高速列车车内低频气动噪声预测与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着列车的运行速度不断的提高,列车受到气动作用下的振动愈来愈剧烈,使车内噪声逐渐增加,造成车内旅客的乘坐舒适性大大的降低。本文针对列车车体在气动力作用下(包括名线单车、两车交会、隧道通过等工况)时产生的车内低频噪声进行预测分析,为下一步对车内噪声的控制分析作铺垫。
     本文的主要工作如下:
     1.建立高速列车空气动力学计算模型,利用计算流体力学软件FLUENT,基于大涡模拟法得到了列车在明线上、两车交会以及列车过隧道等工况下车体表面的脉动压力。经研究分析得到:同一工况下,随着列车运行速度的提高,车体表面脉动压力波动幅度增大;在同一运行速度下时,列车在隧道通过时的车体表面脉动压力最大。
     2.建立高速列车中间车车体有限元模型,利用有限元分析软件ANSYS对车体进行结构模态分析,将明线单车、两车交会以及隧道通过等工况得到的脉动压力加载至列车车体上,进行结构的气动瞬态响应分析,得到了列车中间下的振动位移。经分析发现,仅在气动作用下时,列车车顶、车窗等部位的振动位移最大,车底次之,端墙振动最小;随着列车运行速度的提高,列车车体振动愈来愈剧烈;在同运行速度时,隧道通过时的振动位移最大,特别是列车刚进入隧道时刻振动最为剧烈。
     3.建立高速列车乘客室内的声学计算模型。将列乍结构振动位移经过快速FFT变换后,得到车体在频域上的振动位移,以此作为声学计算的边界条件。利用声学软件Virtual.Lab Acoustic基于声学直接边界元法对在不同工况下的车内噪声分布进行了详细分析。经研究表明:车内低频气动噪声随着列车运行速度的二次方增长;距车底1.6m高的观测平面声压比距车底1.2m高处的观测平面的声压值要大;在同一运行速度下列车过隧道时车内声压值最大,两车交会次之,明线单车运行最小
     4.基于声学传递向量法对车体进行板块贡献量分析,得到车顶、车底和车窗对车内声压的贡献量最大,端墙的贡献量最小。基于声压板块贡献量分析对上述贡献量较大的板块定义吸声属性以及提高车体刚度,可以有效地降低车内噪声,提高了车内旅客乘坐舒适度
With the speed of the train increasing continuously, the train's vibration is more and more intense under the aerodynamic loads, the interior noise of the high-speed train increasing gradually, which leads to reducing the comfort of passengers greatly. This article will predict and analysis the interior low frequency aerodynamic noise(including the ground, the intersection of the two high-speed trains, passing through the tunnel etc.) of high-speed train, for further control of interior noise analysis for bedding.
     The main content of studying includes the following aspects in this paper:
     1. The aerodynamic model of the high-speed train was built. With the computational software FLUENT, The fluctuation pressures of the train's surface under the ground, the intersection of the two high-speed trains and passing through the tunnel were obtained by using the LES. The result shows that under the same conditions, as the speed of the train increasing, the fluctuation pressure of the middle train's surface is larger. And when the speeds of high-speed train are same, the fluctuation pressures of the middle train's surface is the largest as passing through tunnel.
     2. The structure finite element model of the middle of the high-speed train was built. With the finite analysis software ANSYS, which was conducted modal analysis, and the vibration displacements under the ground, the intersection of the two high-speed trains and passing through the tunnel are obtained through the transient analysis. The result shows that the vibration displacements of the roof, the windows are largest, the floor is followed by and the end wall is smallest under only the aerodynamic loads. With the speed of the high-speed train improving, the train's vibration is more and more intense. And when the speeds of high-speed train are same under all condtions. the vibration displacement of the train passing through tunnel is largest, especially at the time of the train entering the tunnel.
     3. The acoustic model of the high-speed passenger cabin was built. With the acoustic software Virtual.Lab Acoustic, the distribution of the interior noise under the different conditions were analysised in detail by using the direct boundary element method. The result shows that:interior low frequency aerodynamic noise increases with the speed of the square. The sound pressure of observation plane from the bottom of the train height of1.2m is larger than the height of1.6m. And when the speeds of high-speed train are same under all condtions, the sound pressure of the train passing through tunnel is largest, the intersection of the two high-speed trains is followed by, the sound pressure of the train which run on the ground is smallest.
     4. Based on the acoustic transfer vector method, the contribution of the train plate was analysised. The result shows that the contributions of the roof, the floor and the windows are largest, and the end wall is smallest. Based on the above-mentioned analysis of the contribution of the plates of which are some larger, and define the sound absorption properties and increase the train body stiffness, which can be effective in reducing interior noise, and improving the comfort of the passengers.
引文
[1]董锡明.现代高速列车技术.北京:中国铁道出版社,2006.
    [2]陈建.我国高速铁路技术体系发展趋势展望.铁路与公路设计.2012,32(3):79-81.
    [3]周长江.高速铁路发展概况及展望.科技交流.2005(2):38-42.
    [4]吴礼本,王其利.国外铁路高速列车.北京:中国铁道出版社,1994.
    [5]顿小红.从世界高速铁路发展看我国高速铁路建设.现代商贸工业.2007,19(6):22-23.
    [6]董志升,佟立本.世界高速铁路的发展历程.铁道运输与经济.1995(12):23-24.
    [7]钱立新.世界高速铁路的发展水平和中国高速铁路的技术进展.铁路采购与物流.2009,9:19-21.
    [8]何华武.快速发展的中国高速铁路.中国铁路.2006,7:23-31.
    [9]王顺洪.中国高速铁路发展及其经济影响分析.西南交通大学学报.2010,11(5):65-69.
    [10]沈志云.高速列车的动态环境及其技术的根本特点.铁道学报.2006,28(4):1-5.
    [11]范蓉平,孙旭,孟光等.高速列车车内噪声特性研究.振动工程学报.2004,17(增刊):1097-1100.
    [12]瞿潮庆,安兆亮.低频噪声的社会影响.上海计量测试.2011(1):47-48.
    [13]陈绍元.低频噪声舒适度研究现状.建材世界.2009,30(2):76-83.
    [14]孙艳,焦风雷,周国柱等.低频噪声主观感知与频谱特征关系研究.声学技术.2009,28(4):512-517.
    [15]刘良辉.对低频噪声控制的思考和研究.科技经济市场.2008(5):30-31.
    [16]王世强.低频噪声对老年人健康的影响.黑龙江科技信息.2007(1):189-189.
    [17]赵增饮.低频噪声:健康的隐形杀手.农村青少年科学研究.2012(3):39-39.
    [18]K.Kikuchi, M.Lida, T.Takasaki, ect. Field Measurement of Wayside Low-Frequency Noise Emitted from Tunnel Portals and Trains of High-Speed Railway. Vibration & Active Control.2005,24(4):219-231.
    [19]H.Takami, K.Kikuchi. Experimental Investigation of Low-frequency Wayside Noise from High-speed Train. Quarterly Report of RTRI.2010,51(1):23-28.
    [20]U.J.Kuraze. Tools for Measure, Predicting and Reduce the Enviromental Impact from Railway Noise and Vibration. Journal of Sound and Vibration.1996,196(1):237-251.
    [21]V.Mohanan, Omkar Sharma, S.P.Singal.ect. A Noise and Vibration Survey in an Underground Railway System. Apllied Acoustics.1989,28(4):263-275.
    [22]张浩,林建辉,高品贤等.高速铁路振动及噪声测试技术.成都:西南交通大学出版社,2010.
    [23]刘岩,张晓排,黄彬等.铁路客车车内噪声分布规律研究.噪声与振动控制.2007(1):74-76.
    [24]张晓排,刘岩.我国既有线软卧空调客车车内噪声测试及结果分析.大连铁道学院学报.2003,14(2):40-43.
    [25]张雷,李国爱,王立航等.高速动车组车内噪声分布及其频潜特性.铁道车辆.2010,48(10):5-8.
    [26]张伟,陈光雄,肖新标等.高速列车车内噪声声品质客观评价分析.铁道学报.2011.33(2):13-19.
    [27]张曙光.350Km/h高速列车噪声机理、声源识别及控制.中国铁道科学.2009,30(1): 86-90.
    [28]陈伟.轨道客车室内声学特性研究.大连交通大学硕士论文,2009.
    [29]N.Atalla, R.J.Bernhard. Review of Numerical Solutions for Low-Frequency Structural-Acoustic Problems.1994,43(3):271-294.
    [30]D.K.H.Chua, C.G.Koh, K.W.Lo, ect. Performance of Urban Rail Transit System: Vbration and Noise Study. Journal of Performance of Constructed Facilities.1997, 11(2):67-75.
    [31]F.Letourneaux, S.Guerrand, F.Possion.ect. Low-Frequency Acoustic Transmission of High-Speed Trains:Simplified Vibr-Ocoustic Model. Journal of Sound and Vibration. 2000,231(3):847-851.
    [32]S.Dhandole, S.V.Modak. A Constrained Optimization Based Method for Acoustic Finite Element Model Updating of Cavities Using Pressure Response. Applied Mathematical Modelling.2012,36(1):399-413.
    [33]T.Sassa, T.Sato, S,Yatsui, ect. Numerical Analysis of Aerodynamic Noise Radiation from a High-speed Train Surface. Journal of Sound and Vibration.2001,247(3): 407-416.
    [34]刘加利.高速列乍气动噪声的理论研究与数值模拟.西南交通大学硕士论文,2009.
    [35]刘加利,张继业,张卫华等.高速列车车身表面气动噪声源研究.铁道车辆.2010,48(5):1-5.
    [36]刘加利,张继业,张卫华等.高速列车车内中高频气动噪声计算方法.交通运输工程学报.2011.11(3):55-60.
    [37]张磊.高速列车室内低频噪声的预测与控制.大连交通大学硕士论文,2008.
    [38]付亚兰.铁路客车结构-声场耦合系统噪声预测.大连交通大学硕十论文,2008.
    [39]肖友刚,田红旗,张洪等.高速列车司机室内气动噪声预测.交通运输工程学报.2008.8(3):10-14.
    [40]刘全刚.高速磁浮车的车内噪声控制计算研究.上海交通大学硕士论文.2008.
    [41]徐文灿,胡俊.计算流体力学.北京:北京理工大学出版社,2011.
    [42]龙天渝,苏亚欣,向文英等.计算流体力学.重庆:重庆大学出版社,2007.
    [43]林建忠,阢晓东,陈邦国等.流体力学.北京:清华大学出版社,2005.
    [44]田红旗.列车空气动力学.北京:中国铁道出版社.2007.
    [45]王承尧,王正华,杨晓辉等.计算流体力学及其并行算法.长沙:国防科技大学出版社,2000.
    [46]庄礼贤,尹协远,马晖扬等.流体力学.合肥:中国科学技术大学出版社,2009.
    [47]Ferziger J.H. High-level simulation of turbulent flows. Computation methods forturbulent flows, transonic and viscous flows. Wshington DC:hemisphere,1983: 93-182.
    [48]Orszag S.A. Numerical simulation of turbulent flows. In:Frost W, Mould T.H., eds. Handbook of turbulence. Plenum Press,1997:281-313.
    [49]张兆顺.湍流.北京:国防工业出版社,2002.
    [50]是勋刚.湍流.天津:天津大学出版社,1994.
    [51]韩占忠FLUENT流体工程仿真计算实例与分析.北京:北京理工大学出版社,2009.
    [52]Zienkiewicz O.C., Taylor R.L., Ithiarasu P.N. The Finite Element Method for Fluid Dynamics. Sixth edition. Beijing World Publishing Corporation,2009.
    [53]李人宪.有限体积法基础.北京:国防工业出版社,2005.
    [54]浦广益.ANSYS Workbench 12基础教程与实例详解.北京:中国水利水电出版社,2010.
    [55]段进,倪栋,王国业等.ANSYS 10.0结构分析从入门到精通.北京:兵器工业出版社,2006.
    [56]马大猷.现代声学理论基础.北京:科学出版社,2004.
    [57]雷晓燕,圣小珍.铁路交通噪声与振动.北京:科学出版社,2004.
    [58]李增刚,詹福良.Virtual.Lab Acoustic声学仿真计算高级应用实例.北京:国防工业出版社,2010.
    [59]焦大化,钱德生.铁路环境噪声控制.北京:中国铁道出版社,1990.
    [60]朱哲民,龚秀芬,杜功焕等.声学基础.南京:南京大学出版社,2001.
    [61]冯志鹏.高速列车气动性能外形设计.西南交通大学硕士论文,2011.
    [62]赵迎辉.高速交会列车的气动性能及车辆动力学特性研究.西南交通大学硕士论文,2012.
    [63]章磊.高速列车隧道通过气动性能研究.西南交通大学硕士论文,2012.
    [64]郝鲁波.客车模态计算与试验研究.大连理工大学硕士论文,2005.
    [65]戴焕元.机车车辆车体颤振机理分析及解决方案.内燃机车.2008(7):16-22.
    [66]Talotte C. Aerodynamic Noise:A Critical Survey. Journal of Sound and Vibration,2000, 231(3):549-562.
    [67]靳晓雄,张立军.汽车噪声的预测与控制.上海:同济大学出版社,2004
    [68]Harry A.Schenck. Improved Integral Formulation for Acoustic Radiatian Problems. The Journal of the Acoustical Society of America.1968,44(1):41-58.
    [69]A.D Pierce. Variational Formulations in Acoustic Radiation and Scattering. Physical Acoustics.1993,22:195-371.
    [70]J.P.Coyette, K.P.Fyfe. Solution of elasto-acoustic problems using a variational finite/boundary element technique. Proc.of Winter Annual Meeting of ASME, San Francisco,1989:15-25.
    [71]W.Wang,N.Atalla.A numerical algorithm for double surface integrals over quadrilaterals with 1/r singularly. Communication in Numerical Methods in Engineering.1997(11):885-890.
    [72]Goldstein M.V. Unified approach to aerodynamic sound generation in boundaries. Journal of the Acoustical Society of America.1974,56(2):497-509.
    [73]王孚懋,王建春.噪声测量中1/3倍频程与倍频程频谱的关系与计算.噪声与振动控制.1996(3):39-42.
    [74]赵文春.提速客车车体轻量化研究.大连交通大学硕士论文,2007.
    [75]任启麟.提高高速铁路客车铝合金车体结构刚度的途径.大连铁道学院学报.1994,15(2):37-42.
    [76]马大猷.噪声与振动控制工程手册.北京:机械工业出版社,2002.
    [77]魏隽.高速铁路隧道噪声原理及控制.山西建筑.2010,36(22):314-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700