裂缝性低渗透油藏深度调剖技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Deep Profile Control Technology Research for Fractured Low-permeability Reservoir
  • 作者:秦宝德
  • 论文级别:硕士
  • 学科专业名称:高分子物理与化学
  • 学位年度:2004
  • 导师:刘凤岐
  • 学科代码:070305
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-06-01
摘要
朝阳沟油田属于裂缝性低渗透油藏,处于油田主体部位的一类区块裂缝分布密度0.13条/m,经过17年的注水开发,目前采出程度达到20%,综合含水48.7%。由于裂缝造成的注入水指进和油藏非均质性影响,层间平面矛盾逐渐加剧,含水不断上升,且线性注水后注采系统调整余地减少,依靠常规技术手段进行调整挖潜的余地越来越小,面临进一步改善区块开发效果、提高采收率的实际要求,于是近两年开展了深度调剖技术研究,深度调剖可以有效地封堵裂缝和高渗透带,使后续水进入基质扩大波及体积,缓解层间和平面矛盾,改善区块开发效果。
     根据油藏条件,主要考虑低渗透储层孔隙结构及裂缝特征,进行了调剖剂的配方优选、性能评价、岩心封堵及封堵后驱油实验、核磁共振成像研究和凝胶对裂缝封堵环境扫描电镜微观实验研究,优选出了与朝阳沟油田储层配伍的调剖剂配方。
    调剖剂由主剂、交联剂和添加剂组成。主剂为HPAM,交联剂主要原料为氯化铬,添加剂以硫脲为主。
    深度调剖选用的聚合物为部分水解聚丙烯酰胺,分子量为1400万,水解度25%。室内模拟实验表明,随着聚合物浓度的增加,溶液初始粘度和成胶粘度增高。综合考虑成胶粘度和实际注入能力,确定适宜的聚合物浓度为800-1200mg/l。
    通过实验有机铬体系不同交联比对成胶性能的影响得出:随着交联比的增加,凝胶粘度增高。综合考虑成胶粘度及经济效益,确定合适的交联比为15:1。
    实验表明NaCI和NaHCO3可以调整交联体系的交联速度,其浓度越大,交联反应越快。经筛选实验中加入600-800mg/l浓度的
    
    
    NaCI和500-750mg/l浓度的NaHCO3最适宜。使用硫脲作为配方中凝胶的稳定剂,其最佳浓度为1000mg/l。
    室内实验表明,配制的调剖剂在成胶前经地层水稀释形成的交联体系与地层水和注入水都具有良好的配伍性、稳定性和较好的流度控制能力。
    含裂缝天然岩心驱油实验结果表明,水驱至残余油状态,岩心用凝胶封堵,后续水驱岩心的采收率可提高6.3到9.1个百分点。
    核磁共振实验和微观仿真模型实验结果表明:聚合物与交联剂混合溶液进入模型后沿裂缝运移,对裂缝进行充填,成胶后对裂缝产生封堵作用,迫使后续注入水改变液流方向,进入模型基质部分,随后续水驱的进行,波及体积逐渐扩大,使基质中封堵前不动的原油产生运移,模型出口有原油被驱出,提高原油采收率。
    凝胶对含裂缝岩心封堵环境扫描电镜结果显示:凝胶对裂缝性油藏中的裂缝具有较好的封堵效果,同时进入岩心基质的凝胶较少,保证其不会被凝胶封堵,后续水可以从基质流过,提高基质的采收率。
    根据朝阳沟油田地质和流体特征,建立了平面地质模型。模拟计算结果表明,高渗透条带的封堵半径在1/5~1/3井距的情况下,效果较好。注入凝胶段塞尺寸为0.02PV~0.04PV的方案最佳。不同含水的注入时机对驱油效果的影响较大,当含水为70%-80%时,进行封堵,效果最好。
    在相同的凝胶段塞注入量下,为了避免调剖液被稀释采取不同段塞注入的方式,即先注一定量的前置液,然后浓度由低到高
    
    
    依次注入调剖液,最后注入聚合物顶替液、替清水,关井成胶再后续水驱。
    在4个井组开展了现场试验。取得了较好的开发效果,主要表现在以下几个方面:
     一是调剖后注入压力明显上升,油层渗流能力下降;
     二是调剖后吸水指示曲线拐点消失,启动压力抬升,说明裂缝得到了封堵;
    三是根据4口深调井调剖前后吸水剖面资料分析,主要目的层注水得到控制,非目的层注水得到加强;
    四是从生产井采出液水质分析结果证实,交联聚合物体系分子已在高渗透段的孔隙中产生物理堵塞,提高了注入压力,扩大了波及体积,提高了油层动用程度。
     深调后9口目标井调剖后日增油8.3t,含水下降11.9个百分点。目前试验区已累积增油1508.5t,累积降水8070 m3,现仍处在有效期中。
    通过经济效益分析,截止到目前,投入产出比为1:1.73。并且该区与调剖前相比,仍保持着增油降水的开发形势,深调还处在有效期中。
    从室内及现场试验中可以得出以下结论:
    1、通过室内实验,优选出了适合朝阳沟油田一类区块的调剖剂配方。该配方所形成的交联体系与地层水和注入水具有较好的配伍性、热稳定性和较强的流变性。应用上述配方配制的聚合物交联剂混合溶液模拟地层条件,能够形成凝胶,对岩心中的裂缝进行有效封堵,后续水进入岩心基质部分,增大波及体积,提高基质部分原油采收率。
    
    2、通过数模研究计算,确定了适合朝阳沟油田一类区块的深度调剖各项技术参数。
     3、本篇论文优选的调剖剂配方和技术参数在朝阳沟油田裂缝性低渗透油藏应用是可行的,可以满足现场注入的要求。
     4、 深度调剖是改善中高含水期开发效果的一项有效的技术手段,调剖剂对裂缝和高渗透层起到了一定的封堵作用,油层动用状况得到改善,见到较好增油降水效果。
Chaoyanggou Oilfield belongs to fractured low-permeability reservoir . The fracture density of first type tracts of the oilfield host body is 0.13 strip/m. After 17 years of waterflood development , the present recovery percent of reserves attains 20%, comprehensive water content is 48.7%. Because of finger advance nonhomogeneity , the interlayer and plane incensistence increase, water content rises continuously, and there is little room for the injection. It interlayer and plane inconsistence increase, water content rises continuously ,and there is little room for the injection-production system to be adjusted after linear water injection . It is difficult to adjust and exavate with conventional technical methods .In order to improve the development result further and enhance the recovery ratio , We has carried out the deep profile control research. It can seal fractures and high-permeability zones effectively. Make succeeding water enter the matrix and expand the swept volume, alleviate interlayer and plane inconsistence and improve the development result .
    According to the reservoir condition , we consider mainly the
    
    
    pore structure and fracture feature of low-permeability reservoir ,we has carried out the formula optimum of the profile control agent、property evaluation 、core sealing and oil displacement test after sealing、nuclear magnetic resonable image formation research and the sealed environment of gel to fracture eectronic lens scan microscopic test research . We optimized the profile control agent formula which is compatible with the Chaoyanggou reservoir.
    The profile control agent is made up of main agent 、cross-linking agent and addition agent . The main agent is HPAM . The primary material of the cross-linking agent is chlorinated chromium. The addition agentg is mainly thiourea.
    The polymer used for deep profile control is partly hydrolytic PAM. Its molecular weight is 14 million. Its degree of hydrolysis is 25%. The lab simulation test shows, with the increase of the concentration of polymer, the solution initial viscosity and gelation viscosity increase. Considering gelation viscosity and praltical injection capability, we determin the proper polymer concentration is 800-1200mg/l.
    Through the test of different cross-linking ratio of the oraganic chromium system’s effect on gelation property, we conclude: with the increase of the cross-linking ratio ,the gel viscosity increase. Considering gelation viscosity and economic benefit, we determine the proper cross-linking ratio is 15:1.
    The test shows NaCl and NaHCO3 can adjust the cross-linking velocity. With the increase of the concentration, the cross-linking
    
    
    reaction gets faster. After screening, 600-800mg/l NaCl and 500-750mg/l NaHCO3 are proper. We use thiourea as the stabilizer of the formula gel. Its optimal concentration is 1000mg/l.
    The lab test shows, the cross-linking system is well compatible with the formation water and the injected water. The profile control agent has been diluted by the formation water before gelation. It also has good stability and mobility control capability.
    The oil displacement test of the natrual core with fractures shows, when water flooding gets residual condition, the gel seals the cores, the succeeding water flooding core recovery ratio can be increased by 6.3 to 9.1 percent.
    The result of nuclear magnetic resonance and microscopic emulation model test shows: the polymer and cross-linking agent mixed solution migrates through fractures after entering the model, packs the fractures, forms sealing function on fractures after gelation, forces succeeding injected water change liquid stream direction. And it enters the matrix of the model. With the succeeding water flooding, the swept volume is expanded. And it makes stable crude oil before packing in matrix migrate. Crude oil is displaced at model outlet. Thus the recovery ratio of crude oil is enhanced.
    The scanning electronic lens result of the sealing environment of gel on core with fractures shows: gel has better sealing function o
引文
[1] 隋晓滨、宋才娃等,聚合物深度调剖技术在龙虎泡油田的应用,大庆石油地质与开发,2000.10
    [2] 陈福明、牛金刚等,低浓度交联聚合物深度调剖技术研究,大庆石油地质与开发,2001.4
    [3] 付青春、姜振海等,复合离子聚合物深度调剖试验效果,大庆石油地质与开发,2001.5
    [4] 王宏伟、桑广森等,油气藏动态预测方法,石油工业出版社,2001.10
    [5] 王仲茂等编:高心采油技术,北京:石油工业出版社,1998
    [6] 汪庐山等:有机铬交联聚合物驱油剂的研制及矿场应用,油田化学,2000,17(1):58-61
    [7] 王保峰等:环境扫描电镜及其在石油技术中的应用,油田化学, 1999,16(3):278-281
    [8] 刘一江等:化学调剖堵水技术,北京:石油工业出版社,1999
    [9] R.S.Seright et al.著,李岩 刘大玉译:封堵天然裂缝油藏大孔道的凝胶处理,国外油田工程,2000.10
    [10] 催晓红等:孤东二区交联聚合物驱配方研究,油气采收率技术,2000.12
    [11] D.D.Whitney著.徐文芹译:聚合物凝胶体系的堵水试验,国外油田工程,1999.7
    [12] Mack JC,Smith JE, In-Depth Colliodal Dispersion Gels Improve Oil Recovery
     Efficiency.SPE 27780,1994
    
    [13] Smith JE, The Adon-Roacl-An In-Depth Gel Case History.SPE 35352,1996
    10、Smith JE, Mack JC, Gels Correct In-Depth Reservoir Permeability Variation.Oil Gas J,Jan 6,1997:33-39
    [14] 中国油田开发图集.第二卷 第四册 中国石油天然气总公司,1991
    [15] 范旭,刘建新等:松辽盆地朝阳沟油田试验区综合调整数值模拟研究;大庆石油学院学报,1999,23(1)
    [16] 刘庆旺,王中国等:FL调剖剂的研制及其在辽河油田的应用;大庆石油学院学报,2000,24(2)
    [17] 刘庆旺,杨勇等:FW调剖剂的研制及其在大庆油田的应用;大庆石油学院学报,2000,24(2)
    [18] 杨正明,朱维耀等:含裂缝低渗透油藏聚合物和交联聚合物驱油研究,石油学报,1998年第4期
    [19] 尉小明,曹明军等:复合离子深度调剖剂的应用;大庆石油学院学报,2000,24(2)
    [20] 刘合,王中国等:水驱后期厚油层层内弱凝胶调剖影响因素分析;大庆石油地质与开发,2000,19(4)
    [21] 付桂芳,田云庆等:钻关恢复期注水井组化学调剖的实践和认识;大庆石油地质与开发,2000,19(4)
    [22] 乔二伟,李宜坤等:油田区块整体调剖压力指数决策技术及应用;钻采工艺,2000,23(5)
    [23] 杨建雨,宋志宗等:岔河集油田岔15、39断块黄原胶调剖先导试验;油田化学,2001,18(10
    [24] 吴赞校,周群等:喇嘛甸油田聚合物调剖效果;大庆石油
    
    
    地质与开发,2001,20(2)
    [25] 冯其红,尹文军:区块整体调剖筛选方法研究;石油大学学报,1999,23(5)
    [26] 阚春玲,闫亚茹等:萨中地区复合离子调剖剂深度调剖效果;大庆石油地质与开发,2001,20(2)
    [27] Z.M.Yang,W.Y.Zhu,P.X.Sun,S.Z.Zhang:“A Mathematical Model for Polymer Flooding/crosslinking Polymer Flooding in the Fractured Reservoir and its Application”,International Symposium on Multiphase Fluid,Non-Newtonian Fluid and Physicochemical Fluid Flow,1997,Beijing
    [28] Smith J E. Performance of 18 Polymers in Aluminum Citrate Colloidal Dispersion Gels. SPE28989,1995
    [29] Peng Bo, Li Mingyuan, Ji Shuling, Wu Zhaoliang. Determination of Structure of Polyacrylamide/Aluminum Citrate Colloidal Dispersion Gel System, Chinese Journal of Chemical Engineering,1998,6(2):171-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700