CO_2升高和短期高温胁迫对玉米幼苗生理生化指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了深入系统地研究C02浓度升高条件下,短暂高温对玉米苗期的光合生理生物化学影响,本课题在不同章节按以下思路展开:(1)确定引起光合作用呈现可逆性恢复而不影响叶片形态变化的高温阈值。同时确定高温胁迫处理时间;探讨生长期间的不同CO2浓度处理对玉米幼苗植物学性状和光合生理学的影响,以期了解玉米的哪些性状会对C02升高出现环境适应性反应;(2)提出假设,高温胁迫伴随饱和水汽压差的增加导致叶片蒸腾速率和气孔导度的降低,过量的蒸发降低水分利用效率可导致叶片干燥,进而C02有利于降低蒸腾和气孔导度,进而保持较高的叶片水分状态。(3)为了进一步分析C02对光合耐温性的影响,试验设置在室内和田间条件下,重点研究CO2升高是否会对高温处理的不同耐温性玉米品种光合生理和水分生理具有调节作用;高温下,光合速率的降低是否与光合酶活性、基因转录水平、细胞膜热稳定性和热激蛋白表达有关。(4)进一步分析细胞代谢物组分对高温胁迫的响应及CO2参与的条件作用。根据以上思路和研究方法,本课题主要的结论如下:
     (1)45℃高温是引起光合速率降低,并在24h期间出现明显恢复的最佳温度。结果也表明45℃高温胁迫15分钟会立即导致光合速率的降低,并在胁迫2小时后光合速率趋于平稳。本研究故选取2小时作为温度胁迫时间用于与CO2的互作研究。CO2升高对于根、茎和叶干重均无明显影响。但C02升高会增加玉米幼苗的叶面积,这在B76玉米品种中表现更为明显(升高28.8%)。SQ具有较快的生长速度。田间条件下,CO2升高有利于3个玉米品种的NADP-MDH酶活性升高。C02升高使B76和SQ的NADP-MDH酶活性分别升高了20%和31.6%。而CO2浓度升高会降低PEPCase的活性。
     (2)CO2升高不会缓解热胁迫期间的叶片水分潜势来改善光合。热胁迫期间的不同CO2浓度对光合耐热性有显著影响,生长期间不同的CO2浓度处理对光合热耐性无显著影响。热胁迫处理消除CO2效应。当叶片温度恢复到35℃时,气孔导度和胞间CO2浓度相似或更高最初值。
     (3)B76和B106在田间和室内条件下表现出相反的光合热耐性。室内条件下,B76表现出高度的耐热性。但在田间条件表现较差的光合热耐性。B106则相反。蒸腾速率和气孔导度不同生长环境下也表现相反的变化趋势。田间条件下,高温胁迫降低了叶片蒸腾和气孔导度。室内条件则相反。C02升高降低了B76的蒸腾速率和气孔导度,改善了叶片水分潜势,同时一定程度上改善了叶片光合热耐性。热胁迫处理诱导的B106叶片相对伤害均高于B76。表明B106具有较低细胞膜热稳定性。PEPC在酶活性和基因转录丰度方面均具有更好的高温耐性。热胁迫导致了所有热激蛋白基因表达的上调。而各个热激蛋白无C02效应。热胁迫所诱导的热激蛋白70表达丰度在SQ中达到250倍,比在同等条件下的B106高出66.7%。B76中,Hsp101和Hsp82的恢复动态与光合动态具有高度线性相关。
     (4)在热胁迫下,总非结构性碳水化合物含量在所有玉米品种中降低。根据代谢分析结果表明C02富集增加了B76中25个代谢物成分。在2个C02处理下,丙酮酸和苹果酸受到热胁迫的最大影响,说明B76在热胁迫期间光合的降低可能与三羧酸循环进程被高温扰断有关。热胁迫诱导亮氨酸、甘氨酸、丝氨酸、脯氨酸、谷氨酸含量、葡萄糖和果糖的升高。热胁迫同时诱导了异亮氨酸、缬氨酸、天冬氨酸含量和淀粉的降低。
To further systematically explore the photosynthetic physiology and biochemistry in response to short-term high temperature under elevated CO2in maize seedlings, this dissertation based on different chapters in turn were stretched out as following text,(1) Examine the high temperature threshold that can induce complete reverse of photosynthesis maintaining intact leave phenotypes. Focus on botanical characteristic and photosynthetic variables in response to different CO2levels for maize seedlings during growth period, to understand which traits exhibited acclimation to elevated CO2.(2) A hypothesis to prove stomatal conduct ances and transpiration increased with vapour pressure deficit and high temperature stress could be mitigated via elevated CO2effects on pore patern and water status, plants were subjected to combination of heat stress treatments and four CO2conditions (3) To further analysis on effects of CO2on phototysnthetic thermotolerance, plants were grown at indoor chambers and field. This study tested weather elevated CO2have modification on different maize cultivars that have contrasting thermotolerance in terms of photosynthetic variable and water status. Based on primary technical system and theory base, the study analyzed vitro activities of C4key photosynthetic enzymes, their transcriptional abundance, and integrity of cellular membrane.(4) to explore stressed-protein involved disruption and repairing by abiotic stress. Further test cellular metabolic reprogramming in response to heat stress and CO2effects was done. Based technical base and methods, this dissertation concluded as below:
     (1) High temperature45℃induced the decrease of photosynthesis, and was the best candidate temperature for abiostic temperature for obvious recovery after heat stress24h. There was no difference between2h and4h regarding the decrease of photosynthesis. This study investigated the interactive effects of heat treated time and CO2. Elevated CO2has no significance effects on root, stem and leaves, but enhanced leaf areas of maize seedlings, especially for B76(28.8%). SQ has fast growth developments. Activities of NADP-MDH increased under elevated CO2. Activities of NADP-MDH increased20%and31.6%for B76and SQ under elevated CO2. The activities of PEPCase decreased under elevated CO2.
     (2) Elevated CO2cannot mitigate the water potential during heat stress to protect the damage of photosynthesis. Effects of different CO2on photosynthetic thermotolerance have no significance difference. Heat treatment eliminated CO2effects. When leaf temperature recovered to35℃, gs and Ci maintained similar or higher values than initial values.
     (3) An opposite performances of photosynthetic tolerance was observed between field and indoor conditions. While under indoor, B76has more tolerance to heat stress. But under field conditions, photosynthetic tolerance was decreasing rather than B106. Transpiration and stomatal conductances performed opposite trends. Under field conditions, high temperature decreased transpiration and stomatal condutances rather than indoor conditions. Elevated CO2decreased the transpiration and stomatal conductances of B76, improving water potential of leaves as well as tolerance to heat stress. Heat stress induced relative injuries of B106were higher than B76suggesting B106has lower thermostability of cellular membrane. Activates of PEPCase and its gene expression were upregulated. But each heat shock protein has no CO2effects. Heat stress induced250times upregulation of HSP70expression in SQ,66.7%higher than B106at same conditions. In B76, the patterns of Hsp101and Hsp82have correlation with photosynthesis.
     (4) Under heat stress, total non-structural carbonhydrates decreased in all of maize cultivars. According to metabolic analysis, CO2enrichments increased25metabolites in B76. Under two CO2treatments, pyruvic acids and malic acids were influenced by heat treatments, suggesting the decrease of photosynthesis in B76probably was attributed to disruption of TCA cycles. Heat stress induced lectine, glycine, serine, proline, glutamate, fructose and glucose as well as decrease of isolectine, valine, aspirate and starch.
引文
1. Kimball BA,朱建国,程磊,等.开放系统中农作物对空气CO2浓度增加的响应.应用生态学报.2002,13(10):1323-1338.
    2.胡秀丽,李艳辉,杨海荣,刘全军,李潮海HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力.作物学报2010,36(4):636-644.
    3.蒋高明,韩兴国.大气CO2浓度升高对植物的直接影响.植物生态学报.1997,21(6):489-502.
    4.蒋高明,林光辉,Bruno DV Marino美国生物圈二号内生长在高CO2浓度下的10种植物气孔导度、蒸腾速率及水分利用效率的变化.植物学报.1997,39(6):546-553.
    5.李伏生,康绍忠,张富仓.大气CO2浓度和温度升高对作物生理生态的影响.应用生态学报,2002,13(9):1169-1173.
    6.李建建,郁继华,常雅君,等.高温胁迫对黄瓜幼苗叶片质膜透性及保护酶活性的影响.长江蔬菜,2007,59-61.
    7.林丰平,陈章和,陈兆平,等.高CO2浓度下豆科4种乔木幼苗的生理生化反应.植物生态学报,1999,23(3):220-227.
    8.林伟宏.植物光合作用对大气CO2浓度升高的反应.生态学报.1998,18(5):529-535.
    9.刘瑞侠,李艳辉,陈绍宁,于彦,胡秀丽.干旱高温协同胁迫对玉米幼苗抗氧化防护系统的影响.河南农业大学学报,2008,42:363-370.
    10.刘书仁,郭世荣,孙锦,程玉静,刘超杰,王丽萍.脯氨酸对高温胁迫下黄瓜幼苗活性氧代谢和渗调物质含量的影响.西北农业学报.2010,19(4):127-131.
    11.欧志英,彭长连.高浓度二氧化碳对植物影响的研究进展.热带亚热带植物学报,2003,11(2):190-196.
    12.潘愉德,Melillo J M, Kicklighter D W,等.大气CO2升高及气候,变化对中国陆地生态系统结构与功能的制约和影响.植物生态学报,2001,25(2):175-189.
    13.韦彩妙,林植芳,孔国辉.提高CO2浓度对两种亚热带树苗光合作用的影响.植物学报.1996,38(2):123-130.
    14.许大全.光合作用及有关过程对长期高CO2浓度的响应.植物生理学通讯,1994,30(2):81-87.
    15.杨海荣,王瑛,张莉,胡秀丽.H202和ABA对干旱高温复合胁迫诱导的玉米叶片sHSPs表达的影响西北植物学报.2012,7:13-20.
    16.张华永,崔丽娜,董树亭,高荣岐,孙爱清.热胁迫诱导玉米幼苗γ-氨基丁酸积累的生理作用.山东农业科学2011,7:35-37.
    17.张其德,卢从明,刘丽娜,等.CO2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响.植物学报,1997,39(9):845-848.
    18.赵龙飞,李潮海,刘天学,王秀萍,僧珊珊.花期前后高温对不同基因型玉米光合特性及产量和品质的影响.中国农业科学.2012,23:18-26.
    19.周广胜,王玉辉,高素华,等.羊草对CO2倍增和水分胁迫的适应机制.地学前缘,2002,9(1):93-94.
    20. Ackerly D.D., Coleman J.S., Morse S.R.& Bazzaz F.A.1992. CO2 and temperature effects on leaf area production in two annual plant species. Ecology 73,1260-1269.
    21. Ahmed F.E., Hall A.E.& Madore M.A.1993. Interactive effect of high temperature and elevated carbon dioxide concentration on cowpea [Vigna unguiculata (L.) Walp.] Plant, Cell and Environment 16,835-842.
    22. Ahn Y.-J., Zimmerman J.L.2006. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant Cell Environ.,29:95-104.
    23. Ainsworth, E. A., Rogers, A., Vodkin, L. O., Walter, A. and Schurr, U.2006. The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol., 142:135-147.
    24. Allakhverdieva Y.M., Mamedov M.D., Gasanov R.A.2001. The effect of glycinebetaine on the heat stability of photosynthetic membranes. Turk. J. Bot.,25:11-17.
    25. Allen L.H. Jr, Baker J.T., Albrecht S.L., Boote K.J., Pan D.& Vu J.C.V.1995. Carbon dioxide and temperature effects on rice. In Climate Change and Rice (eds S. Peng, K.T. Ingram, H.-U. Neue & L.H. Ziska),258-277. Springer, Berlin.
    26. Ameye M, Wertin TM, Bauweraerts I, McGuire MA, Teskey RO, Steppe K.2012.The effect of induced heat waves on Pinus taeda and Quercus rubra seedings in ambient and elevated CO2 atompheres. New Phytologist 196,448-461.
    27. Amthor J.S.& Koch G.W.1996. Biota growth factor b:stimulation of terrestrial ecosystem net primary production by elevated atmospheric CO2. In Carbon Dioxide and Terrestrial Ecosystems (eds G.W. Koch & H.A. Mooney),399-414. Academic Press, San Diego, CA.
    28. Anderson, L. J., Maherali, H., Johnson, H. B., Polley, H. W. and Jackson, R. B.2001. Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3-C4 grassland. Global Change Biol., 7:693-707.
    29. Afion S., Fernandez J.A., Franco J.A., Torrecillas A., Alarcon J.J., Sanchez-Blanco M.J.2004. Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci. Hortic.,101:333-342
    30. Arrhenius S.1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philosophy Magazine 41:237-276.
    31. Ashraf M., Hafeez M.2004. Thermotolerance of pearl millet and maize at early growth stages:growth and nutrient relations. Biol. Plant.,48:81-86.
    32. Ashraf M., Saeed M.M., Qureshi M.J.1994. Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ. Exp. Bot.,34:275-283.
    33. Ashton AR, Burnell JN, Furbank RT, Jenkins CLD, Hatch MD.1990.Enzymes of C4 photosynthesis. In P Lea, ed, Methods in Plant Biochemistry, Vol 3. Academic Press, London, pp 39-72.
    34. Bae H, Sicher R, Natarajan S, Bailey B.2009.In situ expression of trehalose synthesizing genes, TPS1 and TPPB, in Arabidopsis thaliana using the GUS reporter gene. Plant Cell Tissue Organ Cult 98,311-319.
    35. Baker J.T.& Allen L.H. Jr.1993. Contrasting crop species responses to CO2 and temperature:rice, soybean and citrus. Vegetatio 104/105:239-260.
    36. Baker J.T., Allen L.H. Jr, Boote K.J., Jones P.& Jones J.W.1989. Response of soybean to air temperature and carbon dioxide concentration. Crop Science 29,98-105.
    37. Baker J.T., Laugel F.& Boote K.J.1992. Effects of daytime carbon dioxide concentration on dark respiration in rice. Plant, Cell and Environment 15:231-239.
    38. Barua D., Downs C.A., Heckathorn S.A.2003. Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album. Funct. Plant Biol.,30:1071-1079.
    39. Bassow S.L., McConnaughy K.D.M.& Bazzaz F.A.1994. The response of temperate tree seedlings grown in elevated CO2 to extreme temperature events. Ecological Applications 4:593-603.
    40. Benkeblia N, Shinano T, Osaki M.2007.Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC-MS analysis. Metabolomics 3:297-305.
    41. Berry J,0 Bjorkman.1980. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491-543.
    42. Biswas, P.K.& Hileman D.R.1985. Response of vegetation to carbon dioxide:field studies of sweet potatoes and cowpeas in response to elevated carbon dioxide. Report 022, US Department of Energy, Carbon dioxide Research Division. Office of Energy Research, Washington, DC.
    43. Blum A.1988. Plant Breeding for Stress Environments. CRC Press Inc., Boca Raton, Florida:223
    44. Blum A., Klueva N., Nguyen H.T.2001. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica,117:117-123.
    45. Boese S.R., Wolfe D.W,& Melkonian J.J.1997. Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant, Cell and Environment 20:625-632.
    46. Bounguignon J, Rebeille F and Douce R.1999. Serine and glycine metabolism in higher plants, p.111-146. In:Singn, B.K. (ed.). Plant amino acids. Marcel Dekker, New York, NY.
    47. Bowen J., Michael L.-Y., Plummer K.I.M., Ferguson I. A.N.2002. The heat shock response is involved in thermotolerance in suspension-cultured apple fruit cells. J. Plant Physiol.,159:599-606.
    48. Bowes G.1996. Photosynthetic responsesto changing atmospheric carbon dioxide concentration. In: Baker N (ed) Photosynthesis and the environment. Kluwer, New York, pp 387-407.
    49. Bowler J.M.& Press M.C.1996. Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fastand slow-growing grass. New Phytologist 132:391-401.
    50. Bukhov N.G., Wiese C., Neimanis S., Heber U.1999. Heat sensitivity of chloroplasts and leaves:leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosyn. Res.,59:81-93.
    51. Bunce, J. A.2000a. Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C3 species:temperature dependence of parameters of a biochemical photosynthesis model. Photosyn. Res.63:59-67.
    52. Bunce, J. A.2000b. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. Global Change Biology 6, 371-382.
    53. Bunce JA.2005. What is the usual interanal carbon dioxide concentration in C4 species under midday field conditions? Photosynthetica 43,603-608.
    54. Bunce, J. A.2003. Effects of water vapor pressure difference on leaf gas exchange.-Field Crop Res.82: 37-47.
    55. Bunce, J.A.2006. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?-Plant Cell Environ.29:1644-1650.
    56. Burke J.J.2001. Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Plant.,112:167-170.
    57. Camejo D., Jimenez A., Alarcon J.J., Torres W., Gomez J.M., Sevilla F.2006. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol., 33:177-187.
    58. Camejo D., Rodriguez P., Morales M. A., Dell'amico J.M., Torrecillas A., Alarcon J.J.2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility.J. Plant Physiol.,162:281-289.
    59. Carlson R, Bazzaz F.1980.The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration and water use efficiency of plants.In:Singh J, Deepak A (eds) Environmental and climatic impact of coal utilization. Academic Press, New York, pp 609-623.
    60. Chaitanya K.V., Sundar D., Reddy A.R.2001. Mulberry leaf metabolism under high temperature stress. Biol. Plant.,44:379-384
    61. Change 1995 (eds) Houghton J.T., Meira Filho L.G., Callendar B.A., N. Harris. A. Kattenberg.& K. Maskell, Ch.3, pp.132-192, IPCC, Cambridge University Press, Cambridge.
    62. ChapinFS, BloomAJ, FieldCB, WaringRH.1987. Plant responses to multiple environmental factors. BioScience 37:49-56.
    63. Chatterton, N.J., P.A Harrison, J.H. Bennett, and W.R. Thomley.1987. Fructosan, starch and sucrose concentrations in crested wheatgrass and redtop as affected by temperature. Plant Physiol. Biochem. 25:617-623.
    64. Chaudhuri, U.N., Kirkham M.B.& Kanemasu E.T.1990. Root growth of winter wheat under elevated carbon dioxide and drought. Crop Sci.20:853-857.
    65. Chen D-X, Hunt HW.Morgan JA.1996.Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change:comparison between model predictions and experimental data. Ecol Model 87:11-16.
    66. Chen J, Xu W, Velten J, Xin Z, Stout J.2012. Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation 67.354-364.
    67. Chen JP, Xu WW, Burke JJ, Xin GJ.2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop Science 50,2506-2515.
    68. Chen T.H.H., Shen Z.Y., Lee P.H.1982. Adaptability of crop plants to high temperature stress. Crop Sci., 22:719-725.
    69. Chen, J.P., Xu, W.W., Burke, J.J., Xin, G.J.2010. Role of phosphatidic acid in high temperature tolerance in maize.-Crop Sci.50:2506-2515.
    70. Cheng S-H, Moore BD, Seemann JR.1998. Effects of short-and long-term elevated CO2 on the expression of ribulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh. Plant Physiol 116:715-723.
    71. Coleman J.S., Rochefort L., Bazzaz F.A.& Woodward F.I.1991. Atmospheric CO2, plant nitrogen status, and the susceptibility of plants to an acute increase in temperature. Plant, Cell and Environment 14:667-674.
    72. Crafts-Brander C., Salvucci M.E.2002a. Sensitivity to photosynthesis in the C4 plant, maize to heat stress. Plant Cell,12:54-68.
    73. Crafts-Brandner SJ, Salvucci ME.2002b. Sensitivity of photosynthesis in a C4 plant, maize, to HS. Plant Physiology 129,1773-1780.
    74. Culotta, E.1995. Will plants profit from high CO2? Science.268:654-656.
    75. Cure J.D., Rufty T.W. Jr & Israel D. W.1989. Alterations in soybean leaf development and photosynthesis in a CO2-enriched atmosphere. Botanical Gazette 150:337-345.
    76. Dai, Z., Ku, M.S.B., Edwards, G.E.1992. Control of photosynthesis and leaf conductance in Ricinus communis L. (castor bean) by leaf to air vapor pressure deficit.-Plant Physiol.99:1426-1434.
    77. De Las Rivas J., Barber J.1997. Structure and thermal stability of photosystem Ⅱ reaction centers studied by infrared spectroscopy. Biochemistry,36:8897-8903.
    78. De Ronde J.A.D., Cress W.A., Kruger G.H.J, Strasser R.J., Staden J.V.2004. Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol.,61:1211-1244.
    79. Ding, Z.S., S.P. Tian, X.L. Zheng, Z.W. Zhou, and Y. Xu.2007. Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiol. Plant.130:112-121.
    80. Drake B.G., Azcon-Bieto J., Berry J., Bunce J., Dijkstra P., Farrar J., Gifford R.M., Gonzalez-Meler M.A., Koch G., Lambers H., Siedow J.& Wullschleger S.1999. Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant, Cell and Environment 22:649-657.
    81. Drake B.G., Gonzalez-Meler M. A.& Long S.P.1997. More efficient plants:a consequence of rising atmospheric CO2? Annual Reviews of Plant Physiology and Molecular Biology 48:609-639.
    82. Drake, B.G.1992. Global warming:the postive impact of rising carbon dioxide levels. Eco-Logic.1:20-22.
    83. Du, H.M., Z.L. Wang, W.J. Yu, Y.M. Liu, and B.R. Huang.2011. Differential metabolic responses of perennial grass Cynodon transvaalensis·Cynodon dactylon (C4) and Poa pratensis (C3) to heat stress. Physiol. Plant.141:251-264.
    84. Duff, D.T. and J.B. Beard.1974. Supraoptimal temperature effects upon Agrostis palustris. Part Ⅱ. Influence on carbohydrate levels, photosynthetic rate, and respiration rate. Physiol. Plant.32:18-22.
    85. Dupuis I., Dumas C.1990. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol.,94:665-670.
    86. Dwyer SA, Ghannoum O, Nicotra A, von Caemmerer S. High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Plant Cell Environ 2007;30:53-66.
    87. Ebrahim M.K., Zingsheim O., El-Shourbagy M.N, Moore P.H., Komor E.1998. Growth and sugar storage in sugarcane grown at temperature below and above optimum. J. Plant Physiol.,153:593-602.
    88. Edwards GE.1986. Carbon fixation and partitioning in the leaf. In:Shannon JC, Knievei DP, Boyer CD (eds) Regulation of carbon and nitrogen reduction and utilization in maize. The American Society of Plant Physiologists, Beltsville, Maryland, pp 51-65.
    89. Ehlers J.D., Hall A.E.1998. Heat tolerance of contrasting cowpea lines in short and long days.Field Crops Res.,55:11-21
    90. Ellis RH, Summerfield RJ, Edm.eades GO, Roberts EH.1992.Photoperiod, temperature and the interval from sowing to tassel initiation in diverse cultivars of maize. Crop Science 32,1225-1232.
    91. Faria T, Wilkins, D, Besford RT, Vaz M, Pereira JS and Chaves MM.1996. Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L. seedlings. J Exper. Bot,47:1755-1761.
    92. Farrar J.F.1996. Sinks, integral parts of a whole plant. Journal of Experimental Botany 47:1273-1280.
    93. Feder M.E., Hoffman G.E.1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol.,61:243-282.
    94. Ferris R.& Taylor G.1993. Contrasting effects of elevated CO2 on root and shoot growth of four native herbs commonly found in chalk grassland. New Phytologist.125,855-866.
    95. Ferris R.& Taylor G.1994. Stomatal characteristics of four native herbs following exposure to elevated CO2. Annals of Botany 73,447-453.
    96. Ferris R., Ellis R.H., Wheeeler T.R., Hadley P.1998. Effect of high temperature stress at anthesis on grain yield and biomass of field grown crops of wheat. Plant Cell Environ.,34:67-78.
    97. Feussner K., Feussner I., Leopold I., Wasternack C.1997. Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato—the first stress-induced UBC of higher plants. FEBS Lett.,409: 211-215.
    98. Finn, G.A.&Brun WA.1982. Effect of atomospheric CO2 enrichment on growth, nonstructural carbondydrate content and root nodule activity in soybean. Plant Physiology.69:327-331.
    99. Foolad M.R.2005. Breeding for abiotic stress tolerances in tomato. M. Ashraf, P.J.C. Harris (Eds.), Abiotic Stresses:Plant Resistance Through Breeding and Molecular Approaches, The Haworth Press Inc., New York, USA.613-684.
    100. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research 19,193-212.
    101. Frova C., Taramino G.,Binelli G.1989. Heat-shock proteins during pollen development in maize. Dev. Genet.,10:324-332.
    102. Fukayama, H. et al.2009. Rice plant response to long term CO2 enrichment:gene expression profiling. Plant Sci.,177:203-210.
    103. Gesch RW, Boote KJ, Vu JCV, Allen LH Jr, Bowes G.1998. Changesin growth CO, result in rapid adjustments ofribulose-1,5-bisphosphate carboxylase oxygenase small subunit gene expression in expanding and mature leaves office. Plant Physiol 118:521-529.
    104. Ghannoum O, Phillips NG, Conroy JP, Smith RA, Attard RD, Woodfield R, Logan BA, Lewis JD, Tissue DT.2010. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Global Change Biology 16,303-319.
    105. Ghannoum O, von Caemmerer S, Barlow EDR, Conroy JP.1997. The effect of CO2 enrichment and irradiance on the growth, morphology and gas exchange of a C3 (Panicum laxum) and a C4 (Panicum antidotale) grass. Aust J Plant Physiol 24:227-237.
    106. Ghannoum, O., von Caemmerer, S., Ziska, L. H. and Conroy, J. P.2000. The growth response of C4 plants to rising atmospheric CO2 partial pressure:A reassessment. Plant Cell Environ,23:931-942.
    107. Ghosh S, S Gepstein, BR Glick, JJ Heikkila, EB Dumbroff.1989. Thermal regulation of phosphoenolpyruvate carboxylase and ribulose 1,5-bisphosphate carboxylase in C3 and C4 plants native to environment. Global Change Biology 1:385-396.
    108. Giaveno C., Ferrero J.2003.Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breed. Appl. Biotechnol.,3:89-94.
    109. Gifford R.M.1992. Interaction of carbon dioxide with growthlimiting environmental factors in vegetation productivity:implications for the global carbon cycle. Advances in Bioclimatology 1:24-58.
    110. Gifford R.M.1994. The global carbon cycle:a viewpoint on the missing sink. Australian Journal of Plant Physiology 21:1-15.
    111. Gifford R.M.1995. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature:long-term vs. short-term distinctions for modelling. Global Change Biology 1:385-396.
    112. Groisman PYA, Knight RW.2008. Prolonged dry episodes over the conterminous United States:new tendencies emerging during the last 40 years. Journal of Climate 21,1850-1862.
    113. Groisman, P.Y.A, Knight, R.W.2008. Prolonged dry episodes over the conterminous United States:new tendencies emerging during the last 40 years. J. Climate 21,1850-1862.
    114. Grulke, N.E., Richers G.H., Oechel W.C., et al.1990. Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia.83:485-494.
    115. Guilioni L., Wery J., Lecoeur J.2003. High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Funct. Plant Biol.,30:1151-1164
    116. Guilioni L., Wery J., Tardieu F.1997. Heat stress-induced abortion of buds and flowers in pea:is sensitivity linked to organ age or to relations between reproductive organs?. Ann. Bot.,80:159-168
    117. Guo Y.-P., Zhou H.-F., Zhang L.-C.2006. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci. Hort.,108:260-267
    118. Gutierrez D, Gutierrez E, Perez P, Morcuende R, Verdejo AL, Martinez-Carrasco R.2009. Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. Physiologia Plantarum 137,86-100.
    119. Hall A.E.1992. Breeding for heat tolerance. Plant Breed. Rev.,10:129-168.
    120. Hall AE.2001. Crop Physiological Responses to Temperature and Climatic Zones (Chapter 5), In:Crop responses to environment (ed.). pp.76-88. (CRCPress LLC. Boca Raton, Florida).
    121. Halle JR, S Ghosh, EB Dumbroff, JJ Heikkila.1990. Effect of elevated temperatures on heat shock protein and ribulose 1,5-hisphosphate carboxylase gene expression in Brassica napus. Biochem Cell Biol 68:609-615.
    122. Hamerlynck E, Knapp AK.1996. Photosynthetic and stomatal responses to high temperature and light in two oaks at the western limit of their range. Tree Physiology 16:557-565.
    123. Hamilton, E.W, Heckathorn, S.A., Joshi, P., Wang, D., Barua, D.2008. Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species.-J. Integr. Plant Biol.50:1375-1387.
    124. Hatch, M. D. and Slack, C. R.1966. Photosynthesis by sugar-cane leaves. Biochem. J.,101:103-110.
    125. Hatfield JL, Boote KJ, Hahn L, Izaurralde C, Kimball BA, Mader T, Morgan J, Ort D, Thomson A, Wolfe D.2008. Agriculture. In the effects of climate change on agriculture, land resources, water resources, and biodiversity. U.S. Climate Change Science Program and the Subcommittee on Global Change Research, pp.21-74. (Washington, DC).
    126. Hay, R.K.M., Walker, A.J.1989.An introduction to the physiology of crop yield. Pp.292. Longman Scientific & Technical. New York.
    127. Heckathorn S.A., Downs C.A., Coleman J.S.1998. Nuclear-encoded chloroplast proteins accunulated in the cytosol during severe heat stress. Intern. J. Plant Sci.,159:39-45.
    128. Heckathorn SA, Coleman JS, Hallberg RL.1997. Recovery of net CO2 assimilation after HS is correlated with recovery of oxygen-evolving-complex proteins in Zea mays. L. Phososynthetica 34,13-20.
    129. Helmann H, Funck D, Rentsch D, Frommer WB.2000. Hypersensitivity of an Aradidopsis sugar signling mutant toward exogenous proline application. Plant Physiol 123:779-789.
    130. Hendrey, G.R., Lewin K.F.& Nagy, J.1993. Free air carbon dioxide enrichment:development, progress, results. Vegetatio,104/105:17-31.
    131. Hendrey, G.R., Lipfert F.W., Kimball B.A., et al.1988. Free air carbon dioxide enrichement (FACE) facility development. Ⅱ Field tests at Yazoo City, MS,1987. Report 046, US Department of Energy, Carbon Dioxide Research Division, Office of Energy Research, Washington DC.
    132. Hernandez-Armenta R, Wien HC, Eaglesham ARJ.1989. Carbohyrate partitioning and nodule function in common bean after heat stress. Crop Sci.29:1292-1297.
    133. Herrero MP, Johnson RR.1980. High temperature stress and pollen viability of maize. Crop Science 20, 796-800.
    134. Hocking PJ, Meyer CP.1991. Effects of CO2 enrichment and nitrogen stress on growth and maize. Australian Journal of Plant Physiology,18:339-356.
    135. Hogan K.P., Smith A.P.& Ziska L.H.1991. Potential effects of elevated CO2 and changes in temperature on tropical plants. Plant, Cell and Environment 14:763-778.
    136. Hong, B., Ma, C., Yang, Y., Wang, T., Kazuko, Y.S., Gao, J.P.2009. Over-expression of AtDREBIA in chrysanthemum enhances tolerance to heat stress.-Plant Mol. Biol.70:231-40.
    137. Hopf N., Plesofskv-Vig N., Brambl R.1992. The heat response of pollen and other tissues of maize. Plant Mol. Biol.,19:623-630.
    138. Howard, H.F. and T.L. Watschke.1991. Variable high-temperature tolerance among Kentucky bluegrass cultivars. Agron. J.83:689-693.
    139. Howarth C.J.2005. Genetic improvements of tolerance to high temperature. M. Ashraf, P.J.C. Harris (Eds.), Abiotic Stresses:Plant Resistance Through Breeding and Molecular Approaches, Howarth Press Inc., New York.
    140. Hu XL, Liu RX, Li YH, Wang W, Tai FJ, Xue RL, Li CH.2010. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul.60,225-235.
    141. Hunt R, Hand D, Hannah M, Neal A.1991. Response to CO2 enrichment in 27 herbaceous species. Funct Ecol 5:410-421.
    142. Iba K.2002. Acclimative response to temperature stress in higher plants:approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol.,53:225-245.
    143. Idso S.B.& Kimball B.A.1989. Growth responses of carrot and radish to atmospheric CO2 enrichment. Environmental and Experimental Botany 29:135-139.
    144. Idso, K.E.&Idaso S.B.1994. Plant response to atomspheric CO2 enrichment in the face of environmental constraints:a review of the past 10 years' research. Agriculture and Forest Methrology.69:153-203.
    145. IPCC.2001.The Summary for Policy Makers-A third assessment report of working group 1, Shanghai http://www.ipcc.ch/pub/spm22-01.pdf.
    146. IPCC.2001. The Summary for Policy Makers-A third assessment report of working group 1. Shanghai http://www.ipcc.ch/pub/spm22-01.pdf.
    147. IPCC.2007. Climate Change 2007. Working Group Ⅰ Report:The Physical Basis of Climate Change, http://ipcc-wgl.ucar.edu/wgl/wgl-report.html.
    148. IPCC.2007. Climate Change, Fourth Assessment Report, Cambridge University Press, London.
    149. Ismail A.M., Hall A.E.1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci.,39:1762-1768.
    150. Jiang Gaoming and Han Xingguo.1997. Response of plant growth to elevated [CO2]:A review on the chief methods and basic conclusions based on experiments in the external countries in past decade. Acta Phytoecologica Sinica.21:489-502.
    151. Jiang, Y., C. Wang, and D. Li.2008. Effect of oxalic acid on chlorophyll content and antioxidant system of alfalfa under high temperature Agriculture and Forest Methrology.69:153-203.
    152. Jiao J, Chollet R (1991) Post-translational regulation of phosphoenolpyruvate carboxylase in C4 and crassulacean acid metabolism plants. Plant Physiol 95:981-985.
    153. Joao P. Maroco, Gerald E. Edwards, Maurice S.B. Ku.1999. Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta210:115-125.
    154. Jones P.D., New, M. Parker D.E., Mortin S., Rigor I.G.1999. Surface area temperature and its change over the past 150 years.Rev. Geophys.,37:173-199.
    155. Kaplan, F., J. Kopka, D.W. Haskell, W. Zhao, K.C. Schiller, N. Gatzke, D.Y. Sung, and C.L. Guy.2004. Exploring the temperaturestress metabolome of arabidopsis. Plant Physiol.136:4159-4168.
    156. Karim M.A., Fracheboud Y., Stamp P.1997. Heat tolerance of maize with reference of some physiological characteristics. Ann. Bangladesh Agri.,7:27-33.
    157. Karim M.A., Fracheboud Y., Stamp P.1999. Photosynthetic activity of developing leavea mays is less affected by heat stress than that of developed leaves. Physiol. Plant.,105:685-693.
    158. Kepova K.D., Holzer R., Stoilova L.S., Feller U.2005. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco bindind protein and Rubisco activase in wheat leaves. Biol. Plant., 49:521-525.
    159. Khoussevitzky S, Suzuki N, Huitington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R.2008. Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination, j Biol Chem 283:34197-34203.
    160. Kim SH, Gitzc DC, Sicher RC, Bakerd JT, Timlin DJ, Reddy VR.2007. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany 61,224-236.
    161. Kim SH, Richard S, BAE H, Gitz DC, Baker JT, Timlin DJ, Reddy VR.2006.Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology 12,588-600.
    162. Kimball, B.A.1992. Cost comparisons among Free-Air CO2 Environment, Open-Top Chamber, and Sunlit Controlled-Environment Chamber methods of CO2 exposure. Critical Reviews in Plant Sciences. 11:265-270.
    163. Kinet J.M., Peet M.M. Tomato. H.C. Wien (Ed.).1997. The Physiology of Vegetable Crops, CAB International, Wallingford, UK.207-258.
    164. Kirkham, M.B.2011. Elevated carbon dioxide:Impact on soil and plant water relations. CRC Press, Boca Raton, FL.
    165. Koch KE.1996.Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509-540.
    166. Korn, M., T. Ga rtner, A. Erban, J. Kopka, J. Selbig, and D.K. Hincha.2010. Predicting arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol. Plant 3:224-235.
    167. Korotaeva N.E., Antipina A.I., Grabelynch O.I., Varakina N.N., Borovskii G.B., Voinikov V.K.2001. Mitochondrial low-molecular-weight heat shock proteins and tolerance of crop plant's mitochondria to hyperthermia. Fiziol. Biokhim Kul'turn. Rasten.,29:271-276.
    168. Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD.2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10,310-316.
    169. Kumar, S., Gupta, D., Nayyar, H.:Comparative response of maize and rice genotypes to heat stress:status of oxidative stress and antioxidants.-Acta Physiol Plant.34:75-86,2012.
    170. Lavola, A. and R. Julkunen-Tiitto.1994. The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia 99:315-321.
    171. Law RD, Crafts-Brandner SJ.1999.Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173-181.
    172. Lawlor D.W.1995. Photosynthesis, productivity and environment. Journal of Experimental Botany 46: 1449-1461.
    173. Lawlor, D.W.& Mitchell R.A.C.1991. The effects of increasing CO2 on crop photosynthesis and productivity:a review of field studies. Plant, Cell and Environment.14:807-818.
    174.Leady,P.W.&Drake. B.G.1993. Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange. Vegetatio.104/105:3-15.
    175. Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P. and Ort, D. R.2009. Elevated CO2 effects on plant carbon, nitrogen and water relations:six important lessons from FACE. J. Exp. Bot.,60:2859-2876.
    176. LeCain DR, Morgan JA.1998.Growth, gas exchange and carbohydrate concentrations in NAD-ME and NADP-ME C4 grasses grown in elevated CO2. Physiol Plant 102:297-306.
    177. Lecoeur, J., J. Wery, and O. Turc.1992. Osmotic adjustment as a mechanism of dehydration postponement in chickpea (Cicer arietinum L.) leaves. Plant Soil 144:177-189.
    178. Li, J. and L. Copeland.2000. Role of malonate in chickpeas. Phytochemistry 54:585-589.
    179. Li, P., Ainsworth, E. A., Leakey, A. D. B., Ulanov, A., Lozovaya, V., Ort, D. R. and Bohnert, H. J.2008. Arabidopsis transcript and metabolite profiles:ecotype-specific responses to open-air elevated (CO2). Plant Cell Environ.,31:1673-1687.
    180. Lindroth, R.L., B.J. Kopper, W.F.J. Parsons, J.G. Bockheim, D.F. Karnosky, G.R. Hendrey, K.S. Pregitzer, J.G. Isebrands, and J. J. Exp. Bot.,60:2859-2876.
    181. Liu N., Ko S., Yeh K.-C., Charng Y.2006. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci.,170:976-985.
    182. Lloyd J.& Farquhar G.D.1996. The CO2 dependence of photosynthesis, plant growth responses to elevated CO2:concentrations and their interaction with soil nutrient status.1. General principles and forest ecosystems. Functional Ecology 10:4-32.
    183. Long S.P.1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentration:has its importance been underestimated? Plant, Cell and Environment 14:729-739.
    184. Lund A.A., Blum P.H., Bhattramakki D., Elthon T.E.1998. Heat-stress response of maize mitochondria. Int. J. Plant Sci.,159:39-45.
    185. Luo, H.B., Ma, L., Xi, H.F., Duan, W., Li, S.H., Loescher, W., Wang, J.F., Wang, L.J.:Photosynthetic responses to heat treatments at different temperatures and following recovery in Grapevine (Vitis amurensis L.) leaves.-PLoS ONE.6:e23033. doi:10.1371/journal.pone.0023033,2011.
    186. Machado S., Paulsen G.M.2001. Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil.233.
    187. Maestri E., Klueva N., Perrotta C., Gulli M., Nguyen H.T., Marmiroli N.2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol.,48:667-681.
    188. Maherali, H., Johnson, H.B., Jackson, R.B.:Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant Cell Env.26:1297-1306,2003.
    189. Marchand F.L., Mertens S., Kockelbergh F., Beyens L., Nijs I.2005. Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Global Change Biol.,11:2078-2089.
    190. Marcum K.B.1998. Cell membrane thermostability and whole plant heat tolerance of Kentucky bluegrass. Crop Sci.,38:1214-1218.
    191. Maroco JP, Edwards GE, Ku M-SB.1999. Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta.210:115-125.
    192. Martin, T., Oswald, O. and Graham, I. A.2002. Arabidopsis seedlings growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:Nitrogen availability. Plant Physiol.,128: 472 481.
    193. Martineau J.R., Specht J.E., Williams J.H., Sullivan C.Y.1979. Temperature tolerance in soybean. I. Evaluation of technique for assessing cellular membrane thermostability. Crop Sci.,19:75-78.
    194. Massad RS, Tuzet A and Bethenod O. The effect of temperature on C4-type leaf photosynthesis parameters. Plant, Cell and Environ.2007,30:1191-1204.
    195. Mayer, R.R., J.H. Cherry, and D. Rhodes.1990. Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiol.94:796-810.
    196. Mazorra L.M., Nunez M., Echerania E., Coll F., Sanchez-Blanco M.J.2002. Influence of brassinosteriods and antioxidant enzymes activity in tomato under different temperatures. Plant Biol.,45:593-596.
    197. Mcdonald G.K., Paulsen G.M.1997. High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil,196:47-58.
    198. Meams LO, Katz RW, Schneider SH.1984.Extreme high temperature events:changes in their probabilities with changes in mean temperature. Journal of Climate and Applied Meteorology 23,1601 1613.
    199. Merewitz, E.B., H. Du, W. Yu, Y. Liu, T. Gianfagna, and B. Huang.2012. Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. J. Expt. Bot.63:1315-1328.
    200. Miller, P., Lanier, W., Brandt, S.,2001. Using Growing Degree Days to Predict Plant Stages. Ag/Extension Communications Coordinator, Communications Services, Montana State University-Bozeman, Bozeman, MO.
    201. Miroshnichenko S., Tripp J., Nieden U., Neumann D., Conrad U., Manteuffel R.2005. Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J.,41:269-281.
    202. Momcilovic I., Ristic Z.2007.Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development.J. Plant Physiol.,164:90-99.
    203. Morales D., Rodriguez P., Dell' arnico J., Nicolas E., Torrecillas A.. Sanchez-Blanco M.J.2003. High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol. Plant.,47:203-208.
    204. Moriarty T., West R., Small G., Rao D., Ristic Z.2002. Heteroiogous expression of maize chloroplast protein synthesis elongation factor(EF-TU) enhances Escherichia coli viability under heat stress. Plant Sci.,163:1075-1082.
    205. Morison J, Giord R.1984a.Plant growth and water use with limited water supply in high CO2 concentrations. Ⅰ. Leaf area, water use and transpiration. Aust J Plant Physiol 11:361-374.
    206. Morison J, Giord R.1984b.Plant growth and water use with limited water supply in high CO2 concentrations. Ⅱ. Plant dry weight, partitioning and water use e(?) ciency. Aust J Plant Physiol 11:375-384.
    207. Morison J. I. L. and Lawlor D.W.1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell and Environment,22:659-682.
    208. Morison J.I.L.1993. Response of plants to CO2 in water limited conditions. Vegetatio 104/105:193-209.
    209. Morita S., Siratsuchi H., Takanashi J., Fujita K.2004. Effect of high temperature on ripening in rice plant. Analysis of the effect of high night and high day temperature applied to the panicle in other parts of the plant. Jpn. J. Crop. Sci.,73:77-83.
    210. Morrison M.J., Stewart D.W.2002. Heat stress during flowering in summer brassica.Crop Sci.,42:797-803.
    211. Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K.2000. Trienoic fatty acids and plant tolerance of high temperature. Science 287:476-479.
    212. Nakamoto H., Hiyama T.1999. Heat-shock proteins and temperature stress. M. Pessarakli (Ed.), Handbook of Plant and Crop Stress, Marcel Dekker, New York.399-416.
    213. Naumburg E, Loik ME, Smith SD.2004. Photosynthetic responses of Larrea tridentate to seasonal temperature extremes under elevated CO2. New Phytologist 162,323-330.
    214. Neta-Sharir I., Isaacson T., Lurie S., Weiss D.2005. Dual role for tomato heat shock protein 21: protecting photosystem ii from oxidative stress and promoting color changes during fruit maturation. Plant Cell,17:1829-1838.
    215. Neumann D.M., Emmermann M., Thierfelder J.M., Zur Nieden U., Clericus M., Braun H.P., Nover L., Schmitz U.K.1993. HSP68—a DNAK-like heat-stress protein of plant mitochondria. Planta,190:32-43.
    216. Nicholls N., Gruza G.V., Jouzel J., Karl T.R., Ogallo L.A.& Parker D.E.1996. Observed climate variability and change. In Climate cowpea [Vigna unguiculata (L.) Walp.] Plant, Cell and Environment 16:835-842.
    217. Nie, G.Y., Long S.P. Garcia, R.L. et al.,1995. Effect of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins. Plant, Cell and Environment,18:855-864.
    218. Nieto-Sotelo J., Martinez L.M., Ponce G., Cassab G.I., Alagon A., Meeley R.B., Ribaut J.-M., Yang R. 2002. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell,14:1621-1633.
    219. Oosten JJV, Besford RT.1996. Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression:climate of opinion. Photosynth Res 48:353-365.
    220. Orbovic'V., Poff, K.L.:Effect of temperature on growth and phototropism of Arabidopsis thaliana seedlings.-J. Plant Growth Regul.26:222-228,2007.
    221. P. Stone.2001. The effects of heat stress on cereal yield and quality. A.S. Basra (Ed.), Crop Responses and Adaptation to Temperature Stress, Food Products Press, Binghamton, NY:243-291.
    222. Patel P.N., Hall A.E.1990. Genotypic variation and classification of cowpea for reproductive responses to high temperatures under long photoperiods. Crop Sci.,30:614-621.
    223. Peet M.M., Sato S., Gardner R.G.1998a. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ,21:225-231.
    224. Peet M.M., Willits D.H.1998b. The effect of night temperature on greenhouse grown tomato yields in warm climate. Agric. Forest Meteorol,92:191-202.
    225.Perrotta C., Tregiia A.S., Mita G., Giangrande E., Rampino P., Ronga G., Spano G., Marmiroli N.1998. Analysis of mRNAs from ripening wheat seeds:the effect of high temperature. J. Cereal Sci.,27:127-132.
    226. Pfaffl MW.2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45.
    227. Pingali, P. L.2001. Meeting world maize needs:technological opportunities and priorities for the public sector. Mexico City, Mexico:CIMMYT.
    228. Poorter H.1993. Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104/105:77-97.
    229. Poorter H, Roumet C, Campbell B.1996.Interspecific variation in the growth responses of plants to elevated CO2:a search for functional types.In:Komer C, Bazzaz F (eds) Carbon dioxide, populations and communities. Academic Press, New York, pp375-412.
    230. Poorter H., Gifford R.M., Kriedemann P.E.& Wong C.S.1992. A quantitative analysis of dark respiration and carbon content as factors in the growth response of plants to elevated CO2 Australian Journal of Botany 40:501-513.
    231. Poorter, H., Roumet, C. and Campbell, B. D.1996. Interspecific variation in the growth response of plants to elevated (CO2):A search for functional types. In Carbon Dioxide, Populations, and Communities (eds Korner, C. and Bazzaz, F. A.), Academic Press, New York:375-412.
    232. Porter J.R.2005. Rising temperatures are likely to reduce crop yields. Nature,436:174.
    233. Prasinos C., Krampis K., Samakovli D., Hatzopoulos P.2005. Tight regulation of expression of two Arabidopsis cytosolicHsp90 genes during embryo development. J. Exp. Bot.,56:633-644.
    234. Pressey, R.1991. Oxidized oligogalacturonides activate the oxidation of indoleacetic acid by peroxidase. Plant Physiol.96:1167-1170.
    235. Rainey K., Griffiths P.2005. Evaluation of Phaseolus acutifolius A. Gray plant introductions under high temperatures in a controlled environment. Genet. Resour. Crop Evol.,52:117-120.
    236. Ranney, T.G., Peet, M.M.:Heat tolerance of five taxa of birch (Betula):physiological responses to su praoptimal leaf temperatures-J. Am. Soc. Hortic. Sci.119:243-248,1994.
    237. Rao M.V., Hale B.A.& Onnrod D.P.1995. Amelioration of ozoneinduced oxidative damage in wheat plants grown under high carbon dioxide. Role of antioxidant enzymes. Plant Physiology 109:421-432.
    238. Raven J.A.& Falkowski P.G.1999. Oceanic sinks for atmospheric CO2. Plant, Cell and Environment 22: 741-755.
    239. Rawson H.M.1988. Effects of high temperatures on the development and yield of wheat and practices to reduce deleterious effects. In Wheat Production Constraints in Tropical Environments (ed. A.R. Klatt), pp. 44-63. CIMMYT, Mexico D.F.
    240. Read J J, Morgan JA, Chatterton NJ, Harrison PA (1997) Gas exchange and carbohydrate and nitrogen concentrations in leaves of Pascopyrum smithii (C3 and Bouteloua gracilis(C4) at different carbon dioxide concentrations and temperatures. Ann Bot 79:197-206.
    241. Reddy A.R., Rasineni G.K. and Raghavendra A.S.2010. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Cur. Sci.99:46-57.
    242. Reddy K.R., Hodges H.F.& McKinion J.M.1992. Cotton crop response to global climate change. World Resources Review 4:348-365.
    243. Rehman H., Malik S.A., Saleem M.2004.Heat tolerance of upland cotton during the fruiting stage evaluated during cellular membrane thennostability.Field Crops Res.,85:149-158.
    244. Reynolds H.1996. Effects of elevated CO2 on plants grown in competition. In:Korner C, Bazzaz F (eds) Carbon dioxide, populations, and communities. Academic Press, New York, pp 273-285.
    245. Ristic Z., Cass D.D.1992. Chloroplast structure after water and high temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. Int. J. Plant Sci.,153:186-196.
    246. Ristic Z., Williams G., Yang G., Martin G., Fullerton S.1996. Dehydration, damage to cellular membranes, and heat-shock proteins in maize hybrids from different climates. J. Plant Physiol.,149:424-432.
    247. Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology 13: 1683-1696.
    248. Roden J.S.& Ball M.A.1996. Growth and photosynthesis of two eucalypt species during high temperature stress under ambient and elevated [CO2]. Global Change Biology 2:115-128.
    249. Roessner, U., C. Wagner, J. Kopka, R.N. Trethewey, and L. Willmitzer.2000. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. J. Plant 23:131-142
    250. Rogers HH, Dahlman RC.1993.Crop responses to CO2 enrichment. Vegetatio 104/105:117-131.
    251. Rogers, H.H., Cure J.D.& Smith J.M.1986. Soybean growth and yield response to elevated carbon dioxide. Agriculture, Ecosystems and Environment.24:113-128.
    252. Romanova, A. K.2005. Physiological and biochemical aspects and molecular mechanisms of plant adaptation to the elevated concentration of atmospheric CO2. Russ. J. Plant Physiol.,52:112-126.
    253. Rowland-Bamford A.J., Baker S.J., Allen L.H.& Bowes G.1996. Interactions of CO2 enrichment and temperature on carbohydrate accumulation and partitioning in rice. Environmental and Experimental Botany 36:111-124.
    254. Russell WA, Hallauer AR.1974. Registration of B76 and B77 parental lines of maize. Crop Science 14, 778.
    255. Russo MA, Giannetto S, Belligno A, Emir J.2010. Influence of different nitrate and iron availabilities on phosphoenolpiruvate carboxilase and malate dehydrogenase in roots of maize (Zea mays L.) plants. Food Agriculture 22,162-173.
    256. Sage R.F.1996. Atmospheric modification and vegetation responses to environmental stress. Global Change Biology 2,79-23.
    257. Sage RF.1994. Acclimation of photosynthesis to increasing atmospheric CO2:the gas exchange perspective. Photosynth Res 39:351-368.
    258. Sage, R.F.,2002. Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J. Exp. Bot.53,609-620.
    259. Sairam, R.K., G.C. Srivastava, and D.C. Saxena.2000. Increased antioxidant activity under elevated temperatures:A mechanism of heat stress tolerance in wheat genotypes. Biol. Plant.43:245-251.
    260. Salvucci M.E., Crafts-Brandner S.J.2004. Inhibition of photosynthesis by heat stress:the activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant.,120:179-186.
    261. Samarakoon AB, Gifford RM.1996. Elevated CO2 effects on water use and growth of maize in wet and drying soil. Australian Journal of Plant Physiology,23:53-62.
    262. Sato S., Kamiyama M., Iwata T., Makita N., Furukawa H., Ikeda H.2006. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot.,97:731-738.
    263. Savchenko G.E., Klyuchareva E.A., Abrabchik L.M., Serdyuchenko E.V.2002. Effect of periodic heat shock on the membrane system of etioplasts. Russ. J. Plant Physiol.,49:349-359.
    264. Scharder E, Loik ME, Smith SD.2004. Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant, Cell and Environment 162,323-330.
    265. Scharder et al.2004.Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant, Cell and Environment,23:53-62.
    266. Schimel D., Ives D., Enting I., Heimann M., Joos F., Raynaud D.& Wigley T.1996. CO2 and the carbon cycle. In Climate Change 1995. (eds J.T. Houghton, L.G. Meira Filho, B.A. Callendar, N. Harris, A. Kattenberg & K. Maskell):65-131, IPCC, Cambridge University Press, Cambridge.
    267. Schoffl F., Prandl R., Reindl A.1999. Molecular responses to heat stress. K. Shinozaki, K. Yamaguchi-Shinozaki (Eds.), Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants, R.G. Landes Co., Austin, Texas,81-98.
    268. Schoper JB, Lambert RJ, Vasilas BL.1987. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Science 27,27-31.
    269. Scott A. Heckathorn GJ. James P. Coleman S Richard L.1996. Nitrogen availability and vegetative development influence the response of Ribulose 1,2-Bisphosphate Carboxylase/Oxygenase, Phosphoenolpyruvate carboxylase, and heat-shock protein content to heat stress in Zea Mays. Int. J. Plant Sci.157(5):54&553.
    270. Shanahan J.F., Edwards I.B.,. Quick J.S, Fenwick J.R.1990. Membrane thermostability and heat tolerance of spring wheat. Crop Sci.,30:247-251.
    271. Shao, L., Z. Shu. S.L. Sun, C.L. Peng, X.J. Wang, and Z.F. Lin.2007. Antioxidation of anthocyanins in photosynthesis under high temperature stress. J. Integr. Plant Biol.49:1341-1351.
    272. Sharkova V.E.2001. The effect of heat shock on the capacity of wheat plants to restore their photosynthetic electron transport after photoinhibition or repeated heating. Russ. J. Plant Physiol., 48:793-797.
    273. Sheen J.1994.Feedback control of gene expression. Photosynth Res 39:427-438.
    274. Sicher RC, Bunce JA.2008.Growth, photosynthesis, nitrogen partitioning and responses to CO2 enrichment in a barley mutant lacking NADH-dependent nitrate reductase activity. Physiol Plant 134:31-40.
    275. Sicher, R.C., Barnaby, J.Y.2012. Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress.-Physiol. Plantarum.144:238-253.
    276. Siddique K.H.M., Loss S.P., Regan K.L., Jettner R.L.1999. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia.Aust. J. Agric. Res.,50:375-387.
    277. Sigh B.1999. Plant amino acids:Biochemistry and biotechnology CRC Press, Boca Raton, FL.
    278. Simoes-Araujo J.L., Rumjanek N.G., Margis-Pinheiro M.2003. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz. J. Plant Physiol.,15:33-41.
    279. Smertenko A., Draber P., Viklicky V., Opatmy Z.1997.Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ,20:1534-1542.
    280. Sober.2001. Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environ. Pollut. 115:395-404.
    281. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL.2007. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In:Climate Change, the physical science basis, pp.996. (Cambridge University Press, Cambridge, United Kingdom, New York).
    282. Somerville C., Browse J.1991. Plant lipids, metabolism and membranes. Science,252:80-87.
    283. Soo-Hyung Kim, Richard C, Sicher, Hantong Bae, Dennis C. Gitzz, Jeffrey T. Baker, Dennis J. Timlin and Reddy VR.2006. Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biology 12,588-600.
    284. Soo-Hyung Kim, Dennis C. Gitz, Richard C. Sicher, Jeffrey T. Bakerd, Dennis J. Timlinb, Vangimalla R. Reddy.2007. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany 61,224-236.
    285. Steven J. Crafts-Brandner, Michael E. Salvucci.2002. Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress. Plant Physiol.129(4):1773-1780.
    286. Stone P.J., Nicolas M.E.1994. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Aust. J. Plant Physiol.,21:887-900.
    287. Subrahmanyam D. and V.S. Rathore.1995. High temperature influences 14CO2 assimilation and allocation of 14C into different biochemical fractions in the leaves of Indian mustard. J. Agron. Crop Sci. 169:169-175.
    288. Sullivan C.Y., Ross W.M.1979. Selecting for drought and heat resistance in grain sorghum. H. Mussell, R. Staple (Eds.), Stress Physiology in Crop Plants, Wiley, New York.263-281.
    289. Sutcliffe J.1977.Plants and temperature, In:Edward Arnold (ed.):Studies in Biology, pp.86. Inst. of Biology. London.
    290. Taub DR, Seemann JR, Coleman JS.2000. Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant, Cell and Environment 23,649-656.
    291. Taylor, G. et al.2005. The transcriptome of Populus in elevated CO2. New Phytol.,167:143-154.
    292. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA.2006. Going to the extremes. Climatic Change 79,185-211.
    293. Tewolde H., Fernandez C.J., Erickson C.A.2006. Wheat cultivars adapted to post-heading high temperature stress. J. Agron. Crop Sci.,192:111-120.
    294. Thompson L.M.1986. Climatic change, weather variability and corn production. Agron. J.,78:649-653.
    295. Todorov D.T., Karanov E.N., Smith A.R., Hall M.A.2003. Chlorophyllase activity and chlorophyll content in wild type and eti 5 mutant of Arabidopsis thaliana subjected to low and high temperatures. Biol. Plant.,46:633-636.
    296. Toth S.Z., Schansker G., Kissimon J., Kovacs L., Garab G., Strasser R.J.2005. Biophysical studies of photosystem Ⅱ-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J. Plant Physiol.,162:181-194.
    297. Tsukaguchi T., Kawamitsu Y., Takeda H., Suzuki K., Egawa Y.2003. Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant Prod. Sci.,6:4-27.
    298. Urbonaviciute, A., G. Samuoliene, J. Sakalauskaite, P. Duchovskis, A. Brazaityte, J.B. Siksnianiene, R. Ulinskaite, G. Sabajeviene, and K. Baranauskis.2006. The effect of elevated CO2 concentrations on leaf carbohydrate, chlorophyll contents and photosynthesis in radish. Pol. J. Environ. Stud.15:921-925.
    299. Van Oosten, J. J. and Besford, R. T.1994. Sugar feeding mimics effect of acclimation to high CO2:rapid downregulation of Rubisco small subunit transcripts, but not of the large subunit transcripts.J. Plant Physiol.,143:306-312.
    300. Vara Prasad P.V., Craufurd P.Q., Summerfield R.J.1999. Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann. Bot.,84:381-386.
    301. Vara Prasad P.V., Craufurd P.Q., Summerfield R.J., Wheeler T.R.2000. Effect of short epidosed of heat stress on flower production and fruit set of groundnut (Arachis hypogea L.). J. Exp. Bot.,51:777-784.
    302. Vierling E, JL Key 1985 Ribulose 1,5-bisphosphate carboxylase synthesis during heat stress. Plant Physiol 78:155-162.
    303. Vierling E.1991. The role of heat shock proteins in plants. Annu Rev. Plant Physiol. Plant Mol. Biol.,42: 579-620.
    304. Vollenweider P., Gunthardt-Goerg M.S.2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut.,137:455-465.
    305. von Caemmerer S, Furbank RT.1999. Modelling C4 photosynthesis. In:C4 Plant Biology (eds Sage RF, Monson RK), pp.173-211. Academic Press, Toronto, Canada.
    306. Von Caemmerer, S. and Furbank, R. T.,2003. The C4 pathway:An efficient CO2 pump. Photosynth. Res., 77:191-207.
    307. Vu J.C.V., Gesch R.W., Pennanen A.H., Allen L.H.J., Boote K.J., Bowes G.2001. Soybean photosynthesis, Rubisco and carbohydrate enzymes function at supra-optimal temperatures in elevated CO2. J. Plant Physiol.,158:295-307.
    308. Vu JCV, Allen Jr LH, Gesch RW. Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci 2006; 171:123-31.
    309. Vu JCV, Allen Jr LH. Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. J Plant Physiol 2009,166:107-16.
    310.Wahid A.,Close T.J.2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant.,51:104-109.
    311. Wahid A., Ghazanfar A.2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol.,163:723-730.
    312. Wahid A., Shabbir A.2005. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Reg.,46:133-141.
    313. Wang D, Heckathorn SA, Barua D, Joshi P, Hamilton EW, LaCroix J.2008.Effects of elevated CO2 on the tolerance of photosynthesis to acute HS in C3, C4, and CAM species. American Journal of Botany 95, 165-176.
    314. Wang D., Luthe D.S.2003. Heat sensitivity in a bentgrass variant:failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol.,133:319-327.
    315. Wang K., Kellomaki S.& Laitinen K.1995. Effects of needle age, long-term temperature and CO2 treatments on the photosynthesis of Scots pine. Tree Physiology 15:211-218.
    316. Wang, D., Heckathorn, S.A., Barua, D., Joshi, P., Hamilton, E.W., LaCroix, J.2008. Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species.-American Journal of Botany.95:165-176.
    317. Ward, D.A.,1987. The temperature acclimation of photosynthetic responses to CO2 in Zea mays and its relationship to the activities of photosynthetic enzymes and the CO2 concentrating mechanism of C4 photosynthesis. Plant, Cell Environ.10,407-411.
    318. Wardlaw I.F., Blumenthal C., Larroque O., Wrigley C.W.2002. Contrasting effects of chronic heat stress and heat shock on kernel weight and tlour quality in wheat. Funct. Plant Biol.,29:25-34.
    319. Warren GR, Marin MA, Teutonico R.1996. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.). Plant Physiology 111,1011-1019.
    320. Waters E.R., Lee G.J., Vierling E.1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot.,47:325-338.
    321. Watling JR, Press MC, Quick WP.2000. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiology,123,1143-1152.
    322. Wayne P.M., Reekie E.G.& Bazzaz F.A.1998. Elevated CO2 ameliorates birch response to high temperature and frost stress:implications for modeling climate-induced geographic range shifts. Oecologia 114:335-342.
    323. Weaich K., Briston K.L., Cass A.1996. Modeling preemergent maize shoot growth. Ⅱ. High temperature stress conditions. Agric. J.,88:398-403.
    324. Weis E, JA Berry 1988 Plants and high temperature stress. Pages 329-346 in SP Long, F1 Woodward, eds. Plants and temperature. Company of Biologists, Cambridge.
    325. Wilhelm E.P., Mullen R.E., Keeling P.L., Singletary G.W.1999. Heat stress during grain filling in maize: effects of kernel growth and metabolism. Crop Sci.,39:1733-1741.
    326. Wilson KB, Bunce JA.1997. Effects of carbon dioxide concentration on the interactive effects of temperature and water vapour on stomatal conductance in soybean. Plant, Cell & Environment 20:230-238.
    327. Wise R.R., Olson A.J., Schrader S.M., Sharkey T.D.2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ,27:717-724.
    328. Wollenweber B., Porter J.R., Schellberg J.2003. Lack of interaction between extreme high temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci.,189:142-150.
    329. Wong SC.1979. Elevated atmospheric partical pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity of C3 and C4 plants. Oecologia,44:68-74.
    330. Wood C.K., Pratt J.R., Moore A.L.1998. Identification and characterization of cultivar-specific 22-kDa heat shock proteins from mitochondria of Pisum sativum. Physiol. Plant.,103:369-376.
    331. Xu, C. and B. Huang.2012. Proteins and metabolites regulated by trinexapac-ethyl in relation to drought tolerance in kentucky bluegrass. J. Plant Growth Regul.31:25-37.
    332. Xu, Z.Z, Zhou, G.S., Han, G.X., Li, Y.J.2011. Photosynthetic potential and its association with lipid peroxidation in response to high temperature at different leaf ages in maize.-J. Plant Growth Regul.30: 41-50.
    333. Yamada M., Ilidaka T., Fukamachi H.1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci. Hortic.,67:39-48.
    334. Yamane Y., Kashino Y., Koike H., Satoh K.1998. Effects of high temperatures on the photosynthetic systems in spinach:oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth. Res.,57:51-59.
    335. Yang K.A., Lim C.J., Hong J.K., Park C.Y., Cheong Y.H., Chung W.S., Lee K.O., Lee S.Y., Cho M.J., Lim C.O.2006. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci.,171:175-182.
    336. Yang ZJ, Sinclair TR, Zhu M, Messina CD, Cooper M, Hammer GL.2012. Temperature effect on transpiration response of maize plants to vapor pressure deficit. Environmental and Experimental Botany 78,157-162.
    337. Young KJ, Long SP.2000. Crop ecosystem responses to climatic change:maize and sorghum. In:Climate Change and Global Crop Productivity (eds Reddy KR, Hodges HF), pp.107-131. CABI International, Oxon, UK.
    338. Young L.W., Wilen R.W., Bonham-Smith P.C.2004. High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Hot.,55:485-495.
    339. Young T.E., Ling J., Geisler-Lee C.J., Tanguay R.L., Caldwell C, Gallie D.R.2001. Developmental and thermal regulation of maize heat shock protein, HSP101. Plant Physiol.,127:777-791.
    340. Yu J, Du H, Xu M, Huang BR.2012. Metabolic reponses to heat stress under elevated atmospheric CO2 concentration in a cool-season grass species, J Amer. Soc. Hort. Sci.134:221-228.
    341. Zemanek M. and R. Frecer.1990. The influence of high temperatures on saccharose accumulation in the grain of winter wheat genotypes. Rostlinna Vyroba 36:965-976.
    342. Zhang J.-H., Huang W.-D., Liu Y.-P., Pan Q.-H.2005. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J. Integr. Plant Biol.,47:959-970.
    343. Zhang, Z.S., R.Q. Li, and J.B. Wang.2001. Effects of oxalate treatment on the membrane permeability and calcium distribution. J. Exp. Bot.,55:485-495.
    344. Ziska L.H.& Bunce J.A.1993. Inhibition of whole-plant respiration by elevated CO2 as modified by growth temperature. Physiologia Plantarum 105,74-80.
    345. Ziska L.H., Namuco O., Moya T.& Quilang J.1997. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal 89:45-53.
    346. Ziska LH, Bunce JA.1997.Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth Res 54:199-207.
    347. Ziska LW, Sicher RC, Bunce JA.1999.The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. Physiologia Plantarum 105,74-80.
    348. Zobayed, S.M.A., F. Afreen, and T. Kozai.2005. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in st. John's wort. Plant Physiol. Biochem.43:977-984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700