褪黑激素主动免疫对生长猪生产性能和胴体品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褪黑激素(Melatonin,MT)主要是由动物脑部松果体在无光照时分泌的吲哚类激素,对机体的抗氧化功能、免疫系统、内分泌系统及生殖系统等都存在明显的作用。本试验通过研究褪黑激素主动免疫对生长猪生产性能和胴体品质的影响,并探讨褪黑激素主动免疫与生长猪养分沉积和肉质的关系。试验选用20kg±1.5kg健康二元(长×大)杂交猪10头,按体重相近的原则随机分成二个处理,分别注射牛血清白蛋白(BSA)和褪黑激素完全抗原,分别在试验第1、15、29、43d进行免疫。试验猪体重达95kg左右时进行屠宰试验。试验期为117d。
     结果显示:随着免疫时间的延长,对照组和处理组抗体滴度(用OD值表示)不断升高;试验第15d,处理组抗体滴度显著高于对照组(P<0.05)。试验第43d,处理组抗体滴度极显著高于对照组(P<0.01)。与对照组相比,处理组在第一阶段(试验第1d到第57d)平均日增重和平均日采食量有提高趋势,其中,平均日增重提高8.69%(P=0.232),平均日采食量提高6.84%(P=0.525),对饲料效率没有影响。从全期来看,与对照组相比,处理组猪生产性能有提高趋势,其中,平均日增重提高3.44%(P=0.260)。与对照组相比,处理组粗蛋白表观消化率提高2.15%(P=0.430),总能表观消化率提高2.22%(P=0.170),粗脂肪表观消化率降低2.74%(P=0.524)。生长育肥猪注射褪黑激素完全抗原后,眼肌面积增加36.2%(P<0.05),背膘厚提高13.6%(P<0.32),板油比增加34.6%(P<0.053),屠宰率增加3.04%,肌肉滴水损失增加13.13%(P<0.10),大理石纹评分降低11.1%(P<0.33)。屠宰后45分钟肌肉pH值(pH_(45min))和屠宰后24小时肌肉pH值(pH_(24h))略微下降。用日本美能达彩色仪测定的屠宰后45分钟肌肉L值(L_(45min),L值表示肌肉亮度)和B值(B_(45min),B值是度量肌肉从黄色到蓝色的变化)略微下降,而A值(A_(45min),A值是度量肌肉从红色到绿色的变化)上升。屠宰后24小时肌肉L值(L_(24h))和B值(B_(24h))略微上升,且L_(24)>53,A值(A_(24h))上升。褪黑激素主动免疫可使猪肉中丙二醛含量从3.98nmol/mg增加到4.38nmol/mg,增加10.05%(P<0.56)。
     综上所述,在本试验条件下,褪黑激素主动免疫可使试验猪血清抗体滴度显著升高,生长猪采食量、体增重、饲料报酬以及日粮蛋白质和能量消化率有提高的趋势,日粮脂肪消化率有降低的趋势;眼肌面积和板油比显著增加,背膘厚和屠宰率有提高趋势;肌肉滴水损失有增加趋势,而肌内脂肪含量有降低趋势;肌肉丙二醛含量有
Melatonin(MT) is an indolamine synthesized and secreted in darkness mainly by the pineal gland. It affects various physiological functions such as antioxidation, immunization, endocrine and reproduction. This trial was conducted to evaluate the efficacy of active immunization against melatonin on the growth performance and carcass quality of growing pigs. Ten (Landrace × Largewhite) growing pigs with body weight of 20±1.5kg were allotted randomly to two groups by weight. Every group included five replicates of one pig each. Pigs of each group were injected every 14 days with bovine serum albumin (BSA) or melatonin conjugated to BSA respectively. Primary inoculation was on day 1 and booster inoculation were on day 15, 29 and 43. All pigs were slaughtered on day 117.The result showed antibody titers of treatment animals were significantly higher (P<0.01) compared with control pigs. In phase l(from day1 to day 57), the average daily weight gain (AE)G) of treatment animals was 8.69%( P=0.232)greater than that of control pigs, and average daily feed intake (ADFI) was 6.84% (P=0.525) higher for treatment animals. The digestibilities of crude protein(CP) and gross energy(GE) were increased by 2.15% (P=0.430) and 2.22% (P=0.170) respectively , but that of ether extract(EE) was decreased by 2.74% (P=0.524) for treatment group. Treatment with MT increased logissimus muscle area (LMA) by 36.2% (P<0.05) , backfat depth by 13.6 (P<0.32) , rate of leaf fat (RLF)by 34.6% (P<0.053) and rate of slaughter by 3.04%. The water loss (WL) of pork was 13.13% (P<0.10) higher in treatment pigs compared with control pigs. The marbling score(MS) of treatment pigs was decreased by 11.1% (P<0.33) .The pH of pork was lower in treatment pigs. Active immunization against melatonin had no effect on pork color. Active immunization against melatonin increased the content of maleic dialdehyde(MDA) in pork by 10.05% (P<0.56) .In conclusion , active immunization against melatonin tended to improve ADG, ADFI,
    and the digestibilities of CP and GE. Logissimus muscle area and rate of leaf fat were significantly increased, backfat depth and rate of slaughter tended to be increased. Meanwhile, the WL and the content of MDA of pork tended to be increased.
引文
1.田荣波,何宏文.植物中的褪黑激素[J].中华中西医杂志.2003.4(11):1676-1678.
    2.杨建武,曹会兰.褪黑激素的合成与表征[J].化学研究.2003.14(4):42-44.
    3.郑亦辉.动物激素及其应用[M].南京:江苏科学技术出版社.1996.
    4. Hoffmann K. Photoperiod, pineal, melatonin and reproduction in hamster, in The Pineal Gland of Vertebrates Including Man (Kappers JA and Pe'vet P eds) vol 52, Amsterdam, Elsevier North Holland Biomedical Press,. 1979, pp 397-415
    5. Reiter RJ. The pineal gland and its hormones in the control of reproduction in mammals[J]. Endocrine Rev . 1980.1:109-131.
    6. Goldman BD and Darrow JM. The pineal gland and mammalian photoperiodism[J]. Neuroendocrinology. 1983.37:386-396.
    7. Bittman EL. Melatonin and photoperiodic time measurement: evidence from rodents and ruminants, in The Pineal Gland (Reiter RJ ed). New York, Raven Press,. 1984, pp 155-191
    8. Tamarkin L, Baird CJ, and Almeida OFX. Melatonin: a coordinating signal for mammalian reproduction[J]. Science. 1985.227:714-720.
    9. Pevet P. The role of the pineal gland in the photoperiodic control of reproduction in different hamster species[J]. Reprod Nutr Dev. 1988.28:443-458.
    10. Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement[J]. J Biol Rhythms. 2001.16:283-301.
    11. Schwartz WJ, de la Iglesia HO, Zlomanczuk P, et al.. Encoding le Quattro Stagioni within the mammalian brain: photoperiodic orchestration through the suprachiasmatic nucleus[J]. J Biol Rhythms. 2001.16:302-311.
    12. Sumova A, Travnickova Z, Peters R, et al.. The rat suprachiasmatic nucleus is a clock for all seasons[J]. Proc Natl Acad Sci USA. 1995.92:7754-7758.
    13. Vuillez P, Jacob N, Teclemariam-Mesbah R, et al.. In Syrian and European hamsters, the duration of sensitive phase to light of the suprachiasmatic nuclei depends on the photoperiod. Neurosci Lett . 1996.208:37-40.
    14. Messager S, Ross AW, Barrett P, et al.. Decoding photoperiodic time through Per1 and ICER gene amplitude[J]. Proc Natl Acad Sci USA. 1999.96:9938-9943.
    15. Messager S, Hazlerigg DG, Mercer JG, et al.. Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster[J]. Eur J Neurosci. 2000.12:2865-2870.
    16. Messager S, Garabette ML, Hastings MH, et al.. Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. Neuroreport. 2001.12:579-582.
    17. Nuesslein-Hildesheim B, O'Brien JA, Ebling FJ, et al. . The circadian cycle of mPER clock gene products in the suprachiasmatic nucleus of the Siberian hamster encodes both daily and seasonal time[J]. Eur JNeurosci. 2000.12:2856-2864.
    18. Jac M, Kiss A, Sumova A, et al. Daily profiles of arginine vasopressin mRNA in the suprachiasmatic, supraoptic and paraventricular nuclei of the rat hypothalamus under various photoperiods[J]. Brain Res . 2000.887:472-476.
    19. Menet J, Vuillez P, Jacob N, et al.. Intergeniculate leaflets lesion delays but does not prevent the integration of photoperiodic change by the suprachiasmatic nuclei[J]. Brain Res. 2001.906:176-179.
    20. Lincoln GA . Effects of placing micro-implants of melatonin in the pars tuberalis, pars distalis and the lateral septum of the forebrain on the secretion of FSH and prolactin and testicular size in rams[J]. J Endocrinol. 1994.142:267-276.
    21. Malpaux B, Skinner DC, and Maurice F . The ovine pars tuberalis does not appear to be targeted by melatonin to modulate luteinizing hormone secretion, but may be important for prolactin release[J]. J Neuroendocrinol. 1995.7:199-206.
    22. Malpaux B, Migaud M, Tricoire H, et al. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin[J]. J Biol Rhythms. 2001.16:336-347.
    23. Hazlerigg DG, Morgan PJ, and Messager S . Decoding photoperiodic time and melatonin in mammals: what can we learn from the pars tuberalis[J]. J Biol Rhythms . 2001.16:326-335.
    24. von Gall C, Garabette ML, Kell CA, et al. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin[J]. Nat Neurosci. 2002.5:234-238.
    25. Guerra M and Rodriguez EM . Identification, cellular and subcellular distribution of 21 and 72 kDa proteins (tuberalins?) secreted by specific cells of the pars tuberalis[J]. J Endocrinol. 2001.168:363-379.
    26. Badura LL and Goldman BD . Central sites mediating reproductive responses to melatonin in juvenile male Siberian hamsters[J]. Brain Res. 1992. 598:98-106.
    27. Maywood ES and Hastings MH . Lesions of the iodomelatonin-binding sites of the mediobasal hypothalamus spare the lactotropic, but block the gonadotropic response of male Syrian hamsters to short photoperiod and to melatonin[J]. Endocrinology. 1995. 136:144-153.
    28. Malpaux B, Daveau A, Maurice-Mandon F, et al.. Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: presence of binding sites and stimulation of luteinizing hormone secretion by in situ microimplant delivery[J]. Endocrinology. 1998.139:1508-1516.
    29. Rollag MD and Niswender GD . Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens[J]. Endocrinology . 1976.98:482-489.
    30. Karsch FJ, Malpaux B, Wayne NL, et al. Characteristics of the melatonin signal that provide the photoperiodic code for timing seasonal reproduction in the ewe[J].Reprod Nutr Dev . 1988.28:459-472.
    31. Illnerova H and Vanecek J . Pineal rhythm in N-acetyltransferase activity in rats under different artificial photoperiods and in natural daylight in the course of a year[J]. Neuroendocrinology. 1980.31:321-326.
    32. Skene DJ, Pevet P, Vivien-Roels B, et al. Effect of different photoperiods on concentrations of 5-methoxytryptophol and melatonin in the pineal gland of the Syrian hamster[J]. J Endocrinol. 1987.114:301-309.
    33. Maywood E, Hastings MH, Max M, et al. Circadian and daily rhythms of melatonin in the blood and pineal gland of free-running and entrained Syrian hamsters[J]. J Endocrinol. 1993.136:65-73.
    34. Miguez JM, Recio J, Vivien-Roels B, et al. Daily variation in the content of indoleamines, catecholamines and related compounds in the pineal gland of Syrian hamsters kept under long and short photoperiods[J]. J Pineal Res. 1995.19:139-148.
    35. Vivien-Roels B, Pevet P, Masson-Pevet M, et al. Seasonal variations in the daily rhythm of pineal gland and/or circulating melatonin and 5-methoxytryptophol concentrations in the European hamster, Cricetus cricetus. Gen Comp Endocrinol. 1992.86:239-247.
    36. Carter DS and Goldman BD . Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): duration is the critical parameter[J]. Endocrinology. 1983.113:1261-1267.
    37. Pitrosky B, Masson-Pevet M, Kirsch R, et al. Effects of different doses and durations of melatonin infusions on plasma melatonin concentrations in pinealectomized Syrian hamster: consequences at the level of sexual activity [J]. J Pineal Res. 1991.11:149-155.
    38. Bartness TJ, Powers JB, Hastings MH, et al. The time infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception and the photoperiodic control of seasonal responses[J]. J Pineal Res . 1993.15:161-190.
    39. Tamarkin L, Westrom WK, Hamill AI, et al. Effect of melatonin on the reproductive systems of male and female Syrian hamsters: a diurnal rhythm in sensitivity to melatonin[J]. Endocrinology. 1976.99:1534-1541.
    40. Reiter RJ, Vaughan GM, Oaknin S, et al. Norepinephrine or isoproterenol stimulation of pineal N-acetyltransferase activity and melatonin content in the Syrian hamster is restricted to the second half of the daily dark phase[J]. Neumendocrinology. 1987. 45:249-256.
    41. Pitrosky B, Kirsch R, Vivien-Roels B, et al. The photoperiodic response in Syrian hamster depends upon a melatonindriven circadian rhythm of sensitivity to melatonin[J]. J Neuroendocrinol. 1995.7:889-895.
    42. Vivien-Roels B. Seasonal variations in the amplitude of the daily pattern of melatonin secretion in mammalian and non-mammalian vertebrates: possible physiological consequences, in Comparative Endocrinology and Mammalian Reproduction Physiology (Joy KP, Krishna A, and Haldar C eds).New Delhi, Narosa Publishing House, 1999,pp 529-542,
    43. McConnell SJ and Ellendorff F . Absence of nocturnal plasma melatonin surge under long and short artificial photoperiods in the domestic sow[J]. J Pineal Res . 1987. 4:201-210.
    44. Taste A, Ahlstrom S, Andersson H, et al. Seasonal alterations in circadian melatonin rhythms of the european wild boar and domectic gilt[J]. J Pineal Res. 2001. 30:43-49.
    45. Cozzi B, Morei G, Ravault JP, et al. Circadian and seasonal rhythms of melatonin production in mules (Equus asinus x Equus caballus) [J].J Pineal Res. 1991. 10:130-135.
    46. Lerchl A and Schlatt S . Serotonin content and melatonin production in the pineal gland of the male Djungarian hamster (Phodopus sungorus) [J]. J Pineal Res. 1992.12:128-134.
    47. Steinlechner S, Baumgartner I, Klante G, et al.. Melatonin synthesis in the retina and pineal gland of Djungarian hamsters at different times of the year[J]. Neurochem Int. 1995.27:245-251.
    48. Miguez JM, Recio J, Vivien-Roels B, et al. Diurnal changes in the content of indoleamines, cathecholamines and methoxyindoles in the pineal gland 386 SIMONNEAUX AND RIBELAYGA of the Djungarian hamster (Phodopus sungorus): effect of photoperiod[J]. J Pineal Res. 1996. 21:7-14.
    49. Ribelayga C, Pevet P, and Simonneaux V . HIOMT drives the photoperiodic changes in the amplitude of the melatonin peak of the Siberian hamster[J]. Am J Physiol Regul Integr Comp Physiol. 2000. 278:R1339-R1345.
    50. Vivien-Roels B, Pitrosky B, Zitouni M, et al.. Environmental control of the seasonal variations in the daily pattern of melatonin synthesis in the European hamster, Cricetus cricetus[J] Gen Comp Endocrinol. 1997.106:85-94.
    51. Guerin MV, Deed JR, Kennaway DJ, et al. Plasma melatonin in the horse: measurements in natural photoperiod and in acutely extended darkness throughout theyear[J]. J Pineal Res. 1995. 19:7-15.
    52. Pevet P . Environmental control of the annual reproductive cycle in mammals. Role of the pineal gland, in Comparative Physiology of Environmental Adaptations. (Pevet P ed) vol 3, Basel, Karger,1987, pp 82-100
    53. Pevet P, Vivien-Roels B, and Masson-Pevet M .) Annu changes in the daily pattern of melatonin synthesis and release, in Role of Melatonin and Pineal Peptides in Neuroimmunomodulation (Fraschini F and Reiter RJ eds). New York, Plenum Press, 1991,pp 147-157
    54. Heldmaier G and Steinlechner S . Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus), living in natural photoperiod[J]. J Comp Physiol. 1981. 142:429-437.
    55. Pevet P . The different classes of pineal peptides: origin and probable physiological role during development, in The Pineal Gland during Development: from Fetus to Adult (Gupta D ed). London, Croom Helm,. 1986, pp 234-247
    56. Larkin JE, Jones J, and Zucker I. Temperature dependence of gonadal regression in Syrian hamsters exposed to short day lengths[J]. Am J Physiol Regul Integr Comp Physiol. 2002.282:R744-R752.
    57. Nir I, Hirschmann N, and Sulman FG . The effect of heat on rat pineal hydroxyindole- Omethyltransferase activity[J]. Experientia. 1975.31:867-868.
    58. Brainard GC, Petterborg LJ, Richardson BA, et al. Pineal melatonin in Syrian hamster: circadian and seasonal rhythms in animals maintained under laboratory and natural conditions [J]. Neuroendocrinology. 1982.35:342-348.
    59. Stieglitz A, Steinlechner S, Ruf T, et al.. Cold prevents the light induced inactivation of pineal N-acetyltransferase in the Djungarian hamster, Phodopus sungorus[J]. J Comp Physiol A . 1991.168:599-603.
    60. Cheung PW and McCormack CE . Failure of pinealectomy or melatonin to alter circadian activity rhythm of the rat[J]. Am J Physiol Regul Integr Comp Physiol . 1982.242:R261-R264.
    61. Redman J, Armstrong S, and Ng KT . Free-running activity rhythms in the rat:entrainment by melatonin[J]. Science (Wash DC). 1983. 219:1089-1091.
    62. Armstrong SM and Chessworth MJ . Melatonin phase-shifts a mammalian circadian clock, in Fundamentals and Clinics in Pineal Research (Trentini GP, De Gaetani C, and Pevet P eds). New York, Raven Press,. 1987, pp 195-198
    63. Humlova M and Illnerova H . Melatonin entrains the circadian rhythm in the rat pineal N-acetyltransferase activity[J]. Neuroendocrinology. 1990.52:196-199.
    64. Kirsch R, Belgnaoui S, Gourmelen S, et al. Daily melatonin infusion entrains free-running activity in Syrian and Siberian hamsters, in Light and Biological Rhythms in Man (Wetterberg L ed). New York, Pergamon Press,. 1993, pp 107-120
    65. Drijfhout WJ, Homan EJ, Brons HF, et al. Exogenous melatonin entrains rhythm and reduces amplitude of endogenous melatonin: an in vivo microdialysis study [J]. J Pineal Res. 1996.20:24-32.
    66. Grosse J and Davis FC . Melatonin entrains the restored circadian activity rhythms of Syrian hamsters bearing fetal suprachiasmatic nucleus grafts[J]. J Neurosci. 1998. 18:8032-8037.
    67. Pitrosky B, Kirsch R, Malan A, et al. Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist[J]. Am J Physiol Regul Integr Comp Physiol. 1999.277.R812-R828.
    68. Schuhler S, Pitrosky B, Kirsch R, et al. Entrainment of locomotor activity rhythm in pinealectomized Syrian hamster by daily melatonin infusion under different conditions[J]. Behav Brain Res. 2002.133:343-50.
    69. Pevet P, Bothorel B, Slotten H, et al. The chronobiotic properties of melatonin[J]. Cell Tissue Res. 2002.309:183-191.
    70. Bothorel B, Barassin S, Saboureau M, et al. In the rat, exogenous melatonin increases the amplitude of pineal melatonin secretion by a direct action on the circadian clock[J]. Eur J Neurosci. 2002. 16:1090-1098.
    71. Cassone VM, Roberts MH, and Moore RY . Effects of melatonin on 2-deoxy-[l-14C]glucose uptake within rat suprachiasmatic nucleus[J]. Am J Physiol Regul Integr Comp Physiol. 1988.255:R332-R337.
    72. Stehle J, Vanecek J, and Vollrath L . Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nuclei: an in vitro iontophoretic study[J]. J Neural Transm . 1989.78:173-177.
    73. McArthur AJ, Gillette MU, and Prosser RA . Melatonin directly resets the rat suprachiasmatic circadian clock in vitro[J]. Brain Res. 1991.565:158-161.
    74. Dark J, Zucker I, Wade G N. Photoperiodic regulation of body mass, food intake, and reproduction in meadow voles[J]. Am J Physiol Regul Integr Comp Physiol . 1983.245:R334-R338.
    75. Injidi M H, Forbes J M.. Growth and food intake of intact and pinealectomised chickens treated with melatonin and triiodothyronine[J].Br Poult. Sci. 1983. 24(4):463-9.
    76. Wolden-Hanson T, Mitton D R, and McCants R L, Yellon S M et al. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat[J]. Endocrinology, 2000.141(2): 487-497.
    77. Benedicte P M, Mathieu D, Arnaud B, et al. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity[J]. Endocrinology, 2003.144(12): 5347-5352.
    78. Pinillos M L, De Pedro N, Alonso-Gomez A L, et al. Food intake inhibition by melatonin in goldfish (Carassius auratus) [J].Physiol Behav. 2001.72(5):629-34.
    79. Bubenik G A, Pang S F, Hacker R R, et al. Melatonin concentrations in serum and tissues of porcine gastrointestinal tract and their relationship to the intake and passage of food[J]. Journal of Pineal Research. 1996.21(4):251-25643.
    80. Angers K, Haddad N, Selmaoui B. Effect of melatonin on total food intake and macronutrient choice in rats[J]. Physiol Behav. 2003.80(1):9-18.
    81. Rubio V C, Sanchez-Vaquez F J, Madrid J A. Oral administration of melatonin reduces food intake and modifies macronutrient selection in European sea bass (Dicentrarchus labrax, L.) [J]. Journal of Pineal Research. 2004.37(1):42-43.
    82.周战江,王旭鹏,王耀平等.埋植褪黑激素对银狐精液生产和品质的影晌[J].经济动物学报,2003,7(3):13-17.
    83.温璋文,任修海,陈军建等.褪黑激素对家免性器官和动情周期的作用[J].武汉大学学报(自然科学版),1997,43(2):211-215.
    84.夏银,汪兴生,杨利国等.褪黑激素主动免疫对蛋鸡生殖内分泌的影响[J].南京农业大学学报,1996,19(3):75-78.
    85.王林枫.光照和埋植褪黑激素对内蒙古白绒山羊含氮物质分配和产绒性能的影响及调控的研究[D].内蒙古农业大学.2004.
    86. Mustonen A M, Nieminen P, Hyvarinen H. Effects of continuous light and melatonin treatment on energy metabolism of the rat[J]. J. EndocrinoL Invest. 2002.25(8):716-23.
    87. Dennis D R, Brian M B, Charles W W, et al. Daily melatonin administration at middle age suppresses male rat visceral fat, plasma leptin, and plasma insulin to youthful levels[J]. Endocrinology, 1999.140(2): 1009-1012.
    88. Bartness T J, Wade G N. Body weight, food intake and energy regulation in exercising and melatonin-treated Siberian hamsters[J].Physiol Behav. 1985.35(5):805-8.
    89. Rose J,Stormshak F, Oldfield J et al.. Induction of winter fur growth in mink(Mustela vison) with melatonin. J. Anim. Sci. 1984,58:57-61.
    90. Lanszki J,Allain D, Eiben C.The effects of melatonin treatment on wool production and hair follicle in angora rabbits. Anim.Res.2001,50:79-89.
    91.孔庆松,刘志平,景松岩等.外源褪黑激素对乌苏里貉冬皮成熟日期的影响[J].饲养繁殖.1999,2:13-15
    92. Cardinali DP, Nagle CA, Freire F, et al. Effects of melatonin on neurotransmitter uptake and release by synaptosome-rich homogenates of the rat hypothalamus[J]. Neuroendocrinology. 1975.18:72-85.
    93. Cameiro RCG, Toffoleto O, Cipolla-Neto J, et al. Modulation of sympathetic neurotransmission by melatonin[J]. Eur J Pharmacol. 1994. 257:73-77.
    94. Markus RP, Zago WM, and Cameiro RCG . Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens[J]. J Pharmacol Exp Ther. 1996.279:18-22.
    95. Bucher B, Gauer F, Pevet P, et al. Vasoconstrictor effects of various melatonin analogs on the rat tail artery in the presence of phenylephrine[J]. J Cardiovasc Pharmacol. 1999.33:316-322.
    96. Wan Q, Man HY, Liu F, et al. Differential modulation of GABAA receptor function by Mella and Mellb receptors[J]. Nat Neurosci. 1999.2:401-403.
    97. Golombek DA, Pevet P, and Cardinali DP. Melatonin effects on behavior: possible mediation by the central GABAergic system[J]. Neurosci Biobehav Rev. 1996.20:403-412.
    98. Provinciali M, Di Stefano G, Bulian D, et al. Effect of melatonin and pineal grafting on thymocyte apoptosis in aging mice[J]. Mech Ageing Dev. 1996. 90:1-19.
    99. Liebmann PM, Wolfler A, Felsner P, et al. Melatonin and the immune system[J]. Int Arch Allergy Immunol. 1997. 112:203-211.
    100. Reiter RJ, Calvo JR, Karbownik M, et al.. Melatonin and its relation to the immune system and inflammation[J]. Ann NY Acad Sci. 2000.917:376-386.
    101. Maestroni GJ. The immunotherapeutic potential of melatonin[J]. Expert Opin Investig Drugs. 2001.10:467-476.
    102.魏涛,张蕊,金宗濂.褪黑激素调节免疫和改善睡眠作用的研究[J].食品科学.2003.4(3)
    103.刘淑英,齐景伟,张旺.褪黑激素和光照对鹌鹑白细胞介素-2的影响[J].中国家禽.2003.25(22):20-22.
    104. Haldar C, Singh R. Pineal modulation of thymus and immune function in a seasonally breeding tropical rodent, Funambulus pennanti[J].J Exp Zool. 2001,289:90-98
    105. Sahin K, Onderci M, Gursu MF, et al.. Effect of melatonin supplementation on biomarkers of oxidative stress and serum vitamin and mineral concentrations in heat-stressed Japanese quail[J].J.Appl.Poult.Res. 2004. 13:342-348.
    106.张全江,李秋霞,熊正英等.连续51d服用褪黑激素对小鼠肾脏、心肌与脑部分生化指标及体重变化的影响[J].食品科学.2003.24(4).
    107.魏涛,唐粉芳,张鹏等.2002.褪黑激素抗氧化作用的研究[J].食品工业科技.23(2)
    108.李源,郑延松,藏益民等.褪黑素对氧化损伤培养心肌细胞的保护作用[J].第四军医大学学报.2002.23(22):2060-2063.
    109. Jou MJ, Peng TI, Reiter RJ, et al.. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes [J]. J Pineal Res. 2004.37(1): 55-70.
    110. Leon J, Acuna CD, Sainz RM, et al.. Melatonin and mitochondrial function[J]. Life Sci. 2004.75(7): 765-90.
    111. Othman AI, Sharawy S A, and Missiry M E. Role of melatonin in ameliorating lead induced haematotoxicity[J]. Pharmacol Res.2004; 50(3): 301-7.
    112. Tan DX, Chen LD, Poeggeler B, et al.. Melatonin: a potent, endogenous hydroxyl radical scavenger[J]. Endocr J. 1993a. 1: 57-60.
    113. Tan DX, Poeggeler B, Reiter RJ, et al.. The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo[J]. Cancer Lett. 1993b. 70:65-71.
    114. Reiter RJ. The role of the neurohormone melatonin as a buffer against macromolecular oxidative damage[J]. Neurochem Int. 1995.27:453-60.
    115. Bubenik G A. Gastrointestinal melatonin: localization, function, and clinical relevance[J].Dig Dis Sci. 2002.47(10):2336-48.
    116.徐玲,王化虹.褪黑激素在胃肠道的作用.中国医药导刊.2003.5:110-111
    117. Tamarkin L, Cohen M, Roselle D, et al.. Melatonin inhibition and pinealectomy enhancement of 7, 12-dimethylbenz(a)anthracene-induced mammary tumors in the rat[J]. Cancer Res. 1981.41:4432-4436.
    118.白艳红,王中秋,李健军等.褪黑激素的抗肿瘤活性研究[J].西北药学杂志.2003.18(1):13-14.
    119.许建宁,许建萍,李金福等.褪黑激素对大鼠泌乳素瘤细胞生长影响的研究[J].中国医药工业杂志.2003.34(6):283-285.
    120. Hill SM, Blask DE. Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture[J].Cancer Res . 1988.48:6121-6.
    121.Ting SW, Niles LP, Crocker C. Human malignant melanoma cells express high-affinity receptors for melatonin: antiproliferative effects of melatonin and 6-chloromelatonin[J]. Eur J Pharmacol 1993.246:89-96.
    122.Molis TM, Spriggs LL, Hill SM. Modulation of estrogen receptor mRNA expression by melatonin in MCF-7 human breast cancer cells[J]. Mol Endocrinol. 1994.8:1681-90.
    123.Tzischinsky 0, Lavie P. Melatonin possesses time-dependent hypnotic effects[J]. Sleep. 1994.17:638-45.
    124.Dollins AB, Zhdanova IV, Wurtman RJ, et al. Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance[J]. Proc Natl Acad Sci U S A. 1994.91:1824-8.
    125.Zhdanova IV, Wurtman RJ, Lynch HJ, et al. Sleep-inducing effects of low doses of melatonin ingested in the evening[J]. Clin Pharmacol Ther . 1995.57:552-8.
    126.Amnon Brzezinski MD. Melatonin in humans[J]. The New England Journal of Medicine. 1997.336 (3): 186-195.
    127.Cagnacci A, Elliott JA, Yen SSC. Melatonin: a major regulator of the circadian rhythm of core temperature in humans[J]. J Clin Endocrinol Metab. 1992.75:447-52.
    128.Deacon S, Arendt J. Melatonin-induced temperature suppression and its acute phase-shifting effects correlate in dose-dependent manner in humans.Brain Res 1995;688:77-85.
    129.Mustonen AM, Nieminen P, Hyvarinen H. Exogenous melatonin elevates the plasma leptin and thyroxine concentrations of the mink (Mustela vison)[C].Z Naturforsch. 2000.55(9-10):806-813.
    130.Maria ICAV, Sandra A, Sidney B P. Melatonin enhances leptin expression by rat adipocytes in the presence of insulin[J]. Am J Physiol Endocrinol Metab. 2005. 288: E805-E812.
    131.Vanecek J, Pavlik A, and Illnerova H. Hypothalamic melatonin receptor sites revealed by autoradiography[J]. Brain Res. 1987. 435:359-362.
    132.Nosjean O, Ferro M, Coge F, et al. Identification of the melatoninbinding site MT3 as the quinone reductase 2[J]. J Biol Chem. 2000. 275:31311-31317.
    133.Carlson LL, Weaver DR, and Reppert SM . Melatonin signal transduction in hamster brain: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein[J]. Endocrinology. 1989.125:2670-2676.
    134.Morgan PJ, Lawson W, Davidson G, et al Melatonin inhibits cyclic AMP in cultured ovine pars tuberalis cells[J]. J Mol Endocrinol. 1989. 5:R3-R8.
    135. Reppert SM, Weaver DR, and Ebisawa T . Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses[J].Neuron. 1994.13:1177-1185.
    136. Weaver DR, Liu C, and Reppert SM. Nature's knockout: the Mellb receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters[J]. Mol Endocrinol . 1996.10:1478-1487.
    137. Zitouni M, Masson-Pevet M, Gauer F, et al. Influence of maternal melatonin on melatonin receptors in rat offspring[J]. J Neural Transm. 1995.100:111-122.
    138. Benitez KG, Anton TF. Calmodulin mediates melatonin cytoskeletal effects[J]. Experientia . 1993.49:635-41.
    139.解光艳,汪兴生.兔化高免褪黑激素抗血清的制备[J].安徽农业技术师范学院学报.1999.13(3):24-26.
    140.汪兴生,尚平,姜勋平,等.兔抗褪黑激素高免血清的制备、提取和纯化[J].江苏农业研究.2000.21(1):29-32.
    141.刘淑英,齐景伟,柳翰凌等.褪黑素主动免疫对鹌鹑生殖内分泌影响的研究[J].内蒙古农业大学学报.2002.23(4):22-25.
    142.杨利国.酶免疫测定技术[M].南京:南京大学出版社.1998.
    143.杨胜.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社.1993.
    144.徐凤霞,刘美,李兵.AIA法测定小尾寒羊对花生秧及玉米面的消化率的研究.饲料博览,2004,3:33-34
    145.杨公社.猪生产学[M].北京:中国农业出版社.2002.
    146. Konturek PK, Z Sliwowski, and SJ Konturek,et al. Role of epidermal growth factor prostaglandinand sulfhydryls in stress-induced gastric lesions[J]. Gastroenterology. 1990.99:1607-1615
    147. Konturek PK, SJ Konturek, and T Brzozowski,et al. Gastroprotective activity of melatonin and its precursor, L-trytophan, against stress-induced and ischaemia-induced lesions is mediated by scavenge of oxygen radicals. Scand[J]. J.gastroenterol. 1997a.32:433-438
    148. Konturek PC, SJ Konturk, and J Majka, et al. melatonin affords protection against gastric lesions induced by ischemia-reperfusion possibly due to its antioxidant and mucosal microcirculatory effects[J].Eur J Pharmacol. 1997b.322:73-77
    149. Brzozowski T, PK Konturek, and Z Sliwowski, et al. Adaptive cytoprotection by ammonia and urea-urease system in the rat gastric mucosa[J]. J Physiol. Pharmacol. 1995.46:471-488
    150. Eloisa G, Malgorzata K, Russel JR, et al.. Effects of melatonin treatment in septic newborns[J]. Pediatr Res . 2001.50:756-760.
    151. Malgorzata K, Russel JR. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation[J]. P.S.E.B.M. 2000.225:9-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700