犬科动物粪便菌群组成及多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
犬科动物是食肉目动物中分布最为广泛的类群,几万年前就与人类生活在一起,二者之间有着不可分割的联系。在犬科动物的研究过程中,其消化生理学领域的研究非常重要,特别是消化道菌群生态方面的研究早已成为学术界的热点话题。目前国内外对家犬肠道正常微生物的研究相对比较深入,但对于其他生存在野外环境下的犬科动物的消化道菌群的的组成及多样性研究较少。为了解犬科动物的消化道菌群组成及多样性特征,本文应用传统培养方法对五种犬科动物(狼、赤狐、沙狐、乌苏里貉和豺)粪便内微生物菌群组成和多样性进行研究,通过与已报道的家犬肠道菌群进行对比分析,全面展现犬科动物肠道正常微生物菌群组成、群落结构及微生态平衡,为犬科动物粪便菌群的研究积累基础资料,并为研究犬科动物肠道微生态环境和肠道疾病提供科学依据。
     根据菌落形态、革兰氏染色特性和显微镜镜鉴,从狼(Canis lupus)粪便菌群中分离到45株菌,赤狐(Vulpes vulpes)粪便菌群中33株菌,沙狐(Vulpes corsac)粪便菌群中27株菌,乌苏里貉(Nyctereutes procyonoides)粪便菌群中38株菌,豺(Cuon alpinus)粪便菌群中39株菌。结合生理生化实验结果,根据细菌鉴定相关资料综合判断,最终确定狼粪便菌群中有22个菌属,赤狐粪便菌群中有19个菌属,沙狐粪便菌群中有21个菌属,乌苏里貉粪便菌群中有21个菌属,豺粪便菌群中有19个菌属,还有一些未能鉴定的菌属。
     通过对五种犬科动物粪便菌群组成及多样性分析,发现粪便菌群组成在犬科动物之间不但具有物种特有性,还具有个体差异性。菌群总量在1010cfu/ml~1011cfu/ml之间,具有一定的稳定性,其中狼粪便菌群总量为(1.442±0.219)×1011cfu/g,赤狐粪便菌群总量为(0.833±0.097)×1011cfu/g,沙狐粪便菌群总量为(0.817±0.130)×1011cfu/g,乌苏里貉粪便菌群总量为(0.862±0.128)×1011cfu/g,豺粪便菌群总量为(1.485±0.144)×1011cfu/g。粪便菌群总量在同一物种不同个体间无明显差异(P>0.05),其中P(Canis lupus)=0.191;P(Vulpes vulpes)=0.898;P(Vulpes corsac)=0.315;P(Nyctereutes procyonoides)=0.074;P(Cuon alpinus)=0.197),不同物种间存在一定差异(P<0.05)。其中狼和豺粪便菌群总量无明显差异,赤狐、沙狐和乌苏里貉粪便菌群总量无明显差异,而狼和豺与赤狐、沙狐和乌苏里貉粪便菌群总量之间存在较为明显的差异(P<0.05)。
     粪便菌群组成在不同犬科动物间匹配度较高,大约在65%-80%之间,其中狼与赤狐、沙狐、乌苏里貉和豺的粪便菌群匹配度分别为66.67%、69.77%、69.77%、63.41%;赤狐与沙狐、乌苏里貉和豺的粪便菌群组成匹配度分别为80.00%、65.00%、78.95%;沙狐与乌苏里貉和豺的粪便菌群组成匹配度分别为71.43%和75.00%;乌苏里貉与豺的粪便菌群组成匹配度为70.00%。优势菌群主要包括埃希氏大肠杆菌、肠杆菌、链球菌、变形菌、肠球菌和乳酸杆菌,其中埃希氏大肠杆菌和肠杆菌为犬科动物共有优势菌,优势菌在不同犬科动物粪便菌群中有一定的差异,但相似度较高。
Canidae, as the most widely distributed taxa in Carnivora, is inextricably linked to our life. Among the studies on canine animals, the researches of digestive physiology play a very important role, and the study on the digestive tract microbial communities is becoming a much hotter topic in recent years. Although the microbial communities in the different segments of the intestinal tract of domestic dogs (Canis lupus familiaris) have been good characterized in domestic and foreign, to our knowledge, no traditional culture-dependent methods has assessed the composition and diversity of the microbial communities in the intestinal tracts of wild carnivore species(Canis lupus, Vulpes vulpes, Vulpes corsac, Nyctereutes procyonoides, Cuon alpinus). Therefore, the first purpose of the present study is to characterize the microbial composition and diversity in the distal gut of a group of five healthy unrelated adult animals by using traditional culture-dependent methods. Comparative with the flora of intestinal in dogs have been reported, the conclusion reveals that the composition and diversity, community structure and microecological balance of the fecal flora of five carnivore species. The results have accumulated basic data for research the flora of intestinal in carnivore, and provided scientific basis for research microecology environment and disease in intestinal tract of carnivores.
     Gram-positive spore bacilli, gram-positive having no spore bacilli, gram-positive coccobacteria, gram-negative coccobacteria and gram-negative bacilli were first identified through microscopic observation and then formal identification tests were carried out, including oxygen needing, methyl red and Acetyl methyl methanol test, catalase, gelatin liquefaction, KNO3 reduction, indole, fermentation of saccharides and mellows, sodium citrate and NaCl-phily and so on. Based on the results of these physiological and biochemical tests, along with the morphological description, species from approximately 19-21 genera were identified in the feces. The number of genera in the feces was 22 in Canis lupus,19 in Cuon alpinus,21 in Nyctereutes procyonoides,21 in Vulpes corsac and 19 in Vulpes vulpes, as well as some unidentified strains.
     Although, some strains were endemic to the carnivore gut, there were some differences in the community among individuals and species. The carnivore fecal flora comprised 1010-1011 colony forming units/g of feces (wet weight). The amount of bacteria reached 1.442×1011cfu/g in Canis lupus,8.330×1010cfu/g in Vulpes vulpes,8.170×1010cfu/g in Vulpes corsac,8.620×1010cfu/g in Nyctereutes procyonoides and 1.485×1011cfu/g in Cuon alpinus. The amount of bacteria was significantly different among species (P<0.05) but not among different individuals of the same species (Canis lupus:P=0.19; Vulpes vulpes:P=0.898; Vulpes corsac:P=0.315; Nyctereutes procyonoides:P=0.074; Cuon alpinus:P=0.197). It is no obvious difference in the amount of bacteria between Canis lupus and Cuon alpinus, between Vulpes vulpes, Vulpes corsac and Nyctereutes procyonoides, but it has obvious differences between Canis lupus, Cuon alpinus and Vulpes vulpes, Vulpes corsac, Nyctereutes procyonoides.
     The percentage of shared species among different carnivores was 65-80%, with the highest percentage between Vulpes vulpes and Vulpes corsac, and the lowest between Canis lupus and Cuon alpinus. Although the proportion of shared species between Vulpes vulpes and Cuon alpinus was 78.95%, the amount of bacteria was markedly different. There was no correlation between the amount and the diversity of bacteria. The most common microbes were Escherichia, Enterobacter, Streptococcus, Proteus, Enterococcus and Lactobacillus. Of these, Escherichia and Enterobacter can be considered as beneficial strains and they were found in all the carnivores. Our findings suggest that, despite some differences, there is high similarity in the dominant fecal bacteria of different carnivores.
引文
[1]Mackie R I, White B A, Isaacson R E. Gastrointestinal Microbiology:Gastrointestinal Microbes and Host Interactions [M]. Chapman and Hall, illustrated edition edition,1997.
    [2]王保军,刘缨,姜嘉彤,刘斌,刘双江.蝎子肠道内微生物多样性研究[J].微生物学报,2007,47(5):888-893.
    [3]陈声明,林海萍,张立钦.微生物生态学导论[M].高等教育出版社,2007.
    [4]Bik E M, Eckburg P B, Gill S R, Nelson K E, Purdom E A, Francois F, Perez-Perez G, Blaser M J, Relman D A. Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Science, USA,2006,103(3):732-737.
    [5]Zhang H H, Chen L. Phylogenetic analysis of 16SrRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus)[J]. Molecular Biology Reports,2010,37(8): 4013-4022.
    [6]Suchodolski J S, Camacho J, Steiner J M. Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16SrRNA gene analysis [J]. FEMS Microbiology Ecology,2008,66(3):567-578.
    [7]Ritchie L E, Steiner J M, Suchodolski J S. Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis[J]. FEMS Microbiology Ecology,2008,66(3): 590-598.
    [8]Wang M, Ahrne S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16SrRNA genes [J]. FEMS Microbiology Ecology,2005,54(2):219-231.
    [9]Frey J C, Rothman J M, Pell A N, Nizeyi J B, Cranfield M R, Angert E R. Fecal bacterial diversity in a wild gorilla [J]. Applied and Environmental Microbiology,2006,72(5): 3788-3792.
    [10]O'Hara A M, Shanahan F. The gut flora as a forgotten organ[J]. EMBO Repprts,2006,7(7): 688-693.
    [11]Guarner R, Malagelada J R. Gut flora in health and disease [J]. Lancet,2003,361(9356): 512-519.
    [12]Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine [J]. Cell,2006,124(4):837-848.
    [13]Cummings J H, Beatty E R, Kingman S M, Bingham S A, Englyst H N. Digestion and physiological properties of resistant starch in the human large bowel [J]. British Journal of Nutrition,1996,75(5):733-747.
    [14]Cummings J H, Pomare E W, Branch W J, Naylor C P, Macfarlane G T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood [J]. Gut,1987,28(10): 1221-1227.
    [15]Alam M, Midtvedt T, Uribe A. Differential cell kinetics in the ileum and colon of germfree rats [J]. Stand Journal of Gastroenterol,1994,29(5):445-451.
    [16]Roberoid M B, Bornet F, Bouley C, Cummings J H. Colonic microflora:nutrition and health. Summary and conclusions of an International Life Sciences Institute (ILSI) [Europe] workshop held in Barcelona, Spain [J]. Nutrition Reviews,1995,53(5):127-130.
    [17]Younes H, Coudray C, Bellanger J, Demigne C, Rayssiguier Y, Remesy C. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats [J]. British Journal Nutrition,2001,86(4):479-485.
    [18]Salminen S, Bouley C, Bouton-Ruault M. Functional food gastrointestinal physiology and function [J]. British Journal Nutrition (suppl),1998,80:147-171.
    [19]Heilig H G, Zoetendal E G, Vaughan E E, Marteau P, Akkermans A D, Vos de W M. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA[J]. Applied and Environmental Microbiology,2002,68(1):114-123.
    [20]Brandtzaeg P, Halstensen T S, Kett K, Krajci P, Kvale D, Rognum T O, Scott H, Sollid L M. Immunobiology and immunopathology of human gut mucosa:humoral immunity and intraepithelial lymphocytes [J]. Gastroenterology,1989,97(6):1562-1584.
    [21]Tannock G W. Molecular assessment of intestinal microflora [J]. The American Journal of Clinical Nutrition,2001,73(2):410S-414S.
    [22]Falk P G, Hooper L V, Midtvedt T, Gordon J I. Creating and maintaining the gastrointestinal ecosystem:what we know and need to know from gnotobiology [J]. Microbiology and Molecular Biology Reviews,1998,62(4):1157-1170.
    [23]Butler J E, Sun J, Weber P, Navarro P, Francis D. Antibody repertoire development in fetal and newborn piglets, III. Colonization of the gastrointestinal tract selectively diversifies the preimmune repertoire in mucosal lymphoid tissues [J]. Immunology,2000,100(1): 119-130.
    [24]Taguchi H, Takahashi M, Yamaguchi H, Osaki T, Komatsu A, Fujioka Y, Kamiya S. Experimental infection of germ-free mice with hyper-toxigenic enterohaemorrhagic Escherichia coli 0157:H7, strain 6[J]. Journal of Medical Microbiology,2002,51(4): 336-343.
    [25]Baba E, Nagaishi S, Fukata T, Arakawa A. The role of intestinal microflora on the prevention of Salmonella colonization in gnotobiotic chickens[J]. Poultry Science,1991, 70(9):1902-1907.
    [26]van der Waaij D. The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile[J]. Annual Review of Microbiology,1989,43: 69-87.
    [27]Hooper L V, Xu J, Falk P G, Midtvedt T, Gordon J I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem[J]. Proceedings of the National Academy of Science, USA,1999,96(17):9833-9838.
    [28]Lievin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser J, Servin A. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity [J]. Gut,2000,47(5):646-652.
    [29]Brook I. Bacterial interference [J]. Critical Reviews in Microbiol,1999,25:155-172.
    [30]Kepner R L, Pratt J R. Use of fluorochromes for direct enumeration of total bacteria in environmental samples:past and present [J]. Microbiological Reviews 1994,58(4): 603-615.
    [31]Breeuwer P, Abee T. Assessment of viability of microorganisms employing fluorescence techniques [J]. International Journal of Food Microbiology,2000,55(1-3):193-200.
    [32]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews,1995,59(1): 143-169.
    [33]Moore W E, Moore L H. Intestinal floras of populations that have a high risk of colon cancer [J]. Applied and Environmental Microbiology,1995,61(9):3202-3207.
    [34]Wilson K H, Blitchington R B. Human colonic biota studied by ribosomal DNA sequence analysis [J]. Applied and Environmental Microbiology,1996,62(7):2273-2278.
    [35]Suau A, Bonnet R, Sutren M, Godon J J, Gibson G, Collins M D, Dore J. Direct rDNA community analysis reveals a myriad of novel bacterial lineages within the human gut[J]. Applied and Environmental Microbiology,1999,65(1):4799-4807.
    [36]Nelson G M, George S E. Comparison of media for selection and enumeration of mouse fecal flora populations [J]. Journal of Microbiological Methods,1995,22(3):293-300.
    [37]Hartemink R, Rombouts F M. Comparison of media for the detection of bifidobacteria, lactobacilli and total, anaerobes from faecal samples [J]. Journal of Microbiological Methods,1999,36(3):181-192.
    [38]McCartney A L. Application of molecular biological methods for studying probiotics and the gut flora [J]. British Journal of Nutrition,2002,88(Suppl 1):S29-S37.
    [39]Stackebrandt E, Liesack W, Goebel B M. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16SrDNA analysis [J]. The FASEB Journal,1993,7(1):232-236.
    [40]Nissen H, Dainty R. Comparison of the use of rRNA probes and conventional methods in identifying strains of Lactobacillus sake and Lactobacillus curvatus isolated from meat [J]. International Journal of Food Microbiology,1995,25(3):311-315.
    [41]Tannock G W, Munro K, Bibiloni R, Simon M A, Hargreaves P, Gopal P, Harmsen H, Welling G. Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans [J]. Applied and Environmental Microbioogy,2004,70(4): 2129-2136.
    [42]Charteris W P, Kelly P M, Morelli L, Collins J K. Selective detection, enumeration and identification of potentially probiotic Lactobacillus and Bifidobacterium species in mixed bacterial populations [J]. International Journal of Food Microbiology,1997,35(1):1-27.
    [43]Franks A H, Harmsen H J, Raangs G C, et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes[J]. Applied and Environmental Microbioogy,1998,64(9): 3336-3345.
    [44]Wang R F, Cao W W, Cerniglia C E. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples [J]. Applied and Environmental Microbioogy,1996,62(4):1242-1247.
    [45]Lin C, Raskin L, Stahl D A. Microbial community structure in gastrointestinal tracts of domestic animals:comparative analyses using rRNA-targeted oligonucleotide probes [J]. FEMS Microbiology Ecology,1997,22(4):281-294.
    [46]Doungudomdacha S, Rawlinson A, Walsh T F, Douglas C W. Effect of non-surgical periodontal treatment on clinical parameters and the numbers of Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans at adult periodontitis sites[J]. Journal of Clinical Periodontology,2001,28(5):437-445.
    [47]Sanz M, Lau L, Herrera D, Morillo J M, Silva A. Methods of detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythensis in periodontal microbiology, with special emphasis on advanced molecular techniques:a review[J]. Journal of Clinical Periodontology,2004,31(12):1034-1047.
    [48]Garcia L, Tercero J C, Legido B, Ramos J A, Alemany J, Sanz M. Rapid detection of Actinobacillus actinomycetemcomitans, Prevotella intermedia and Porphyromona gingivalis by multiplex PCR[J]. Journal Periodontal Research,1998,33(1):59-64.
    [49]Zoetendal E G, Collier C T, Koike S, Mackie R I, Gaskins H R. Molecular ecological analysis of the gastrointestinal microbiota:a review[J]. Journal of Nutrition,2004,134(2): 465-472.
    [50]Suchodolski J S, Ruaux C G, Steiner J M, Fetz K, Williams D A. Application of molecular fingerprinting for qualitative assessment of small-intestinal bacterial diversity in dogs[J]. Journal of Clinical Microbiology,2004,42(10):4702-4708.
    [51]Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans A D. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils[J]. Microbiology,1997,143(Pt 9):2983-2989.
    [52]Rigottier-Gois L, Bourhis A G, Gramet G, Rochet V, Dore J. Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes[J]. FEMS Microbiology Ecology,2003,43(2):237-245.
    [53]Satokari R M, Vaughan E E, Smidt H, Saarela M, Matto J, de Vos W M. Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract [J]. Systematic and Applied Microbiology,2003,26(4): 572-584.
    [54]Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16SrRNA[J]. Applied and Environmental Microbiology,1993,59(3): 695-700.
    [55]O'Sullivan D J. Methods for analysis of the intestinal microflora [J]. Current in Intestinal Microbiology,2000,1(2):39-50.
    [56]Wilson K H, Wilson W J, Radosevich J L, DeSantis T Z, Viswanathan V S, Kuczmarski T A, Andersen G L. High-density microarray of small-subunit ribosomal DNA probes[J]. Applied and Environmental Microbiology,2002,68(5):2535-2541.
    [57]Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization[J]. Applied and Environmental Microbiology,2000,66(5):2263-2266.
    [58]Grif K, Karch H, Schneider C, Daschner F D, Beutin L, Cheasty T, Smith H, Rowe B, Dierich M P, Allerberger F. Comparative study of five different techniques for epidemiological typing of Escherichia coli O157[J]. Diagnostic Microbiology and Infectious Disease,1998,32(3):165-176.
    [59]Barrett T J, Lior H, Green J H, Khakhria R, Wells J G, Bell B P, Greene K D, Lewis J, Griffin P M. Laboratory investigation of a multistate food-borne outbreak of Escherichia coli O157:H7 by using pulsed-field gel electrophoresis and phage typing [J]. Journal of Clinical Microbiology,1994,32(12):3013-3017.
    [60]Diekema D J, Barr J, Boyken L D, Buschelman B J, Jones R N, Pfaller M A, Herwaldt L A. A cluster of serious Escherichia coli infections in a neonatal intensive-care unit[J]. Infection Control and Hospital Epidemiology,1997,18(11):774-776.
    [61]Hahm B K, Maldonado Y, Schreiber E, Bhunia A K, Nakatsu C H. Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP[J]. Journal of Microbiological Methods,2003,53(3):387-399.
    [62]Davis M A, Hancock D D, Besser T E, Call D R. Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7[J]. Journal of Clinical Microbiology,2003,41(5):1843-1849.
    [63]Singer R S, Sischo W M, Carpenter T E. Exploration of biases that affect the interpretation of restriction fragment patterns produced by pulsed-field gel electrophoresis [J]. Journal of Clinical Microbiology,2004,42(12):5502-5511.
    [64]Guyot A, Barrett S P, Threlfall E J, Hampton M D, Cheasty T. Molecular epidemiology of multi-resistant Escherichia coli[J]. Journal of Hospital Infection,1999,43(1):39-48.
    [65]Gill S R, Pop M, DeBoy R T, Eckburg P B, Turnbaugh P J, Samuel B S, Gordon J I, Relman D A, Fraser-Liggett C M, Nelson K E. Metagenomic analysis of the human distal gut microbiome [J]. Science,2006,312(5778):1355-1359.
    [66]Tormo C R, Infante P D, Rosello M E, Bartolome C R. Intake of fermented milk containing Lactobacillus casei DN-114001 and its effect on gut flora [J]. An Pediatr (Barc),2006, 65(1):448-453.
    [67]Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli M C. Differences in fecal microbiota in different European study populations in relation to age, gender, and country:a cross-sectional study [J]. Applied and Environmental Microbiology,2006,72(2):1027-1033.
    [68]Nicholson J K, Lindon J C, Holmes E. "Metabonomics":understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica,1999,29(11):1181-1189.
    [69]Vaughan E E, Heilig H C, Ben-Amor K, de Vos W M. Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches [J]. FEMS Microbiology Reviews,2005,29(3):477-490.
    [70]Walter J, Hertel C, Tannock G W, Lis C M, Munro K, Hammes W P. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis [J]. Applied and Environmental Microbiology,2001,67(6):2578-2585.
    [71]Dumas M E, Barton R H, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon J C, Mitchell S C, Holmes E, McCarthy M I, Scott J, Gauguier D, Nicholson J K. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice [J]. Proceedings of the National Academy Sciences, USA,2006,103(33):12511-12516.
    [72]李保红.肠道微生物多样性及其与人体代谢相关性的研究[D].浙江大学博士论文.2007.
    [73]Nicholson J K, Holmes E, Lindon J C, Wilson I D. The challenges of modeling mammalian biocomplexity[J]. Nature Biotechnology,2004,22(1):1268-1274.
    [74]Peltonen R, Ling W H, Hanninen O, Eerola E. An uncooked vegan diet shifts the profile of human fecal microflora:computerized analysis of direct stool sample gas-liquid chromatography profiles of bacterial cellular fatty acids [J]. Applied and Environmental Microbiology,1992,58(11):3660-3666.
    [75]El Oufir L, Flourie B, Bruley des Varannes S, Barry J L, Cloarec D, Bornet F, Galmiche J P. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans [J]. Gut,1996,38(6):870-877.
    [76]Topping D L, Clifton P M. Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides [J]. Physiological Reviews,2001,81(3): 1031-1064.
    [77]Tannock G W. The normal microbiota:an introduction [M]. Horizon Scientific Press, Wymondham, UK,1999b:1-23.
    [78]Gorbach S L. Bengt E. Gustafsson memorial lecture. Function of the normal human microflora. Scandinavian Journal of Infectious Diseases Supplementum,1986,49(1): 17-30.
    [79]Holzapfel W H, Haberer P, Snel J, Schillinger U, Huis in't Veld J H. Overview of gut flora and probiotics[J]. International Journal of Food Microbiology,1998,41(2):85-101.
    [80]Mitsuoka T. Intestinal flora and aging[J]. Nutrition Reviews,1992,50(12):438-446.
    [81]Wang M, Ahrne S, Antonsson M, Molin G. T-RFLP combined with principal component analysis aND16S rRNA gene sequencing:an effective strategy for comparison of fecal microbiota in infants of different ages[J]. Journal of Microbiology Methods,2004,59(1): 53-69.
    [82]Blaut M, Collins M D, Welling G W, Dore J, van Loo J, de Vos W. Molecular biological methods for studying the gut microbiota:the EU human gut flora project [J]. British Journal of Nutrious,2002,87(S2):203-211.
    [83]Mai V, Katki H A, Harmsen H, Gallaher D, Schatzkin A, Baer D J. Effects of a controlled diet and black tea drinking on the fecal microflora composition and the fecal bile acid profile of human volunteers in a double-blinded randomized feeding study [J]. Journal of Nutritions,2004,134(2):473-478.
    [84]Hayashi H, Sakamoto M, Kitahara M, Benno Y. Molecular analysis of fecal microbiota in elderly individuals using 16SrDNA library and T-RFLP[J]. Microbiology and Immunology, 2003,47(8):557-570.
    [85]Hill M J. Diet and the human intestinal bacterial flora [J]. Cancer Reseach,1981,41(1): 3778-3780.
    [86]Finegold S M, Attebery H R, Sutter V L. Effect of diet on human fecal flora:comparison of Japanese and American diets [J]. The American Journal of Clinical Nutrition,1974,27(12): 1456-1469.
    [87]Favier C F, Vaughan E E, De Vos W M, Akkermans A D. Molecular monitoring of succession of bacterial communities in human neonates[J]. Applied and Environmental Microbiology,2002,68(1):219-226.
    [88]Hebuterne X. Gut changes attributed to ageing:effects on intestinal microflora [J]. Current Opinion in Clinical Nutrition and Metabolic Care,2003,6(1):49-54.
    [89]Hoplcins M J, Sharp R, Macfarlane G T. Age and disease related changes in intestinal bacterial populations assessed by cell culture,16S rRNA abundance, and community cellular fatty acid profiles [J]. Gut,2001,48(2):198-205.
    [90]Gariballa S E, Sinclair A J. Nutrition, ageing and ill health [J]. British Journal of Nutrition, 1998,80(1):7-23.
    [91]Stephen A M, Wiggins H S, Cummings J H. Effect of changing transit time on colonic microbial metabolism in man[J]. Gut,1987,28(5):601-609.
    [92]Bruinsma N, Filius P M, van den Bogaard A E, Nys S, Degener J, Endtz H P, Stobberingh E E. Hospitalization, a risk factor for antibiotic-resistant Escherichia coli in the community [J]. Journal of Antimicrobial Chemotherapy,2003,51(4):1029-1032.
    [93]Wielen van der P W, Keuzenkamp D A, Lipman L J, van Knapen F, Biesterveld S. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth [J]. Microbial Ecology,2002,44(3):286-293.
    [94]Simpson J M, McCracken V J, White B A, Gaskins H R, Mackie R I. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J]. Journal of Microbiological Methods,1999,36(3):167-179.
    [95]Aabo S, Christensen J P, Chadfield M S, Carstensen B, Jensen T K, Bisgaard M, Olsen J E. Development of an in vivo model for study of intestinal invasion by Salmonella enterica in chickens[J]. Infection Immunity,2000,68(12):7122-7125.
    [96]Satokari R M, Vaughan E E, Akkermans D, Saarela M, de Vos W M. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology,2001,67(2):504-513.
    [97]Pang X, Ding D, Wei G, Zhang M, Wang L, Zhao L. Molecular profiling of bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. Journal of Microbiological Methods,2005,61(3):413-417.
    [98]Wei G, Pan L, Du H, Chen J, Zhao L. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts [J]. Journal of Microbiological Methods, 2004,59(1):91-108.
    [99]Simpson J M, Martineau B, Jones W E, Ballam J M, Mackie R. Characterization of fecal bacterial populations in canines:effects of age, breed and dietary fiber [J]. Microbial Ecology,2002,44(2):186-197.
    [100]赵燕飞,汪以真,胡迎利.肠道菌群与动物免疫的相互关系[J].中国兽药杂志,2004,38(8):36-38.
    [101]Liston J. The occurrence and distribution of bacterial types on flatfish [J].Journal of General Microbiology,1957,16(l):205-216.
    [102]Margolis L. The effect of fasting on the bacterial flora of the intestine of fish[J]. Journal of the Fisheries Research Board of Canada,1953,10(2):95-104.
    [103]Gibson G R, Roberfroid M B. Dietary modulation of the human colonic microbiota-introducing the concept of prebiotics[J]. Journal of Nutrition,1995,125(6): 1401-1412.
    [104]Macfarlane S, Macfarlane G T. Regulation of short-chain fatty acid production[J]. Proceedings of the Nutrition Society,2003,62(1):67-72.
    [105]Fredrik B, Hao D, Ting W, Lora V, Gou Y, Andras N, Clay F, Jeffrey I. The gut microbiota as an environmental factor that regulates fat storage [J]. Proceedings of the National Academy of Sciences, USA,2004,101(44):15718-15723.
    [106]Thaddeus S S, Lora V H, Jeffrey I G. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells [J]. Proceedings of the National Academy of Sciences, USA,2002,99(24):15451-15455.
    [107]Sartor R B. Review article:role of the enteric microflora in the pathogenesis of intestinal inflammation and arthritis [J]. Aliment Pharmacol Ther,1997,11(3):17-23.
    [108]Guarner F, Casellas F, Borruel N, Antolin M, Videla S, Vilaseca J, Malaqelada J R. Role of microecology in chronic inflammatory bowel diseases [J]. European Journal of Clinical Nutrition,2002,56(4):34-38.
    [109]Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, Lochs H. Association between intraepithelial Escherichia coli and colorectal cancer[J]. Gastroenterology,1998,115(2):281-286.
    [110]易发平.家蚕好氧微生物菌群分析及微生态环境调控研究[D].西南农业大学硕士论文.2001.
    [111]图雅.虎粪细菌区系16S rDNA动态[D].南京农业大学博士论文.2005.
    [112]图雅,朱伟云,陆承平.东北虎粪细菌区系的16S rRNA基因序列分析[J].微生物学报,2005,45(5):671-674.
    [113]Yin Q Q, Zheng Q H. Isolation and identification of the dominant lactobacillus in gut and faeces of pigs using carbohydrate fermentation and 16SrDNA analysis[J]. Journal of Bioscience And Bioengineering,2005,99(1):68-71.
    [114]Savage D C. Microbial ecology of the gastrointestinal tract[C]. Annual Review of Microbiology,1977,31:107-133.
    [115]Yang LY, Chen J, Cheng X L, Xi D M, Yang S L, Deng W D, Mao H M. Phylogenetic analysis of 16S rRNA gene sequences reveals rumen bacterial diversity in Yaks (Bos grunniens)[J]. Molecular Biology Repots,2010,37(1):553-562.
    [116]Yang S, Ma S, Chen J, Mao H, He Y, Xi D, Yang L, He T, Deng W. Bacterial diversity in the rumen of Gayals (Bos frontalis), Swamp buffaloes (Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences[J]. Molecular Biology Repots,2010, 37(4):2063-2073.
    [117]Deng W D, Xi D G, Mao H M, Wanapat M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies:a review[J]. Molecular Biology Repots,2008,35(2):265-274.
    [118]Drasar B S, Barrow P A. Intesinal Microbiology[M]. American Society for Microbiology, Washington D C,1985.
    [119]Eckburg P B, Bik E M, Bernstein C N, Purdom E, Dethlefsen L, Sargent M, Gill S R, Nelson K E, Relman D A. Diversity of the human intestinal microbial flora[J]. Science, 2005,308(5728):1635-1638.
    [120]Davis C P, Cleven D, Balish E, Yale C E. Bacterial association in the gastrointestinal tract of Beagle dogs[J]. Applied and Environmental Microbiology,1977,34(2):194-206.
    [121]Benno Y, Nakao H, Uchida K, Mitsuoka T. Impact of the advances in age on the gastrointestinal microflora of beagle dogs[J]. The Journal of Veterinary Medical Science, 1992,54(4):703-706.
    [122]Buddington R K. Postnatal changes in bacterial populations in the gastrointestinal tract of dogs[J]. American Journal of Veterinary Research,2003,64(5):646-651.
    [123]Suchodolski J S, Ruaux C G, Steiner J M, Fetz K, Williams D A. Assessment of the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique [J]. American Journal of Veterinary Research,2005,66(9):1556-1562.
    [124]郑继法.区别革兰氏阴性和阳性菌的快速简易试验[J].山东农业大学学报,1984,121~122.
    [125]陈天寿.微生物培养基的制造与应用[M],中国农业出版社,1995.
    [126]杨革.微生物学实验教程[M],科学出版社,2005.
    [127]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].科学出版社,2001.
    [128]R.E布坎南,N.E吉本斯.伯杰细菌鉴定手册(第八版)[M].科学出版社,1984.
    [129]Garrity G M, Bell J A, Lilburn T G. Taxonomic Outline of the Prokaryotes Bergey's Manual(?) of Systematic Bacteriology, Second Edition[OL]. Bergeys Outline,2004.
    [130]冯羡菊等.微生物实验技术与临床[M],郑州大学出版社,2010.
    [131]Mentula S. Analysis of canine small intestinal and fecal microbiota; prevention of ampicillin-induced changes with oral β-lactamase. Publications of the National Public Health Insitute,2005,1-86.
    [132]Zoetendal E G, Akkermans A D, Akkermans-van Vliet W M, de Visser J, de Vos W M. The host genotype affects the bacterial community in the human gastrointestinal tract. Microbial Ecology in Health and Disease,2001,13(3):129-134.
    [133]Balish E, Cleven D, Brown J, Yale C E. Nose, throat, and fecal flora of beagle dogs housed in "locked" or "open" environments. Applied and Environmental Microbiology,1977, 34(2):207-221.
    [134]Terada A, Hara H, Oishi T, Matsui S, Mitsuoka T, Nakajyo S, Fujimori I, Hara K. Effect of Dietary Lactosucrose on Faecal Flora and Faecal Metabolites of Dogs. Microbial Ecology in Health and Disease,1992,5(2):87-92.
    [135]Willard M D, Simpson R B, Cohen N D, Clancy J S. Effects of dietary fructooligosaccharides on selected populations in feces of dogs. American Journal of Veterinary Research,2000,61(7):820-825.
    [136]朱瑞良,牛钟相,常伟山.不同日龄兔肠道正常菌群的研究.中国兽医学报,1996,16(2):176-178.
    [137]陈联群,张荣梅,路士遂,黄素贞,李英凯,郝维善,魏林,刘勋.健康人肠道双歧杆菌和大肠杆菌数量在不同季节的动态观察.中国微生态学杂志,1994,6(1):13-15.
    [138]Greetham H L, Giffard C, R Hutson A, Collins M D, Gibson G R. Bacteriology of the Labrador gut:a cultural and genotypic approach. Journal of Applied Microbiology,2002, 93(4):640-646.
    [139]Rinkinen M L, Koort J M, Ouwehand A C, Westermarck E, Bjorkroth K J. Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiology Letters,2004,230(1):35-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700