连铸无氟结晶器保护渣的熔融及流变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护渣对于保证连铸顺行和提高铸坯表面质量扮演着十分重要的角色。传统保护渣中均加入了氟化物如萤石、冰晶石等,在浇注温度下会挥发出氟化物,造成空气和二冷水的污染,并加剧铸机腐蚀和水口侵蚀。随着全球对环保问题的重视和绿色冶金浪潮的出现,要求研制环保型的无氟连铸保护渣。
     本文以CaO-SiO_2-TiO_2渣系为基础研制新型的无氟连铸保护渣。首先采用正交设计和单因素设计方法,研究了熔剂、二元碱度和二氧化钛含量对无氟保护渣熔融特性和粘度特性的影响规律;通过矿相观察研究了保护渣中炭质材料与TiO_2的相互作用,并研究了炭质材料对熔化速度的影响规律;最后研究了无氟保护渣对Al_2O_3-C质水口的侵蚀作用及吸收夹杂的能力。为制定基于含钛高炉渣的无氟保护渣配制原则奠定了基础。本论文研究得出了以下主要结论:
     ①在含钛无氟保护渣中,熔剂降低熔点的作用从强到弱的顺序为:
     Li_2O>B_2O_3>MgO>MnO>Na2O,增加TiO_2含量和提高碱度会使熔点升高;熔剂降低粘度的作用从强到弱的顺序为:Li_2O >B_2O_3>Na2O>MgO>MnO,提高碱度也可显著降低粘度,TiO_2对粘度的影响呈先降后升趋势,TiO_2为6%时,粘度值最小;Na2O、Li_2O、B_2O_3可以降低使表面张力,TiO_2、MnO、MgO、CaO含量增加则使表面张力增大;Li_2O、MnO、B_2O_3使转折温度降低,加入MgO和提高碱度则都使转折温度升高,Na2O使转折温度先升后降,而TiO_2则使转折温度先降后升。
     ②炭质材料在无氟保护渣中控制熔化速度的作用与在含氟保护渣中类似。炭质材料控速效果从强到弱依次为:超细石墨(500目)>300目超细石墨(300目)>半补强、中超炭黑和增碳剂>土状石墨。
     ③连铸条件下由于动力学条件很弱,在含钛保护渣熔渣中不易生成高熔点物质TiC,而导致保护渣性能恶化;无氟渣主要矿相为钙钛矿(CaTiO3)、黄长石、硅灰石等。
     ④无氟保护渣对水口有较强的黏附作用,对Al_2O_3-C质水口的蚀损较含氟保护渣小;含钛无氟熔渣吸收Al_2O_3、TiO_2夹杂后熔点和粘度均有不同程度升高,且粘度热稳定性变差,吸收夹杂后稳定性较含氟熔渣差。
Mold fluxes play a key role during the continuous casting process. The current used mold fluxes generally contain fluorine bearing materials such as fluorite and cryolite etc, which can volatilize at operational temperatures, polluting both the plant air and cooling water. Airborne fluoride could potentially be a health and safety issue. Waterborne fluoride forms hydrofluoric acid (HF), which can cause plant corrosion. Developing and using fluoride-free (F-free) mold powders is of importance to the environmental protection.
     In this paper, fluoride-free mold fluxes are developed basing on CaO-SiO2-TiO2 slag system. The relationship between the melting and viscosity properties of F-free mold fluxes and fusing reagents, binary basicity and TiO2 content is investigated. Effect between TiO2 and carbon materials in F-free mold fluxes is researched by studying the crystalline phase. Experimental research on the relationship between carbon materials and melting rate is also carried out. At last, the absorptive rate of the F-free mold powders on Al2O3 and the properties stability after absorbing inclusions are measured by rotating cylinder method. All the studies provide a basal direction for producing F-free and titanium-bearing mold fluxes. The experimental result indicates that:
     (1) In F-free and titanium-bearing mold fluxes, the order of the effect on lowering melting point are Li2O > B2O3 >MgO> MnO>Na2O. The increase of TiO2 content and CaO/SiO2 ratio will heighten the melting point. The order of the effect on lowering viscosity are Li2O>B2O3>Na2O>MgO>MnO. The viscosity will reduce rapidity by increasing CaO/SiO2 ratio. When the content of titanium is 6% in mass, the viscosity shows the minimum. Na2O, Li2O and B2O3 can reduce the surface tension, while TiO2, MnO, MgO and CaO will enhance the surface tension. Li2O, MnO and B2O3 can reduce the break temperature. The increase of MgO content and CaO/SiO2 ratio will heighten the break temperature. The effect of Na2O and TiO2 on the break temperature are also obtaind.
     (2) The effect of the carbon materials on melting rate in F-free mold fluxes are similar to which in traditional mold fluxes. The order of ability to lower melting speed is: fine graphite (500 mu)>fine graphite (300 mu) >intermediate super carbon black, semi-reinforcing carbon black and carburetant >graphite.
     (3) Due to feeblish dynamic conditions during CC process, it is very difficult to
引文
[1] K. C. Mills. The Making, Shaping, and Treating of Steel.11# Edition Casting Volume, Chapter 8, Mold Powders for Continuous Casting, The AISE Steel Foundation, Pittsburgh, PA, 2003
    [2] 卢盛意. 连铸坯质量(第 2 版). 冶金工业出版社.2000. 194-196
    [3] R. J. Phillips and V. Lambert. Proc. 3rd Euro. Conf. Cont. Casting (Madrid: Oct. 1998), 270
    [4] K. C. Mills. “A review of ECSC-funded research on mold powders,” EUR 13177 ECSC (Luxembourg: 1991)
    [5] K. C. Mills, A. B. Fox, Z. Li, et al. Performance and properties of mould fluxes [J]. Iron-making and Steel-making, 2005, 32 (1): 26-33
    [6] C. A. Pinheiro. Mold Flux for CC of Steel. Iron and Steehnaker,1996,23(3) : 8
    [7] T. Chikano, K. Ichikawa and O. Nomura. Shinagawa Tech. Report, 31 (1988): 75-84
    [8] R. Bommaraju. Proc. Steelmaking Conf., 74 (1991): 131-146
    [9] Lee I. R. Development of Mold Powder for High Speed Continuous Casting Conference on Continuous Casting of Steel in Developing Countries. Beijing: 1993: 832-841
    [10] Neumann F. Mold Fluxes in High speed thin slab casting. 1996 Steelmaking Conference Proceedings: 249
    [11] 李家瑞 主编. 工业企业环境保护. 北京: 冶金工业出版社. 1992
    [12] 茅洪祥, 胡汉涛, 马国军. 连铸保护渣对环境的氟污染及其对策[J]. 炼钢. 1999.15(3): 42-46
    [13] 韩文殿, 仇圣桃等. 无氟结晶器保护渣的发展. 钢铁研究. 2003.131 (2): 53-56
    [14] P.S.Kharlashin et al. Investigtion of viscosity and fusibility properties in order to optimize compositions of slag at OAO MK Azovetal. 1999(4):34-37
    [15] H. Heimbach et al. Release of fluorine compounds from casting slags[J]. Stahl und Eisen. 1997.117(12): 105–110
    [16] H. Abratis et al. Use of different mould powders for the continuous casting of blooms and billets[J]. Stahl und Eisen, 1996. 116 (4): 178
    [17] Soo-Yong Choi, Dong-Han Lee, et al. Properties of F-free glass system as a mold flux: viscosity, thermal conductivity and crystallization behavior[J]. Journal of Non-Crystalline Solids, 2002. 345 (3): 157-160
    [18] A. B. fox, K. C. Mills et al. Development of Fluoride-Free Fluxes for Billet Casting [J]. ISIJ International. (2005) 45 (7): 1051-1058
    [19] 王新月, 黄虹, 金山同. 连铸无氟保护渣的研究[A]. 李永东. 炼钢辅助材料应用技术[C]. 北京: 冶金工业出版社, 2003. 132-135
    [20] 朱立光, 唐国章, 万爱珍, 等. 高速连铸保护渣粘度特性的研究[J]. 钢铁, 2000, 35 (11): 23-25
    [21] 万爱珍, 朱立光, 王硕明. 连铸保护渣粘度特性及机理研究[J]. 炼钢, 2000, 16 (2): 23-25
    [22] 张传兴. 连铸用氟保护渣的研究[J]. 耐火材料. 1998.32(2): 121-122
    [23] 李桂荣, 王宏明等.含 B2O3 无氟连铸保护渣物理性能的研究[J]. 特殊钢. 2005.26(3):12-14
    [24] 文光华, 唐萍. 无氟连铸保护渣研究及试验(研究报告),重庆大学,2002.12
    [25] 潭若斌. 含钛高炉渣的生产和利用[J] .钒钛.1994.(2-3):125
    [26] 刘承军, 朱英雄等. 高速连铸保护渣的粘性特征[J]. 钢铁研究. 2000. (5):13-18
    [27] 刘承军, 朱英雄, 姜茂发, 王云盛. 连铸保护渣的熔化温度、凝固温度和结晶温度研究[J]. 炼钢. 2001.17(1): 45-47
    [28] 李桂军,杜德信, 迟景灏. Li2O 在保护渣中的作用[J].钢铁钒钛. 1996.17(4): 16-17
    [29] 唐萍. 薄板坯连铸保护渣的研制.重庆大学硕士论文. 1993
    [30] 朱立光, 万爱珍, 王硕明. 高速连铸保护渣熔化特性的实验研究[J]. 河北理工学院学报. 2000. 22 (1):13-18
    [31] 崔传孟, 徐秀光, 张显鹏, 王魁汉, 韩维儒. B2O3-MgO-SiO2-Al2O3-CaO 系渣组成对熔体物性的影响[J]. 金属学报.1996.32 (6):638
    [32] 马田一 等. 连铸保护渣消耗量におよぼす性状の影响[J]. 铁と钢. 1983. (12):319
    [33] Lee I R. Development of Mould Powder for High Speed Continuous Casting[A]. Conference on Continuous Casting of Steel and Developing Countries[C]. Beijing. 1994
    [34] 曲彦平, 邵桂春等. 含 MnO 高炉型钛渣粘度的研究.沈阳工业大学学报[J]. 1997.19(1): 78-79
    [35] 迟景灏, 甘永年. 连铸保护渣.东北大学出版社.1993.(12)
    [36] 张贺林, 朱果灵. 薄板坯连铸用保护渣[J]. 钢铁. 1995.30(2):23-27
    [37] 章 耿, 刘承军. 高拉速连铸保护渣的理化性能研究[J]. 炼钢. 2002.18(3) :35-38
    [38] 刘承军, 姜茂发. CaO-SiO2-Na2O-CaF2-Al2O3-MgO 渣系的粘度和结晶温度[J]. 东北大学学报(自然科学版).2002.23(7):656-659
    [39] 刘承军 等. CaO-SiO2-Na2O-CaF2-Al2O3-MgO 保护渣系的 Al2O3 吸收速率和粘度[J]. 炼钢.2001.17(3):42-46
    [40] F. SHAHBAZIAN, Du SICHEN and S. SEETHARAMAN. The effect of addition of Al2O3 on the viscosity of CaO-“FeO”-SiO2-CaF2 slags. ISIJ International, Vol. 42 (2002), No. 2, pp. 155-162
    [41] WE1 En-fa, YANG Yin-dong, et al. Effect of Carbon Properties on Melting Behavior of Mold Fluxes for Continuous Casting of Steels. Journal of iron and steel research, International[J]. 2006. 13(2): 22-26
    [42] S. Ogibayashi, S. Yamaguchi, K. Mukai, T. Takahashi and T.Mimura: Nippon Steel Tech. Rep., No. 34, (1987), 1
    [43] R. Bommaraju: Proc. 74th Steelmaking Conf. ISS, Warrendale, PA, (1991), 131
    [44] 德国钢铁工程师协会 编 王俭等 译. 渣图集.北京.冶金工业出版社.1989
    [45] 李玉海, 娄太平, 隋智通. 钢渣对含钛高炉渣粘度及钙钛矿结晶行为的影响[J]. 沈阳工业学院学报.2002.l(21): 6-9
    [46] 贺道中. 高炉高钛渣冶金物化性能的研究[J]. 湖南冶金 1994(5): 3-17
    [47] 白晨光,文光远等. 高钛型高炉渣表面粘度的研究[J] .重庆大学学报(自然科学版). 1995.03: 80-84
    [48] 乔瑞庆, 杜鹤桂. TiO2 对含氟熔渣粘度和熔化性温度的影响[J]. 钢铁研究学报.1998.10(4): 3-4
    [49] 杜鹤桂, 徐国涛, 孙希文,刁日升. 钒钛高炉渣对炉衬材料的侵蚀研究[J]. 钢铁. 2003.38(01): 55-58
    [50] 傅念新, 张勇维, 隋智通. 化学成分对高钛高炉渣钙钛矿相析出行为的影响[J]. 矿冶工程. 1997. 04:36-39
    [51] T. Mukongol, P. C. Pistorius, A. M. Garbers-Craig. Viscosity effect of titanium pickup by mould fluxes for stainless steel[J]. Iron-making and Steelmaking. 2004 .31 (2): 135-143
    [52] 朱伟勇, 傅连魁. 冶金工程试验统计[M]. 北京:冶金工业出版社, 1991
    [53] 黄希祜. 钢铁冶金原理(修订版). 北京. 冶金工业出版社.1989: 128-129
    [54] S. Sridhar, K. C. Mills, et al. Break temperatures of mould fluxes and their relevance to continuous casting [J]. Iron-making and Steelmaking 2000 Vol. 27 No. 3: 238-241
    [55] 谢 兵. 连铸结晶器保护渣相关基础理论的研究及其应用实践. 重庆大学博士论文.2004. 79-80
    [56] 张贺林. 高速连铸用保护渣[J].钢铁研究学报.1993.(2):17-23
    [57] 胡汉涛. 高速连铸结晶器保护渣的设计.(硕士学位论文).武汉:武汉科技大学. 2000
    [58] S. Sridhar, K.C. Mills, V. Ludlow and S.T. Mallband. Proc.3rd Europe. Conf. Cont. Casting (Madrid: Oct. 1988), 807–816
    [59] K. C. Mills, S. Sridhar, S. T. Mallaband and A. Normanton. Proc. of Brimacombe Conference Vancouver, B.C.: Sept. 2000
    [60] K.C. Mills. “A review of ECSC-funded research on mold powders,” EUR 13177 ECSC (Luxembourg:1991)
    [61] K. Tsutsumi et al. Tetsu-to-Hagané.84 (1998): 617
    [62] 刁日升. 含 TiO2 炉渣表面张力测定及其与离子团结构的关系[J]. 金属学报. 1995. 31(6): 249
    [63] Lee I. R. “Optimization Technology of Mold Powder According to Casting Conditions”. 1988. Steelmaking Conference Proceeding. 1751
    [64] T Emi, H Nakato, Y Iida, et al. Influence of Physical and Chemical Properties of Mold Powders on the Solidification and Occurrence of Surface Defects of Strand Cast Slabs [A]. Continuous Casting[C].The Iron &Steel Society of AIME. 1983,1: 135-145
    [65] R. V. Branion. Mold Fluxes for Continuous Casting [J]. Iron and Steelmaker. 1986, 13 (9): 41-50
    [66] T Nakano, M Fuji, K Nagano, et al. Model Analysis of Melting Process of Mold Powder for Continuous Casting of Steel [J]. Nippon Steel Technical Report. 1987, 34: 21-30
    [67] K Koyama, K Nagano, Y Nagano, et al. Design for Chemical and Physical Properties of Continuous Casting Powders [J]. Nippon Steel Technical Report. 1987, 34: 41-47
    [68] H Lindefelt and P Hasselstrom. Characterization of the Functional Properties of Mould Powders for Continuous Casting of Steel [A]. Continuous Casting 4th International Iron and Steel Congress [C]. London: The Metals Society. 1982
    [69] 谢冬生等. 高炉钛渣高温还原变粘规律[J]. 钢铁钒钛. 1985 (6):16-26
    [70] 朱元凯等. 含钛高炉渣泡沫稳定性的研究[J]. 钢铁钒钛. 1983 (1):14-20
    [71] 裴鹤年等. 含钛高炉渣泡沫化机制探讨[J]. 钢铁. 1989 (12):7-12
    [72] 白晨光等. 含钛高炉渣中性条件下的物性研究[J]. 四川冶金.1992 (4):6-13
    [73] 白晨光等. 高钛型高炉渣涨泡性能研究[J]. 四川冶金. 1991. (2):8-12
    [74] 冯可芹, 张丙怀. CaO-SiO2-Al2O3-MgO-TiO2-FeO 渣系熔融还原过程中 TiC 的形成机理[J]. 钢铁钒钛. 1997. 18 (2):1-6
    [75] 黄希祜. 钢铁冶金原理(修订版). 北京. 冶金工业出版社.1989: 176-177
    [76] 万新.高钛型高炉渣中 TiO2 的还原规律[J]. 重庆钢铁高等专科学校学报. 1994. 9(1):1-6
    [77] 刘虎林. 高炉喷煤对渣中 TiO2 过还原的影响探讨[J]. 四川冶金. 2004. (5) : 17-19
    [78] 刁日升. 钒、钛氧化物的还原对高炉渣、铁温度的影响[J]. 钢铁钒钛. 1998.19 (4):10-13
    [79] 高泽平, 苏 旺. 结晶器保护渣对浸入式水口蚀损的影响[J]. 湖南冶金. 2000.03:17-24
    [80] 吴杰,刘振清.结晶器保护渣各渣层碳含量的研究[A].2001 中国钢铁年会论文集:804-805
    [81] T. Nakano. Mold Powder Technology for Continuous Casting of Aluminum-killed Steel. Transactions of the Iron and Steel Institute of Japan.1984. 24(11):950-956
    [82] Ake Bergman. The Formation of Scale during continuous casting of Ti bearing stainless steel Scan. J. Metallurgy. 1983. 12:232-234
    [83] M. Hasegawa. Steelmaking Proceedings. 1982:261-268
    [84] Emi T. Influence of Physical and Chemical Properties of Mold Powders on the Solidification and Occurrence of Surface Defects of Strand Cast Slabs[J]. Continuous Casting, 1983, 1(12):135-145
    [85] Nakano T, Kishi T, Koyama K, et al. Mold Powder Technology for Continuous Casting of Aluminum killed Steel[J]. ISIJ, 1984, 12 (11): 950-956
    [86] 张国栋, 邵雷, 刘海啸, 张玲, 中碳钢连铸保护渣显微结构的研究[J]. 耐火材料. 2004. 38 (6 ): 423-425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700