoshito Suzuki, et al. A migration analysis of the rice planthopper Nilaparvata lugens from the Philippines to East Asia with three-dimensional computer simulations. Popul Ecol.,2005b,47:143-150.
    89. Alekhin V T. Beet webworm [Russian]. Zashchita I Karantin Rastenii,2002, No.6, Supplement,23 pp.
    90. Bykova E P, Novozhilov K V. The meadow moth in eastern Siberia [Russian]. Puti Avtomatizatsii Fitosanitarnoi Diagnostiki,1985,89-99.
    91. Carlson J D, Whalon M E. Springtime weather patterns coincident with long-distance migration patato leafhopper into Michigan. Agricultural and Forest Meteorology,1992,59 (34):183-206
    92. Drake V A. Radar observations of moths migrating in a nocturnal low-level jet. Ecological Entomology,1985,10:259-265.
    93. Farrow R A, Garrick McDonald. Migration strategies and outbreaks of Noctuid pests in Australia. Insect Sci. Applic,1987,8:531-642.
    94. Feng H Q, Wu K M, Cheng D F, Guo Y Y. Spring migration and summer dispersal of Loxostege sticticalis (Lepidoptera:Pyralidae) and other insects observed with radar in northern China. Environmental Entomology,2004,33 (5):1253-1265.
    95. Frolov A N, Kuznetsova T L, Chumakov M A, et al. The large-scale spread of beet webworm and corn borer [Russian]. Zashchita I Karantin Rastenii,2000, No.10,12-16.
    96. Frolov A N, Kuznetsova T L, Malysh Yu M, Mitrofanov V B, Issi I V. Cyclicity of outbreaks of beet webworm [Russian]. In:"Pest, diseases, and weeds control". Anniversary issue, Proceedings of St. Petersburg Agric. Univ., St. Petersburg,2004, p.63-71.
    97. Gatehouse A G. Migration:a behavioral process with ecological consequences? Antenna,1987,11: 10-12.
    98. Goryshin N I, Saulich A Kh, Volkovich T A, et al. The role of temperature and photoperiod in the regulation of the development and diapause of the meadow moth (Loxostege sticticalis). Zoologicheskii Zhurnal,1980,59:4,533-545.
    99. Hoy C W, Heady S E. Species composition, phenology and possible origins of leafhoppers in Ohio vegetable crops. Journal of Economic Entomology,1992,85 (6):2336-2343.
    100. Kennedy J S. Migration, Behavioral and Ecological. Marine Science,1985,27:5-27.
    101. Knor I B, Tibatina I A. The meadow moth in Siberia [Russian]. Zashchita Rastenii,1978, No.8, 18-19.
    102. Knorr I B, Ryabko B Ya, Rjabko B Ja. Relation between outbreak of the meadow moth in Siberia and solar activity [Russian]. Izvestiya Sibirskogo Otdeleniya Akademiya Nauk SSSR, B.1981.5 vyp.1,113-116.
    103. Knorr I B. Loxostege sticticalis in the Asian part of the USSR [Russian]. Zashchita Rastenii,1990, No.11,52-56.
    104. Knorr I B. The problem of outbreak of the meadow in Siberia [Russian]. Trydy Vsesoyuznogo Entomologicheskogo Obshchestva,1986,68:162-165.
    105. Konakov N N. Historical notes on the outbreaks of the meadow moth in the black soil zone of central Russia [Russian]. Materials for the Study of the Meadow Moth, Loxostege sticticalis L., in the central Black Soil Zone. Voronezh, Izd. Sta. Zashch. Rast. Oblzemupravl. Tz. Ch. O.,1930. 38pp.
    106. Makarova L A & Doronina G M. The Synoptic Approach to Forecasting Long-range Migration of Insect Pests [Russian]. St.-Petersburg:Gidrometeoizdat,1994.199 pp.
    107. Makarova L A, Doronina G M, Novozhilov K V. Prerequistes of automation of the prediction of the population dynamics of the meadow moth [Russian]. Puti Avtomatizatsii Fitosanitarnoi Diagnostiki, 1985,31-42.
    108. Makarova L A, Doronina G M. A logical model for forecasting phase of the population dynamic of the meadow moth [Russian]. Proceedings of the All-Union Research Institute for Plant Protection. Ecological and physiological preconditions for a modern system of control of the meadow moth. All-Union Lenin Academy of Agricultural Sciences, Leningrad, USSR: 1980, recd,1982.42-68.
    109. Makarova L A, Doronina G M. Phenoclimatic laws of the development of the meadow moth [Russian]. Zashchita Rastenii,1981, No.8,40-41.
    110. Matov G, Chimidtseren B. The meadow moth Loxostege sticticalis L. in the Mongolian People's Republic [Russian]. Zashchita Rastenii,1984, No.6,53.
    111. Mel'Nichenko A N. Regularities of mass flying of the adults of Loxostege sticticalis L. and the problem of the prognosis of their migrations [Russian]. Bull. Plant. Prot. Leningrad Ser. I Ent., No. 1935,17,54 pp.
    112. Mel'nichenko A N. The distribution of Loxostege sticticalis L. in the Western Region of USSR and local breeding grounds of the pest [Russian]. Bull. Plant. Prot., Leningrad Ser. I. Ent., No.1934,8, 72 pp.
    113. Mills A P, Rutter J F. Weather associated with spring and summer migration of rice pests and other insects in south-eastern and eastern Asia. Bulletin of Entomological Research.
    114. Naumova E N, Gorbunov B Z, Knor I B, et al. Study of mass migration of beet-webworm moths Loxostege sticticalis L. (Lepidoptera, Pyralidae) on the basis of analysis of their elemental composition [Russian]. Russian Journal of Ecology,1994,25:4,294-298.
    115. Omelyuta V P. Photoperiodic reactivation of the diapausing prepupae of the meadow moth (Pyrausta sticticalis). Zoologicheskii Zhurnal,1981,60:3,465-467.
    116. Omelyuta V P. The beet webworm [Russian]. Zashchita Rastenii (Moskva),1987, No.6,51-53.
    117. Orishchenko A D. The meadow pyralid [Russian]. Zashchita Rastenii,1976, No.1:42-44.
    118.Petrukha O I, Tribel'S A. The population dynamic of Loxostege sticticalis [Russian]. Zashchita Rastenii,1975,4:41-43.
    119. Polyakov I Ya, Doronina G M, Makarova L A. On Loxostege sticticalis reproduction [Russian]. Zashchita Rastenii (Moskva),1989, No.5,29-31.
    120. Polyakov I Ya, et al. Continued monitoring of the meadow moth [Russian]. Zashchita Rastenii, 1983, No.4,34-36.
    121. Polyakov I Ya, Khomyakova V D, Kub'yas L M. Causes of mass outbreaks of the meadow moth [Russian]. Zashchita Rastenii,1977,2:40-41.
    122. Poplavskii V V. The serious danger presented by the meadow moth [Russian]. Zashchita Rastenii, 1984, No.5,43.
    123. Rabb R L, Stinner R E. The role insect dipersal and migration in population processes. Radar insect population ecology and pest management,1979,3-16.
    124. Reynolds D R, Riley J R. The flight behavior and migration of insect pests:radar studies in developing countries. Bulletin Natural Resources Institute, No.71.1997. Chatham, UK
    125. Rosenberg I J, Magor J I. A technique for examining the long distance spread of plant virus diseases transmitted by the brown Planthopper, Nilaparvata lugens and other windborne insects vectors. Plant Virus Epidemiology. Oxford: Black well Scientific Publications.1983,229-238.
    126. Shek G Kh, Telepa N G The meadow moth in Kazakhstan [Russian]. Zashchita Rastenii,1981, No. 6,23-24.
    127. Shurovenkov Yu B, Alekhin V T. The meadow moth in eastern Siberia and in the Far East [Russian]. Zashchita-Rastenii,1984, (2):40-41.
    128. Smelser R B, Shows W B, Shaw R H, Taylor S E. Atmospheric trajectory analysis to project long-range migration of black cutworm (Lepidoptera: Noctuidae) adults. Journal of Economic Entomology,1991,84 (3):879-885.
    129. Smirnova M P. The meadow moth: still a dangerous pest [Russian]. Zashchita I Karantin Rastenii, 2000,(2):10-11.
    130. Sogawa K. Windborne displacements of rice planthoppers related to seasonal weather patterns in Kyushu district. Bulletin of the Kyushu National Agricultural Experiment Station,1995,28 (4): 219-278.
    131. Strel'nikov I D. The migration of Loxostege sticticalis L [Russian]. Bull. Inst. Sci. Leshaft.,1935, 19:77-120.
    132. Sun Y J, Gao Y B. The migratory activity of meadow moth Loxostege sticticalis in northern China. Plant Protection Towards the 21st Century (Abstracts). Proceedings of the 15th international plant protection congress. Beijing: Foreign language Press, China,2004.304.
    133. Tribel'SA, Ponomarenko L I. A dangerous enemy of beet [Russian]. Zashchita Rastenii,1976, No. 5,33-34.
    134. Tribel'S A, Kolmaz G V. Ecological factors and the abundance of the meadow moth [Russian]. Zashchita Rastenii,1981, No.2,40-41.
    135. Tril' OR, Baikov A M. Zashchita Rastenii,1976,No.5,23-24.
    136. Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature,2002, 416: 389-395.
    137. Yaroslavtzev G M, Molchanova O P. The autumn investigation on the amount of the sugar beet webworm [Russian]. Plant Prot,1932 (2):1-24.
    138. Zhu Min. Simulation of the long range migration of brown planthoppers, Nilaparvata lugens (stal), and their outbreaks by using boundary layer atmospheric model and the geographic information system. Korea:Gyeongsang National University,2000,60pp.
    139. Zverezome-Zubovskii. On the periodical appearance of the meadow moth and some of its other peculiarities [Russian]. In:"The Meadow Moth in 1929-1930". Kiev, Izd. Ukr. nauchnoissled. Inst. sakharn. Promuishl.,1931.3-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700