田旋花对草甘膦耐药性分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草甘膦是一种广谱灭生性、内吸传导型除草剂,是国内外防除一年生及多年生杂草的主要药剂。草甘膦的作用机制是抑制植物体内5-烯醇式丙酮酸-3-磷酸合成酶(5-enolpyruvylshikimate-3-phosphate synthase,EPSPS)的活性,导致莽草酸大量积累,并抑制芳香族氨基酸的生物合成,进而扰乱正常的氮代谢致使植物死亡。田旋花(Convolvulus arvensis L.)属旋花科,是一种多年生恶性杂草,其繁殖和再生能力极强,是我国小麦、玉米、大豆、棉花等旱作物田的重要杂草,也是对草甘膦具有天然耐药性的杂草之一。本研究以田旋花为对象,以草甘膦的靶标EPSPS为主线,运用分子生物学等技术,研究田旋花对草甘膦的耐药性机制。主要结论如下:
     1.克隆的田旋花EPSPS基因片段长度为1707bp,将EPSPS基因推导出氨基酸序列与其它14种植物进行比对,结果显示田旋花EPSPS保守性较高,与其它植物相比田旋花在141位为丙氨酸,而其它植物为缬氨酸;此外,田旋花和打碗花在155位为丝氨酸,而其它植物为半胱氨酸。田旋花EPSPS氨基酸序列具有典型的EPSP-synthase结构。
     2.以田旋花cDNA为模板,合成EPSPS基因并连接到含有35S启动子和GUS基因的pBl l21载体上,构建植物超表达载体pBI-EPSPS。采用农杆菌介导法转化拟南芥,共获得15株转EPSPS基因拟南芥。对转EPSPS基因拟南芥进行草甘膦处理发现,转基因拟南芥草甘膦耐受性增强。
     3.采用实时荧光定量PCR测定了田旋花EPSPS基因在不同叶龄、不同器官的相对表达量以及草甘膦对田旋花EPSPS基因表达的影响。结果表明:田旋花EPSPS基因在不同叶龄表达有差异,在9叶期的表达量最高,是3叶期的2.1倍;EPSPS基因在叶的表达量高于茎、子叶和根;用草甘膦对田旋花进行茎叶喷雾处理,EPSPS基因的表达量先升高后降低,在处理后24小时达最大值。随着草甘膦浓度的提高,EPSPS基因表达呈增强趋势。
     4.根据已克隆的田旋花EPSPS基因cDNA序列设计三个嵌套引物,通过染色体步移技术获得了1142bp的EPSPS-P启动子片段(GenBank登录号: KC107822),对启动子序列分析显示该片段富含A/T碱基、TATA-box、CAAT-box及其它顺势作用元件如GATA-motif、TC-rich repeats、spl等。
     5.将EPSPS-P与GUS报告基因连接构建植物表达载体,利用农杆菌介导法获得转EPSPS-P拟南芥。对转基因拟南芥进行组织化学染色分析表明,EPSPS基因在根、茎、叶中都有表达,表达量的高低顺序是叶中最高,其次是茎和根。对转EPSPS-P拟南芥进行草甘膦处理,组织化学染色和GUS酶活性检测结果表明草甘膦处理可以引起EPSPS基因表达升高。
Glyphosate is the nonselective, broad-spectrum herbicide for the control of annual and perennialweeds. It inhibits the enzyme5-enolpyruvylshikimate-3phosphate synthase (EPSPS). This inhibitionprevents the biosynthesis of the aromatic amino acids and results in a substantial accumulation ofshikimic acid, and then disrupts the normal nitrogen metabolism and causes plants to die. Fieldbindweed (Convolvulus arvensis L.) is a kind of perennial troublesome weed threatening wheat、maize、soybean and cotton production in China. Meanwhile, field bindweed is a naturally glyphosate toleranceweed. This study focuses on glyphosate target EPSPS to investigate the glyphosate tolerance mechanismin field bindweed. The results showed as follows:
     1. The full-length cDNA of1,707nucleotides from Convolvulus arvensis was cloned. The results ofhomology analysis revealed that EPSPS showed highly homologous with EPSPS proteins fromother14plant species. However, comparison of the EPSPS gene sequence reaveled that valine atposition141was substituted by alanine in field bindweed. Moreover, cysteine at position155wassubstituted by serine in field bindweed and calystegia hederacea. The typical EPSP-synthasestructure was found in field bindweed EPSPS.
     2. EPSPS gene was cloned with the template of cDNA from field bindweed and inserted into plasmidpBI121which contains promoter35S and GUS gene. A plant super expressed vector ofpBI-EPSPS was constructed and transferred to Arabidopsis by the Agrobacterium mediatedtransformation system. Fifteen transgenic plants were finally obtained. Tteated with glyphosate,transgenic plants showed more tolerance to glyphosate.
     3. Quantitative RT-PCR was employed to analysize the expression of EPSPS gene in field bindweedat different stages, different organs and the induction of glyphosate to EPSPS mRNA. The resultsshowed that the expression of EPSPS was different at different leaf stages. The highest expressionlevel was found at12leaf stage and was2.1times than3leaf stage. The expression of EPSPS inleaves was higher than stems, cotyledon and roots. After glyphosate treatment, EPSPS expressionlevel increased fist and then decreased, the peak induction was found at24h after glyphosatetreatment. EPSPS expression level increased higher with the higher glyphosate concentration.
     4. According to the EPSPS gene cDNA from Field bindweed already cloned, a1142bp promotersequence (Genbank accession number: KC107822) of EPSPS was obtained by genome walking.Sequence analysis indicated that A/T base、TATA-box、CAAT-box and other cis-acting elementswere found within the promoter sequence, such as, GATA-motif, TC-rich repeats, spl and so on.
     5. A GUS expression construction driven by EPSPS-P was introduced into Arabidopsis with thefloral dip method. Histochemical analysis of transgenic Arabidopsis showed that GUS enzymeactivity was present in leaves, stems and roots. However, it was relatively higher in leaves and stems than roots. After treated with glyphosate, histochemical and GUS enzyme activity analysisindicated that GUS activity in transgenic Arabidopsis was improved after glyphosate treatments.
引文
1.曹洪玉.耐草甘膦大豆MON87701RR2Y的环境安全性研究[硕士学位论文].北京:中国农业科学院,2012.
    2.陈景超.大豆田主要杂草对草甘膦的敏感性检测方法研究[硕士学位论文].北京:中国农业科学院,2012.
    3.陈良,闫春秀抗草甘膦杂草的现状与未来展望,世界农药2006,28(2).
    4.崔海兰.播娘蒿(Descurainia sophia)对苯磺隆抗药性的研究.[博士学位论文].北京:中国农业科学院,2009.
    5.崔鑫欣.根部特异性启动子rRB7在拟南芥和棉花中的表达研究[硕士学位论文].北京:中国农业科学院,2005.
    6.方卫国,张永军,马金成,等.用YADE法克隆球抱白僵菌类枯草杆菌蛋白酶基因CDEP-1的启动子及启动子序列分析菌物系统,2003,22(2):252-258.
    7.郭峰,张朝贤,黄红娟,等.杂草对ACCase抑制剂的抗性.杂草科学,2011,29(3):1-6.
    8.郝迪萩,赵琳,陈李淼,李文滨.克隆启动子方法的比较与应用.东北农业大学学报,2010,41(3):154-160.
    9.华乃正.草甘膦活性与助剂.农药,2002,41(2):1-3.
    10.黄建中,褚建君,叶建强.抗药性杂草的管理.杂草科学,1995(4):4-7.
    11.黄建中.农田杂草抗药性.北京:中国农业出版社,1995.
    12.黄丽华,蒋向,李博,等.薤白EPSP合成酶基因转化烟草提高其草甘膦抗性.作物学报,2009,35(5):855-860.
    13.蒋向,戴雄泽,李育强,等.薤白EPSPs基因在不同组织表达的半定量分析.湖南农业大学学报(自然科学版),2007(5):542-545.
    14.况守龙,张廷章.启动子的克隆和研究方法.重庆工学院学报,2007,21(1):136-139
    15.李杰,张福城,王文泉,黄丽云.高等植物启动子的研究进展.生物技术通讯,2006,17(4):658-661.
    16.刘东军,张锐,郭三堆,等.棉花品系Y18在草甘膦胁迫下的epsps基因表达分析研究.中国生物工程杂志,2008(10):55-59
    17.李姗姗,迟彦,李凌飞,马玺,平文祥,于冲,周东坡.启动子克隆方法研究进展.中国生物工程杂志,2005,25(7):9-16.
    18.李香菊,崔海兰.转基因耐草甘膦作物的环境安全性.2011,37(6)38-43.
    19.李燕,孙彦,杨青川,康俊梅,张铁军,房锋.紫花苜蓿MsZIP基因超表达载体的构建及转基因苜蓿检测.草业学报.2011.
    20.李扬汉.中国杂草志.北京:中国农业出版社.1998.
    21.马爱平.我国科学家抗除草剂转基因技术突破重围,科技日报,2012-6-28.
    22.梅磊,陈进红,何秋伶,等.草甘膦对转EPSPS-G6基因棉花种质系配子育性的影响[J].棉花学报,2013,25(2):115–120
    23.马奇祥,赵永谦.主编农田杂草识别与防除原色图谱.金盾出版社.北京.2004:86-88.
    24.毛婵娟.一种新的草甘膦抗性机制—基因复增.杂草科学,2011,29(3).
    25.彭建.苜蓿种子田恶性杂草田旋花的生态生物学特性及防除技术研究.乌鲁木齐:新疆农业大学,2005.
    26.彭仁旺,周雪荣,周奕华,等.烟草花药特异表达基因启动子的克隆及序列分析.生物工程学报,1996,12(3):247-250.
    27.山松,张中林,陈曦,等.烟草叶绿体16S启动子的克隆改造及转基因植株的获得.作物学报,1999,25(5):536-540.
    28.苏宁,孙萌,李轶女,等.水稻叶绿体165启动子克隆改造,载体构建及转化研究.植物学通报,2003,20(3):295-301.
    29.苏少泉.草甘膦述评.农药,2005,44(4):145-148.
    30.苏少泉.抗草甘膦作物的发展与草甘膦使用中若干问题农药研究与应用.2007,8.
    31.唐晓凤.菊花泛素延伸蛋白基因启动子DgUEP的克隆和功能初探[硕士学位论文].成都:四川农业大学,2009.
    32.童旭宏,吴玉香,祝水金*陆地棉EPSPS基因的克隆及其组织特异性表达分析,棉花学报2009,21(4):259-264.
    33.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998:351-353.
    34.王蕾.转EPSPS基因水稻的研究[D]长春:吉林农业大学,2012.
    35.王新国,肖成祖,张国华,等.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学和分子生物学报,2001,17(1):61-65.
    36.王莹.结缕草胁迫诱导型启动子Rd29A的克隆及其功能鉴定.北京:北京林业大学,2008.
    37.王莹,韩烈保,曾会明.高等植物启动子克隆方法的研究进展.生物技术通报,2007,3:97-100.
    38.王颖,麦维军,梁承邺,张明永.高等植物启子的研究进展.西北植物学报,2003,23(11):2040-2048.
    39.魏守辉,张朝贤,翟国英,李香菊,王睿文.河北省玉米田杂草组成及群落特征.植物保护学报,2006,33:212-218.
    40.尉万聪草甘膦诱导高表达基因及启动子的克隆和功能分析[博士学位论文].北京:中国农业科学院,2005.
    41.魏晓峰.花粉/种子表达融合启动子合成及其表达载体的构建[硕士学位论文].重庆:西南大学,2010.
    42.吴晶,王谦玉,张继英,张春峰.杂草抗药性的研究现状与抗性控制.植保技术与推广,1995,(1):30-31.
    43.吴明根,吴松权,朴仁哲,傅民杰,曹凤秋.磺酰脲类除草剂对抗、感性慈姑ALS活性的影.农药,2007,46(10):701-703.
    44.吴智丹,王光,郭玲,等.水稻启动子OsNlP的克隆与功能分析.南京农业大学学报,2012,35(2):10-14.
    45.向文胜,李孱,陶波,王相晶,李景鹏,苏少泉,张文吉.耐草甘膦菜豆耐性分子学机理研究.农药学学报,200l,3:23-29.
    46.尹辉,李丹,张毅,李秋莉.植物基因启动子的克隆方法及其应用.分子植物育种,2006,4(3):85-91.
    47.余舜武,刘鸿艳,罗利军.利用不同实时定量PCR方法分析相对基因表达差异.作物学报,2007,33(7):1214-1218.
    48.张朝贤.我国农田杂草发生概况及防除对策.中国科协年会.2006,l13-118.
    49.张朝贤,李香菊.杂草学学科发展.2007~2008植物保护学学科发展报告.北京:中国科学技术出版社.2008,2:75-86.
    50.张朝贤,倪汉文,魏守辉,黄红娟,刘延,崔海兰,隋标峰,张猛等.杂草抗药性研究进展.中国农业科学,2009,42(4):1274-1289.
    51.张朝贤,房峰,张猛等.草甘膦应用现状及杂草抗药性研究与治理对策.中国农药.2011,(8):22-26.
    52.张朝贤,黄红娟,崔海兰等.抗药性杂草与治理.2013,93(5)99-102
    53.张宏军,王萍,周志强,江树人.杂草对草甘膦的抗性及抗性治理,农药科学与管理,2004,25(5).
    54.张猛.田旋花对草甘膦的耐药性机理研究[博士学位论文].北京:中国农业科学院,2011.
    55.朱国念,楼正云,孙锦荷.草甘膦对水生生物的毒性效应及环境安全性研究.浙江大学学报(农业与生命科学版),2000,26(3):309-312.
    56.朱玉贤,李毅.现代分子生物学.高等教育出版社,北京,2002,pp71.
    57.Agulhon R P,Dumartin Y.Heinzle E.Meyer and J P Rozier.1979.Destruction deplantesvivaces.10e Conference du Comite Francais de Lutte contre les Mauvaises Herbes(COLUMA)pp890~988.
    58.Anderson M P,Gronwald J W.Atrazine resistance in a velvetleaf (Abutilon theophrasti)biotype due to enhanced glutathione-stransferase activity.Plant Physiology,1991,96(1):104~109.
    59.Baerson S R,Rodriguez D J,Biest N A,Tran M,You J S,Kreuger R W,Din G M,PratleyJ E,Gruys K J.Investigating the mechanism of glyphosate resistance in rigid ryegrass(Lolium ridigum).Weed Science,2002,50(6):721~730.
    60.Benfey P N,Ren L,Chua N H.Tissue-specific expression from CaMV35S enhancersub-domain in early stages of plant development.EMBO journal,1990,9(6):1677~1684.
    61.Bernasconi P,Woodworth A R,Rosen B A,Subramanian M V,Siehl D L.Anaturally occurring point mutation confers broad range tolerance to herbicides that targetacetolactate synthase.Journal of Biological Chemistry,1995,270(29):17381~1738.
    62.Boocock M R,Coggins J R.Kinetics of5-Enolpyruvylshikimate-3-phosphate SynthaseInhibition by Glyphosate.Febs Letters,1983,154:127~133.
    63.Boutsalis P,Karotam J,Powles S B.Molecular basis of resistance to acetolactatesynthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii.PesticideScience,1999,55:507~516.
    64.Chao W S.Real-Time PCR as a tool to study weed biology.Weed Science,2008,56:290~296.
    65.C S Gasser,J A Winter,C K Hironaka,et al.Structure,expression,and evolution of the5-enolpyruvylshikimate-3-phos-phate synthase genes of petunia and tomato.Biol Chem,1988,263:4280~4289.
    66.Cui H L,Zhang C X,Zhang H J,et al.Confirmation of flixweed (Descurainia sophia)resistance to tribenuron in China.Weed Science,2008,56:775~779.
    67.Culpepper A S,Grey T L,Vengill W.Glyphosate-resistant Palmer Amaranth (Amaranthuspalmeri) Confirmed in Georgia.Weed Science,2006,54:620~626.
    68.Dauch A L&Jabaji-Hare S H.Metallothionein and bZIP transcription factor genes fromvelvetleaf and their differential expression following Colletotrichum coccodesinfection.Phytopathology.2006,96:1116~1123.
    69.DeGenaro F P,Weller S C.Differential susceptibility of field bindweed (Convolvulus arvensis)biotypss to glyphosate.Weed Science,1984,32:472~476.
    70.Della-CioppaG,BauerS C,Klein B K,Shah D M,Fraley R T,Kishore G M.Translocationof the precursor of5-enolpyruvylshikimate-3-phosphatesynthase in chloroplasts of higherplants in vitro.Proc.Natl.Acad.Science,1986,83:6873~6877.
    71.Devine M D,Eberlein C V.Physiological,biochemical and molecular aspects of herbicideresistance based on altered target sites.In:Roe R M,Burton J D,Kuhr R J.(Eds.),Herbicid Activity:Toxicology,Biochemistry and Molecular Biology.1997.159~185.
    72.Devine M D.Mechanisms of resistance to acetyl-coenzyme a carboxylase inhibitors:areview.Pesticide Science,1997,51:259~264.
    73.Devine M D,Shukla A.Altered target sites as a mechanism of herbicide resistance.CropProtection,2000,19:881~889.
    74.Diebold R S,McNaughton K E,Lee E A,Tardif F J.Multiple resistance to imazethapyr andatrazine in Powell amaranth (Amaranthus powellii).Weed Science,2003,51(3):312~318.
    75. Feng P C,Chiu T,Sammons R D.Giyphosate efficacy is contributedby its tissueconcentration an d sensitivity in velvetleaf0butilon theophrast0.Pesticide BiochemistryPhysiology,2003,77:83~91.
    76.Feng P C C,Tran M,Chiu T.Investigations into glyphosate-resistant horseweed (Conyzacanadensis):Retention,uptake,translocation,and metabolism.Weed Science,2004,52:498-505.
    77.Foes M J,Liu L X,Tranel P J,Wax L M,Stoller E W.A biotype of common waterhemp(Amaranthus rudis) resistant to triazine and ALS herbicides.Weed Science,1998,46(5):514-520.
    78.Gaines T A,Zhang W L,Wang D F,Bukun B,Chisholm S T,Shaner D L,et a1.Geneamplification confers glyphosate resistance in Amaranthus palmeri.PNAS,2010,107(3):102-1034.
    79.Gento Tsuji,Satoshi Fujii,Naoki Fujihara,et al.Agrobacterium tumefaciens-mediatedtransformation for random insertional mutagenesis in Colletotrichum lagenarium.Gen PlantPathol,2003,69:230-239.
    80.Guttieri M J,Eberlein C V,Mallory Smith C A,Thill D C and Hoffman D L.DNA sequencevariation in domain A of the acetolactate synthase genes of herbicide-resistant and-susceptible weed biotypes.Weed Science,1992,40(4):670-676.
    81.Guttieri M J,Eberlein C V,Thill D C.Diverse mutations in the acetolactate synthase geneconfer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes.Weed Science,1995,43(2):175-178.
    82.Hager A G,Wax L M,Tranel P J.Identification of a smooth pigweed biotype in Illinoisresistant to various ALS-inhibiting herbicides.Proceedings of the North Central WeedScience Society,1998,53:81.
    83.Herrmann K M,Weaver L M.The shikimate pathway.Annual Review of Plant Physiologyand Plant Molecular Biology,1999,50:473-503.
    84.Kelley K B,Zhang Q.Lambert K N,Riechers D E.Evaluation of auxin-responsive genesin soybean for detection of off-target plant growth regulator herbicides.Weed Science.2006,54:220-229.
    85.Kolkman J M,Slabaugh M B,Bruniard J M,Berry S,Bushman B S,Olungu C,Maes N,Abratti G,Zambelli A,Miller J F,Leon A,Knapp S J.Acetohydroxyacid synthase mutationsconferring resistance to imidazolinone or sulfonylurea herbicides in sunflower.Theoreticaland Applied Genetics,2004,109(6):1147-1159.
    86.Kraft M,Kuglitsch R,Kwiatkowski J,Frank M,Grossmann K.Indole-3-acetic acid andauxin herbicide sup-regulate9-cis-epoxycarotenoiddioxygenase gene expression and abscisicacid accumulation in cleavers (Galium aparine):interaction with ethylene.Journal ofExperimental Botany,2007,58:1497-1503.
    87.Lebrun M,Sailland A,Freyssinet G.Mutated5-enolpyruvyl-shikimate-3-phosphate synthase,gene coding for said protein and transformed plants containing said gene.US Patent,2003,6:566-587.
    88.Lee L J and Ngim J.A firstrgport of glyphosate-resistant goosegrass [Eleusine indica (L)Gaertn.] in Malaysia.Pest Management Science,2000,56:336-339.
    89.Li zhiwu,Jennifer L,Hansen,et al.Using real-time PCR to determine transgene copy numberin wheat.Plant Molecular Biology Reporter,2004,22:179-188.
    90.Lorraine-Colwill D F,Powles S B,Hawkes T R Hollinshead P H,Warner S A J,PrestonC.Investigations into the mechanism of glyphosate resistance in Lolium rigidum.PesticideBiochemistry and Physiology,2003,74(1):62-72.
    91.McNaughton K E,Lee E A,Tardif F J.Mutations in the ALS gene confering resistance togroup II herbicides in redroot pigweed (Amaranthus retroflexus) and green pigweed(A.powellii).Weed Science Society of America Abstracts,2001,41:97.
    92.NG C H,Wickneswary R,Saimihah S.Glyphosate resistant in Eleusine indica (L) Gaertn fromdifferent origins and polymerase chain reaction amplification of specific Alleles.AustralianJournal of Agricultural Research,2004,55:407-414.
    93.NG C H,Wickneswary R,Salmihah S,Teng Y T,Ismail B S.Gene polymorphisms inglyphosate-resistant and-susceptible biotypes of Eleusine indica from Malaysia.WeedResearch2003.43:108-115.
    94.Patzoldt W L,Tranel P J. ALS mutations conferring herbicide resistance inwaterhemp.Proceedings of the North Central Weed Science Society,2001,56:67.
    95.Patzoldt W L,Tranel P J.Multiple ALS mutations confer herbicide resistance in waterhemp(Amaranthus tuberculatus).Weed Science,2007,55:421-428.
    96.Powles S B,Preston C.Evolved glyphosate resistance in plants:biochemical and genetic basisof resistance.Weed Technology,2006,20:282-289.
    97.Powles S B,Preston C,Bryan I.Herbicide resistance:impact and management advances inagronomy.Pesticide Biochemistry Physiology,1997,58:57-93.
    98.Powles S B,Yu Q.Evolution in Action:Plants resistant to herbicides.Annual Review of PlantBiology,2010,61:317-347.
    99.Pratley J E,Baines P,Eberbach P,et al.Glyphosate resistance in annual ryegrass.In:Virgona J,Michalk D(Eds).The11th Annual Conference of the Grassland Society ofNSW.Wagga:The Grassl Society of NSW,1996,122.
    100.Praraher Y,Weisaman S M.Analysis of differential gene expression by display of3’endrestriction fragments of cDNAs.Proc Natl Acad Sci USA,1996,93:659-663.
    101.Royer F and Dickinson R.Weeds of the Northern U.S.and Canada.Tne University ofAlberta press,1999,434PP.
    102.Sandberg C L,Meggitt W F and Penner D.Absorption,translocation,and metabolism of14C-glyphosate in several weed species.Weed Research,2006,20:195-200.
    103.Scarabel L,Carraro N,Sattin M,Varotto S.Molecular basis and genetic characterisationof evolved resistance to ALS-inhibitors in Papaver rhoeas.Plant Science,2004,166:703-709.
    104.Shah D M,Hosrch R B,Klee H J,et al.Engineeirng herbicide tolerance in transgenicplants.Science,1986,233:478-481.
    105.Shyr Y Y,Hepburn A G,Widholm J M.Glyphosate selected amplification of the5-enolpymvylshikimate-3-phosphate synthase gene in cultured carrot cells.Mol Gen Genet,1992,232(3):377-382.
    106.Sibony M,Michel A,Haas H U,Rubin B,Hurle K.Sulfometuron-resistant Amaranthusretroexus:cross-resistance and molecular basis for resistance to acetolactate synthase (ALS)inhibiting herbicides.Weed Research,2001,41(6):509-522.
    107.Simarmata M,Kaufmarm J E,Penner D.Potential basis of glyphosate resistance in Californiarigid ryegrass (Lolium rigidum).Weed Science,2003,51:678-682.
    108.Simarmata M,Penner D.The Basis for Glyphosate Resistance in Rigid Ryegrass (LoliumRigidum) from California.Weed Science,2008,56:181-188.
    109.Tan M K,Medd R W.Characterisation of the acetolactate synthase (ALS) gene of Raphanusraphanistrum L.and the molecular assay of mutations associated with herbicideresistance.Plant Science,2002,163(2):195-205.
    110.Tran M,Baerson S,Brinker R.Characterization of Glyphosate Resistant Eleusine indicaBiotypos from Malaysia.Proceedings of the17th Asia-Pacific Weed Science SocietyConference Thailand.1999:527-536.
    111.Tranel P J,Wright T R.Resistance of weeds to ALS-inhibiting herbicides:what have welearned? Weed Science,2002,50:700-712.
    112.Triglio T,Peterson M G,Kemp D J.A procedure for in vitro amplification of DNA segmentsthat lie outside the boundaries of known sequences.Nucleic Acids Research,1998,16(16):81-86.
    113.Uchino A,Ogata S,Kohara H,Yoshida S,Yoshioka T,Watanabe H.Molecular basis ofdiverse responses to acetolactat synthase-inhibiting herbicides in sulfonylurea-resistantbiotypes of Schoenoplectus juncoides.Weed Biology and Management,2007,7:89-96.
    114.Uchino A,Watanabe H.Mutations in the acetolactate synthase genes of sulfonylurea-resistantbiotypes of Lindernia spp.Weed Biology and Management,2002,2:104-109.
    115.Wakelin A M,Lorraine-Colwill D F,Preston C.Glyphosate resistance in four differentpopulations of Lolium rigidum is associated with reduced translocation of glyphosate tomeristematic zones.Weed Research,2004,44:453-459.
    116.Wakelin A M,Preston C.A target-site mutation is present in a glyphosate-resistant Loliumrigidum population.Weed Research,2006,46(5):432-440.
    117.Wang H Y,Li Y F,Xie L X,et al.Expression of a bacterial aroA-M1,encoding5-enolpyruvylshikimate-3-phosphate synthase for the production of glyphosate-resistanttobacco plants.Plant Res,2003,116:455-460.
    118.Warwick S I,Xu R,Sauder C,Beckie H J.Acetolactate synthase target-site mutations andsingle nucleotide polymorphism genotyping in ALS-resistant kochia (Kochiascoparia).Weed Science,2008,56(6):797-806.
    119.Whaley C M,Wilson H P,Westwood J H.ALS resistance in several smooth pigweed(Amaranthus hybridus) biotypes.Weed Science,2006,54(5):828-832.
    120.Woodworth A P,Bernasconi,Subramanian M,Rosen B.A second naturally occurring pointmutation confers broad-based tolerance to acetolactate synthase inhibitors.Plant Physiology,1996,111:105.
    121.Ye B,Gressel J.Transient.Oxidant-induced antioxidant transcript and enzyme levelscorrelate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis.Planta,2000,211(1):50-61.
    122. Ye G N, Hajdukiewicz P T, Broyles D, et al. Plastid-expressed5-enol-pyruvyl-shikimate-3-phosphate synthase genes provide high level glyphosatetolerance in tobacco.Plant J,2001,25:261-270.
    123.Yu Q,Han H,Powles S B.Mutations of the ALS gene endowing resistance to ALS-inhibitingherbicides in Lolium rigidum populations.Pest Management Science,2008,64(12):1229-1236.
    124.Yu Q,Zhang X Q,Hashem A,Walsh M J,Powles S B.ALS gene proline (197) mutationsconfer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum)populations.Weed Science,2003,51(6):831-838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700