减振器实物在环系统开发及其应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足车辆操纵稳定性、安全性和乘坐舒适性提升的需求,悬架减振部件的结构和功能越趋复杂化、多样化。为了进一步加快新型减振器,特别是阻尼可调减振器的研发步伐,客观上需要新的技术手段来分析研究新型减振器的实际阻尼特性,并在此基础上快速实现阻尼特性与整车性能的匹配以及半主动悬架系统控制策略的制定。
     围绕上述需求,本文构建了减振器实物在环系统(Damper-in-the-Loop, DIL),并对该系统的关键技术进行了深入的理论分析和试验研究。另外,针对普通双筒减振器,位移敏感减振器和阻尼可调减振器,文中还对所构建的减振器实物在环系统开展了应用技术研究。概括起来,本文完成了如下几个方面的研究工作:
     首先,应用xPC-Target对DIL试验系统的实时运行平台进行了构建,在该平台上开发了车辆实时动力学模型并完成了DIL试验系统数值子系统与实物子系统的实时通信。在对液压伺服试验台伺服作动器、伺服阀、伺服控制器等各个组成单元以及测试样件的动力学特性进行分析研究的基础上,完成了减振器伺服试验台及测试样件耦合动力学模型的构建。将车辆以70km/h的速度行驶于B级随机路面时的悬架动行程作为试验台的激励信号,在试验关注的频率范围内对减振器伺服试验台及测试样件耦合动力学系统(下文简称为耦合动力学系统)进行了参数识别和模型验证,并在此基础上分析了各个物理特性参数对耦合动力学系统频率响应特性及稳定性的影响。
     其次,文中建立了考虑阻尼力、弹簧力以及阻尼-弹簧单元力时滞的1/4车辆实物在环系统时滞动力学模型。考虑到耦合动力学系统在研究的频率范围内表现为显著的相位滞后特性,并且在低频段,耦合动力学系统可简化为纯时滞环节,文中使用Páde近似方法对上述时滞动力学系统进行了求解。随后,还就时滞对减振器实物在环系统、弹簧实物在环系统以及弹簧-减振器单元实物在环系统的动力学特性、稳定性的影响进行了分析并对上述时滞动力学系统的临界稳定滞后时间进行了解算。最后,应用能量耗散理论就滞后时间对上述实物在环系统稳定性的影响机理进行了理论分析。
     然后,由于耦合动力学系统对DIL试验系统的位移跟踪性能及稳定性具有非常重要的影响,且考虑到耦合动力学系统在低频段主要表现为固定时滞的动力学特性,文中首先对基于函数外插的非时变跟踪校正控制方法进行了研究,并就该控制方法对耦合动力学系统在低频段的开环及闭环跟踪校正效果进行了仿真分析。基于滞后时间在线识别算法,文中构建了基于函数外插的时变自适应跟踪校正控制器(EATC),并对该控制器的开环及闭环跟踪校正效果进行了仿真分析。为了进一步改善耦合动力学系统的位移跟踪校正控制效果,对耦合动力学系统在中、高频段的时变时滞及幅值衰减特性进行补偿控制,文中根据耦合动力学系统模型信息设计了基于模型的前馈跟踪校正控制器(MFTC)。为了减小由于模型参数摄动及传感器量测噪声对耦合动力学系统位移跟踪效果的影响,文中应用随机线性最优控制理论,设计了基于模型的前馈-反馈复合跟踪校正控制器(MCTC),并使用遗传算法对随机线性最优反馈跟踪校正控制器的加权矩阵进行了离线优化,在有/无噪声干扰的工况下对MFTC和MCTC控制器的开环和闭环跟踪校正控制效果进行了仿真分析。最后,在不同激励输入下对EATC、MFTC及MCTC控制器的开环和闭环跟踪校正控制效果进行了试验分析和验证。试验表明:MCTC控制器与EATC、MFTC控制器相比,MCTC控制器具有较好的位移跟踪校正性能和抗干扰能力。
     最后,应用MCTC跟踪校正控制器构建了减振器实物在环系统并使用微分-跟踪算法对位移传感器噪声抑制效果和微分解算精度进行了改善。构建了普通双筒减振器实物在环试验系统,对MVP (Multiple Velocity Peak Force Curve, MVP)曲线模型表达的阻尼特性和减振器实际阻尼力特性进行了对比分析并充分验证了DIL试验的有效性。通过减振器阻尼力整体缩放、拉伸阻尼力缩放以及压缩阻尼力缩放DIL试验,分析了减振器阻尼特性对车辆性能的影响。构建了位移敏感减振器实物在环试验系统,对位移敏感减振器的软阻尼特性、硬阻尼特性以及软-硬交替阻尼特性进行了试验研究,并对上述阻尼特性区MVP曲线模型和实际减振器阻尼特性进行了对比分析,通过DIL试验分析了位移敏感减振器工作于不同阻尼特性区时对车辆性能的影响。构建了阻尼可调减振器实物在环系统并使用无扰切换逻辑(Bump-less Transfer Logic)结合MCTC控制器来进一步提高阻尼可调减振器在阻尼力切换时耦合动力学系统的位移跟踪精度。并在此基础上对阻尼可调减振器的动态阻尼特性、阻尼力跟踪特性及车辆半主动控制进行了DIL试验研究。阻尼可调减振器DIL试验除了包含CDC(Continuous DampingControl, CDC)减振器实物外,还包含电磁阀驱动器和半主动控制器硬件,通过DIL试验,本文实现了对电磁阀驱动器性能的优化设计和对阻尼可调减振器参考模型的改进,从而提高了CDC减振器的阻尼力跟踪精度。
     本文主要创新点如下:
     (1)建立了减振器伺服试验台及测试样件耦合动力学模型,揭示了伺服试验台及测试样件各个物理特性参数对耦合动力学系统频率响应特性及稳定性的影响机理。
     (2)建立了DIL系统时滞动力学模型并对该时滞动力学系统的临界稳定滞后时间进行了解算,应用能量耗散理论从本质上阐释了滞后时间对DIL系统稳定性及动力学特性的影响。
     (3)设计了基于函数外插的时变时滞自适应跟踪校正控制器和基于模型的前馈-反馈复合跟踪校正控制器,成功实现了对耦合动力学系统在研究频率范围内相位滞后及幅值衰减特性的补偿控制。
     (4)成功开发了国内首台车辆减振器实物在环试验系统,并应用该试验系统实现了对车辆普通双筒减振器、位移敏感减振器以及阻尼可调减振器阻尼特性的研究。
Adapting to the demands on improving vehicle handling stability, safety and ridecomfort, the structure and function of vehicle damping components are increasingly complexand diverse. To speed up the development of new damping products, especially for dampingadjustable dampers, it is imperative that engineers need new technical means by which thereal damping characteristics of new type dampers can be analyzed, moreover, the matchingexperiment between damping characteristics and vehicle dynamic performance, the controlstrategy for semi-active suspensions can be carried out conveniently.
     According to the demands above, the Damper-in-the-Loop (DIL) system is constructedin this dissertation, theoretical analysis and experimental research of its key technologies arecarried out. To study the damping characteristics of dampers (e.g. double tube damper,displacement sensitive damper and damping adjustable damper) and the influences ofdamping characteristics on vehicle dynamic performance, application technology research ofthe DIL system is also processed in this article. To summarize, the main contributions of thisdissertation are listed as follows:
     Firstly, real time platform of the DIL system is constructed based on xPC-Target, thereal time vehicle dynamic model and real time communication between physical subsystemand numerical subsystem of DIL system are developed on this platform. The dynamiccharacteristics of servo actuator, servo valve, servo controller, etc. of the hydraulic servo testrig and testing specimen are analyzed systematically in this dissertation. A coupled dynamicsystem which takes the interrelation of hydraulic test rig and testing specimen intoconsideration is established. Parameter identification and model validation of this coupleddynamic system are processed using suspension deflation of which the vehicle driving onB-level random road at70km/h as actuating signal. The influences of these parameters onfrequency response characteristics and stability of the coupled dynamic system are alsodiscussed.
     Secondly, in consideration of significant phase delay characteristics of the coupleddynamic system, moreover, the coupled dynamic system can be simplified as a pure transferdelay in low frequency band. Based on analysis mentioned above, a delay dynamic system of quarter car model is built in which a delay damping force, delay spring force and delaydamper-spring force are embedded respectively. The delay dynamic system mentioned issolved by using Páde approximation. The influences of time delay on dynamics, stability andthe critical delay time of the delay dynamic system are also analyzed and solved. Finally, theinfluence mechanisms of time delay on the delay dynamic systems above are studiedtheoretically by using energy dissipation theory.
     Furthermore, because dynamics of the coupled dynamic system has extremelyimportant influences on tracking accuracy and stability of the DIL system, the time-invarianttracking compensator is developed based on extrapolation and the frequency responsecharacteristics in which the coupled system can be simplified as a constant transfer delay.The simulation analysis of this tracking controller is conducted under open loop and closedloop condition in the low frequency band. An extrapolation based adaptive trackingcompensator (EATC) is also developed based on time delay identification online algorithm.The simulation analysis of EATC is also studied under open loop and closed loop conditionto make a compensation of variant time delay. For the purpose of further improving thetracking accuracy of the coupled dynamic system and implement compensation on thevariant time delay and amplitude attenuation in frequency spectrum of interest, model basedfeed-forward tracking compensator (MFTC) is developed by using the information of thecoupled dynamic system, and its tracking accuracy is also validated under open loop andclosed loop condition. In order to reduce the influence of model parameter perturbation andsensor measurement noise on displacement tracking accuracy, model based compoundtracking compensator (MCTC) is developed on the basis of MFTC and stochastic optimalcontrol theory. MCTC in which the weighted matrix of the feedback compensator isoptimized using Genetic Algorithm off-line and MFTC are analyzed under open loop andclosed loop condition with/without noise interference. Finally, compensators developedabove are validated in the experiment by using various command signals, the results ofexperiments demonstrate that MCTC has better capacity of resisting disturbance andtracking ability than EATC and MFTC.
     At last, the DIL system is constructed using MCTC controller, the differentiate-trackingalgorithm is also implemented in the DIL system which can improve the signal quality ofLVDT sensor and the accuracy of differential operation of displacement signal.1) Completing the construction of the DIL system of normal double tube damper, acomparative analysis is processed between MVP (Multi-Velocity Peak force, MVP) dampermodel and the real damping characteristics, and the effectiveness of the DIL system has beenverified. The influences of damping characteristics on vehicle dynamic performance areanalyzed by means of the entire damping force scaling DIL experiment, the stretchingdamping force scaling DIL experiment and the compression damping force scaling DILexperiment.2) Completing construction of the DIL system of displacement sensitive damper,a comparative analysis is carried out between MVP damping characteristics of differentdamping areas (soft damping area, hard damping area and soft-hard damping area) and thereal damping characteristics. The influences of different damping area on vehicle dynamicperformance are analyzed by means of DIL experiment.3) Completing construction of theDIL system of damping adjustable damper using MCTC compensation and bump-lesstransfer logic by which the displacement tracking accuracy has been improved when thedamping force of CDC (Continuous Damping Control) damper is varying during the DILexperiment. This DIL system not only include CDC damper but also the drivers of solenoidvalve and semi-active controller. Dynamic damping, damping force tracking and semi-activecontrol of the CDC damper are studied by means of this DIL experiment. The driver powerand performance have been enhanced from DIL experiment, at the same time, the referenceMVP model of CDC damper also has been revised, which has improved the force trackingaccuracy of CDC damper.
     Major Innovations of the Dissertation:
     (1) The dynamic model coupled with the dynamics of the servo-hydraulic test rig andtest samples is established. The influence mechanism of physical parameters ofservo-hydraulic test rig and experimental specimen on frequency response characteristicsand stability of this coupled dynamic system is revealed.
     (2) The DIL delay dynamic model is constructed and the critical delay time is solved.Moreover, the intrinsic influence of time delay on the dynamical characteristics and stabilityof this DIL system are analyzed based on energy dissipation theory.
     (3) An extrapolation based adaptive tracking compensator (EATC) and model basedcompound tracking compensator (MCTC) are developed, compensation on the variant time delay and amplitude attenuation of the coupled dynamic system in frequency spectrum ofinterest are implemented successfully base on compensators developed above.
     (4) The first DIL experimental system is developed in China, and the dampingcharacteristics of double tube damper, displacement sensitive damper and dampingadjustable damper of vehicle are studied using the DIL system.
引文
[1]郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.
    [2]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [3] THOMAS D.GILLESPIE. Fundamentals of Vehicle Dynamics[M]. USA: SAE International,1992.
    [4] DR.JOHN,C.CIXON. The Shock Absorber Handbook,Second Edition[M]. USA: SAE Internationaland John Wiley&Sons, Ltd.,2007.
    [5]俞德孚.车辆悬架减振器的理论与实践[M].北京:兵器工业出版社,2003.
    [6]吕振华,李世民.筒式液阻减振器动态特性模拟分析的发展[J].清华大学学报(自然科学版),2002,42:1532-1536.
    [7]冯雪梅,刘佐民.汽车液力减振器技术的发展与现状[J].武汉理工大学学报,2003,27(3):340-343.
    [8] BERND HEI ING,METIN ERSOY. Chassis Handbook(Fundamentals,Driving,Dynamics,Components,Mechatronics,Perspectives)[M]. Berlin: SpringerFachmedien,2011.
    [9]刘录秀.萨克斯减振器的发展趋势[J].汽车与配件,2006,7(4):28-32.
    [10] STEFAAN DUYM,RANDY STIENS,KOENRAAD REYBROUCK. Evaluation of shock absorbermodels[J]. Vehicle system Dynamics,1997,27:109-127.
    [11] B.F.SPENCER JR.,S.J.DYKE,M.K.SAIN and J.D.CARLSON. Phenomenological model of amagnetorheological damper[J].Journal of Engineering Mechanics-ASCE,1997,123(2):1-23.
    [12] D.H.WANG,W.H.LIAO. Semiactive controllers for magnetorheological fluid dampers[J]. Journalof intelligent material systems and structures,2005,16:983-993.
    [13]孙胜利.位移相关减振器动力学建模及对车辆性能影响的研究[D].长春:吉林大学,2008.
    [14]郭孔辉,郭耀华.基于整车性能的液压减振器虚拟调校[J].吉林大学学报,2012,42(1):1-6.
    [15] ADRIAN SIMMS,DAVID CROLLA. The influence of damper properties on vehicle dynamicbehaviour[J]. SAE Techical Paper,2002-01-0319.
    [16] STEFAAN W.DUYM,RANDY STIENS,GINO V.BARON,KOENRAAD G.REYBROUCK.Physical modeling of the hysteretic behaviour of automotive shock absorbers[J]. SAE TechicalPaper,970101.
    [17] ALEXANDER LION, SWENJA LOOSE. A thermomechanically coupled model for automobileshock absorbers:Theory,Experiments and vehicle simulations on test tracks[J]. Vehicle SystemDymamics,2002,37(4):241-261.
    [18]汽车减振器行业市场研究报告[R].2007.
    [19]中国自动化网.电液伺服技术的发展[J/OL].2008.http://www.ca800.com/apply/html/2008-1-15/n26590.html
    [20]郭孔辉,郭耀华,杨业海.悬架部件在环实时仿真试验系统,中国,2012-12-5.(专利公开号:CN202582910U).
    [21]刘杰.基于模型的设计及其嵌入式实现[M].北京:北京航空航天大学出版社,2010.
    [22] Mathworks公司,Help Document,2010.
    [23] J LI,F YU,J-W ZHANG,J-Z FENG and H-P ZHAO. The rapid development of a vehicle electroniccontrol system and its application to an antilock braking system based on hardware-in-the-loopsimulation[J].IMechE,2002,216:95-105.
    [24] H-J KIM, HS YANG and Y-P PARK. Robust roll control of a vehicle: experimental study using ahardware-in-the-loop set-up[J]. IMechE,2002,216:1-9.
    [25] BESINGER, F.H., CEBON, D., COLE, D.J. An experimental investigation into the use ofsemi-active dampers on heavy lorries[C].12th IAVSD Symposium on the Dynamics of Vehicles onRoads and on Railway Tracks, Lyon, France,1991.
    [26] OCHNER,.U., HENNECKE,D.REALISIERUNG and ANWENDUNG VON."hardware in theloop" bei der Entwicklung von Feder-/D mpfersystemen[J]. VDI,1992,974:45-67.
    [27] BESINGER F H, CEBON D, COLE D J. Damper models for heavy vehicle ride dynamics [J].Vehicle System Dynamics,1995,24:35~64.
    [28] BESINGER F H, CEBON D, COLE D J. Force control of a semi-active damper [J]. VehicleSystem Dynamics,1995,24:695~723.
    [29] SUNG-HO HWANG,SEUNG-JIN HEO,HONG-SEOK KIM,KYO-IL LEE. Vehicle dynamicanalysis and evaluation of continuously controlled semi-active suspensions usinghardware-in-the-loop simulation [J]. Vehicle System Dynamics,1997,27:423-434.
    [30] K.J.KITCHING,D.CEBON,D.J.COLE. An experimental investigation of preview control [J].Vehicle System Dynamics,1999,32:459~478.
    [31] HYUN-CHUL SOHN,KEUM-SHIK HONG,J.KARL HEDRICK. Semi-active control of themacpherson suspension system:Hardware-in-the-loop simulation [C]. IEEE InternationalConference on Control Applications, A laska,USA,2000.
    [32] K.J.KITCHING,D.J.COLE,D.CEBON. Performance of a semi-active damper for heavy vehicles [J].ASME,2000,122:498~506.
    [33] KEUM-SHIK HONG,HYUN-CHUL SOHN,J.KARL HEDRICK. Modified skyhook control ofsemi-active suspensions: A new model,Gain Scheduling,and hardware-in-the-loop tuning [J].ASME,2002,124:158~167.
    [34] W.SCHIEHLEN,B.HU. Spectral simulation and shock absorber identification [J]. InternationalJournal of Non-Linear Mechanics,2003,38:161~171.
    [35] WERNER EKHARD MISSELHORN. Verification of hardware-in-the-loop as valid testing methodfor suspension development [D]. South Africa: University of Pretoria,2004.
    [36] W.E.MISSELHORN,N.J.THERON,P.S.ELS. Investigation of hardware-in-the-loop for use insuspension development [J]. Vehicle System Dynamics,2006,32:65~81.
    [37] D.C. BATTERBEE,N. D. SIMS. Hardware-in-the-loop simulation of magnetorheological dampersfor vehicle suspension systems [J]. Proc.IMechE,2007,221:265~278.
    [38] SHAWN S. YOU and DAVE FRICKE. Advances of Virtual Testing and Hybrid Simulation inAutomotive Performance and Durability Evaluation [C]. SAE Technical Paper,2011-01-0029,2011.
    [39] DAVE FRICKE,MATTHIAS FROST,DOUG MANN. Development of a Full-VehicleHybrid-Simulation Test using Hybrid System Response Convergence (HSRC)[C]. SAE TechnicalPaper,2012-01-0763,2012.
    [40] M R SARAF, MEDHA S JAMBHALE, PRASHANT R PAWAR, AMEEN SHAIKH and SHIVANIDWIVEDI,FORD BOONE, JUAN GARCIA and TOM STACHEL. Integration of Real and VirtualTools for Suspension Development [C]. SAE Technical Paper,2011-26-0115,2011.
    [41] Four-Corner damper system with mHIL-MTS/Nissan[C/OL].2008International VehicleDynamics,http://www.ukipme.com/vdi_awards/development_tool.html.
    [42]周福霖.工程结构减震控制[M].武汉:地震出版社,1997.
    [43]叶烈平.土木工程科学前沿[M].北京:清华大学出版社,2006.
    [44]吴斌,王倩颖.实时子结构实验的研究进展[J].实验力学,2007,22(6):547-555.
    [45] T.HORIUCHI,M.INOUE,T.KONNO,Y.NAMITA. Real-time hybrid experimental system withactuator delay compensation and its application to a piping system with energy absorber[J].Earthquake Engng Struct.Dyn,1999,28:1121-1141.
    [46] TOSHIHIKO HORIUCHI,MASAHIKO INOUE,TAKAO KONNO. Development of a real-timehybird experimental system using a shaking table[C].12th WCEE,2000.
    [47] A.P.DARBY,A.BLAKEBOROUGH,M.S.WILLIANS. Real-time substructure tests using hydraulicactuator[J].Journal of engineering mechanics,1999,10:1133-1139.
    [48] TOSHIHIKO HORIUCHI,TAKAO KONNO. A new method for compensating actuator delay inreal-time hybird experiments[J].Phil.Trans.R.Soc.Lond,2001,359:1893-1909.
    [49] JUAN E.CARRION,B.F.SPENCER JR. Real-time hybrid testing using model-based delaycompensation[C].4th International Conference on Earthquake Engineering,Taiwan,2006.
    [50] B.M.PHILLIPS,B.F.SPENCER,JR. Feedforward-Feedback tracking control for real-time hybridsimulation[C].6th International Workshop on Advanced Smart Materials and Smart StructuresTechnology,Dalian,2011.
    [51] JUAN E.CARRION. Model-based Strategies for real-time hybridtesting[D].USA,Illinois,University of Illinois at Urbana-Champaign,2003.
    [52] BRIAN M.PHILLIPS,BILLIE F.SPENCER,JR.,F.ASCE. Model-based feedforward-feedbackactuator control for real-time hybrid simulation[J]. Journal of Structural Engineering,2012(3).
    [53] M.ZAPATEIRO,H,R,KARIMI,N.LUO,B.F.SPENCER JR. Real-time hybrid testing of semiactivecontrol strategies for vibration reduction in a structure with MR damper[J].Structural ControlHealth Monitoring,2010,17:427-451.
    [54] J.ZHAO,C.FRENCH,C.SHIELD and T.POSBERGH. Considerations for the development ofreal-time dynamic testing using servo-hydraulic actuation[J].Earthquake Engng Struct.Dyn.2003,32:1773-1794.
    [55] M.I WALLACE,D.J WAGG and S.A NEILD. Multi-actuator substructuer testing with applicationsto earthquake engineering:how do wu assess accuracy?[C].13th World Conference on EarthquakeEngineering,Vancouver,B.c.,Canada,2004.
    [56] M.I WALLACE,J.SIEBER,S.A NEILD,D.J WAGG and B.KRAUSKOPF. Stability analysis ofreal-time dynamic substructuring using delay differential equation models[J].Earthquake EngngStruct.Dyn.,2004:1-15.
    [57] M.I WALLACE,D.J WAGG and S.A NEILD. An adaptive polynomial based forward predictionalgorithm for multi-actuator real-time dynamic substructuring[J]. Proc.R.Soc.A,2005,461:3807-3826.
    [58] M.I.WALLACE,D.J WAGG,S.A.NEILD,P.BUNNISS,N.A.J.LIEVEN,A.J.CREWE.Teatingcoupled rotor blade-lag damper vibration using real-time dynamic substructuring[J].Journal ofSound and Vibration2007,307:737-754.
    [59] JUNG,R.Y.,SHING,P.B. Performance evaluation of a real-time pseudodynamic test system[J].Earthquake Eng.Struct.Dynam.,2006,35(7):789-810.
    [60] JUNG,R.Y.,SHING,P.B.,STAUFFER,E.,and BRADFORD,T. Performance evaluation of a real-timepseudodynamic test system considering nonlinear structural response[J]. EarthquakeEng.Struct.Dynam.,2007,36(17):1785-1809.
    [61] OYA MERCAN. Analysis and Experimental Studies on Large Scale,Real-time PseudodynamicTesting [D]. United States: Lehigh University,2007.
    [62] OYA MERCAN and JAMES M.RICLES. Stability and accuracy analysis of outer loop dynamics inreal-time pseudodynamic testing of SDOF systems [J]. Earthquake Engng Struct.Dyn.2007,36:1523-1543.
    [63] SHAO,X.,REINHORN,A.M.,and SIVASELVAN,M. Real-time dynamic hybird testing usingforce-based substructuring[C].2006ASCE Structures Congress,ASCE,Reston,Va.,2006.
    [64] CHEN CHENG. Development and numerical simulation of hybrid effective force testing method[D]. United States: Lehigh University,2007.
    [65] CHENG CHEN and JAMES M. RICLES, M.ASCE. Development of Direct Integration Algorithmsfor Structural Dynamics Using Discrete Control Theory [J]. Journal of Engineering Mechanics,2008,134(8):676~683.
    [66] CHENG CHEN and JAMES M.RICLES. Stability analysis of SDOF real-time hybrid testingsystems with explicit integration algorithms and actuator delay [J]. Earthquake Engng Struct.Dyn.2008,37:597-613.
    [67] CHENG CHEN and JAMES M.RICLES, M.ASCE. Stability Analysis of Direct IntegrationAlgorithms Applied to Nonlinear Structural Dynamics [J]. Journal of Engineering Mechanics.2008,134:703-711.
    [68] CHENG CHEN, JAMES M.RICLES, THOMAS M.MARULLO and OYA MERCAN. Real-timehybrid testing using the unconditionally stable explicit CR integration algorithm [J]. EarthquakeEngng Struct.Dyn.2008,38:23-44.
    [69] CHENG CHEN and JAMES M. RICLES. Experimental evaluation of an adaptive actuator controlscheme for real-time tests of large-scale magneto-rheological damper under variable current inputs[C]. SMASIS,Oxnard, California, USA,2009.
    [70] CHENG CHEN, JAMES M.RICLES. Analysis of actuator delay compensation methods forreal-time testing [J]. Engineering Structures,2009,31:2643-2655.
    [71] CHENG CHEN and JAMES M.RICLES. Improving the inverse compensation method forreal-time hybrid simulation through a dual compensation scheme [J]. Earthquake Engng Struct.Dyn.2009,38:1237-1255.
    [72] CHENG CHEN and JAMES M. RICLES. Servo-Hydraulic Actuator Control for Real-Time HybridSimulation [C]. American Control Conference St. Louis, MO, USA,2009.
    [73] BONNET,P.A. The development of real-time substructure testing[D].London,University of Oxford,2006.
    [74]李暄,刘季,田石柱.结构拟动力试验力控制实现技术[J].地震工程与工程振动,1997,17(1):49-53.
    [75]田石柱,赵桐.抗震拟动力试验技术研究[J].世界地震工程,2001,17(4):60-66.
    [76]王倩颖.实时子结构试验方法及其应用.[D]哈尔滨:哈尔滨工业大学,2007.
    [77]王倩颖,吴斌,欧进萍.考虑作动器时滞及其补偿的实时子结构试验稳定性分析[J].工程力学,2007,24(2):8-14.
    [78]迟福东,王进廷,金峰.实时偶联动力试验的时滞稳定性分析[J].工程力学,2010,27(9):12-16,54.
    [79]汪强.基于振动台的实时耦联动力试验系统构建及应用[D].北京:清华大学,2010.
    [80]汪强,王进廷,金峰,张楚汉.基于虚拟振动台的实时耦联动力仿真试验[J].地震工程与工程振动,2009,29(6):25-32.
    [81]宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社,2007.
    [82]赵升吨,魏树国,王军.液压伺服控制系统研究现状分析[J].伺服控制,2006,6:16-23.
    [83] FRANKLIN,G.F.,POWELL,J.D.,EMANI-NAEINI,A. Feedback control of dynamicsystems[M].New Jersey: Prentice-Hall,2002.
    [84] HERBERT E.MERRITT. Hydraulic Control System[M]. USA: John Wiley&Sons Inc.,1991.
    [85]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    [86]易孟林,曹树平,刘银水.电液控制技术[M].武汉:华中科技大学出版社,2010.
    [87]李素玲,刘军营.伺服控制与伺服阀的选用[J].液压与气动,2003,9(37-39).
    [88] W.J.THAYER. Transfer fuctions for MOOG servovalves[J]. Moog Technical Bulletin103,1965,1-11.
    [89]胡寿松.自动控制原理[M].北京:科学出版社,2007.
    [90]周建刚.液压伺服系统PID控制器参数的优化[D].无锡:江苏大学,2009.
    [91]刘金琨.先进PID控制MATLAB仿真(第3版)[M].北京:电子工业出版社,2011.
    [92]国家标准.机械振动道路路面谱测量数据报告. GB/T7031-2005.
    [93]国家标准.汽车平顺性试验方法. GB/T4970-2009.
    [94]檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1998,11(3):96-102.
    [95]马明建.数据采集与处理技术[M].西安:西安交通大学出版社,2009.
    [96]薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用(第2版)[M].北京:清华大学出版社,2011.
    [97]王正林,王胜开,陈国顺,王琪. MATLAB/SIMULINK与控制系统仿真(第2版)[M].北京:电子工业出版社,2011.
    [98] K.ENGELBORGHS,T.LUZYANINA,D.ROOSE. Numerical bifurcation analysis of delaydifferential equations using DDE-BIFTOOL[J]. ACM Transactions on Mathematical Software,2002,28(1):1-21.
    [99]邱芳.时滞非线性系统的稳定性及其应用研究[D].无锡:江南大学,2010.
    [100]谢大来.时滞微分方程组解的稳定性[J].中山大学学报,1966,1:31-38.
    [101]蔡维璇.时滞微分方程组解的稳定性问题[J].厦门大学学报,1978,3:1-13.
    [102] AKIRA KOJIMA, TARO TSUCHIYA. Stability anslysis of state-delay systems based on thecharacterization of state-transition operator[C].48th IEEE Conference on Decision and Control and28Chinese Control Conference, Shanghai,2009.
    [103]李旭光.时滞系统稳定性的若干研究[D].上海:上海交通大学,2007.
    [104] GOLUB, G. H. and C. F. VAN LOAN. Matrix Computations[M]. Johns Hopkins University Press,Baltimore,1989.
    [105]薛定宇.反馈控制系统设计与分析-Matlab语言应用[M].北京:清华大学出版社,2000.
    [106]徐涛.数值计算方法[M].长春:吉林科学技术出版社,2002.
    [107]丁丽娟,程杞元.数值计算方法(第二版)[M].北京:北京理工大学出版社,2010.
    [108](美) JOHN H.MATHEWS,KURTIS D.FINK (著),周璐,陈渝,钱方等(译).数值方法(MATLAB版)(第四版)[M].北京:电子工业出版社,2010.
    [109] M. AHMADIZADEH,G.MOSQUEDA,A.M.REINHORN. Compensation of actuator delay anddynamics for real-time hybrid structural simulation[C].4th world conference on structural controland monitoring, San Diego, California,2006.
    [110] P.A.BONNET, M.S.WILLIAMS,A.BLAKEBOROUGH. Compensation of actuator dynamics inreal-time hybrid tests[J]. IMechE,2006,220,Part I:J.Systems and Control Engineering,251-264.
    [111] A.P.DARBY,M.S.WILLIAMS,A.BLAKEBOROUGH. Stability and delay compensation forreal-time substructure testing[J]. Journal of Engineering Mechanics,2002,128(12):1276-1284.
    [112] JUAN E. CARRION,BILLIE,BILLIE F.SPENCER,JR. Model-based Strategies for real-timehybrid testing[R]. NSEL Report Series,2007.
    [113]张嗣瀛,高立群.现代控制理论[M].北京:清华大学出版社,2005.
    [114](美) RICHARD C.DORF,ROBERT H.BISHOP (著),谢卫红,孙志强,官二玲,张纪阳(译).现代控制系统(第十一版)[M].北京:电子工业出版社,2010.
    [115]吕显瑞,黄庆道.最优控制理论基础[M].北京:科学出版社,2008.
    [116]王青,陈宇,张颖昕,侯砚泽.最优控制-理论、方法与应用[M].北京:高等教育出版社,2011.
    [117]黄卫忠,高国琴.基于遗传算法的最优控制加权阵的设计[J].计算机测量与控制,2003,11(10):761-762,772.
    [118]曹洁,周鹏,陈希平.基于遗传算法的LQ控制器的权值优化[J].2001,1:6-8,49.
    [119] STEFAAN W.R.DUYM. Simulation tools,modeling and identification,for an automobile shockabsorber in the context of vehicle dynamics[J]. Vehicle System Dynamics,2000,33:262-285.
    [120] CHOON-TAE LEE,BYUNG-YOUNG MOON. Study of the simulation model of adisplacement-sesitive shock absorber of a vehicle by considering the fluid force[J]. Proc.IMechE,2005,219:965-975.
    [121] M.SHAMS,R.EBRAHIMI,A.RAOUFI,B.J.JAFARI. CFD-FEA analysis of hydraulic shockabsorber valve behavior[J]. International Journal of Automotive Technology,2007,8(5):615-622.
    [122]朱建华,孙秀霞,王春山.采用Simulink实现跟踪-微分器[J].现代电子技术,2002:7:46-48
    [123]韩清京,王伟.非线性跟踪微分器[J].系统科学与数学,1994,14(2):177-183.
    [124] JING LIU. Comparative study of differentiation and integration techniques for feedback controlsystems[D]. Ohio: Cleveland State University,1994.
    [125] STEFAAN DUYM,KOENRAAD REYBROUCK. Physical characterization of nonlinear shockabsorber dynamics[J]. European Journal MECH.ENG,1998,43(4):181-188.
    [126] S DUYM. An alternative force state map for shock absorber[J]. IMechE,1997,211:175-179.
    [127] M.WEIGEL,W.MACK,A.RIEPL. Nonparametric shock absorber modeling based on standard testdata[J]. Vehicle System Dynamics,2002,38(6):415-432.
    [128] MARCO LIBERATI,ALESSANDRO BEGHI,SERGIO MEZZALIRA,STIVI PERON. Grey-boxmodeling of a motorcycle shock absorber[C].43rd IEEE Conference on Decision andControl,Atlantls,Paradise Island,Bahamas,2004.
    [129] VAN KASTEEL R, QIAN LI-XIN, WANG CHENG-GUO, YE GUO-HONG. A new shockabsorber model for use in vehicle dynamics studies [J]. Vehicle System Dynamics,2005,43(9):613-631.
    [130]陈宇东.结构振动分析[M].长春:吉林大学出版社,2008.
    [131] EMANUELE GUGLIELMINO﹒TUDOR SIRETEANU,CHARLES W.STAMMERS﹒GHEORGHE GHITA,MARIUS GIUCLEA. Semi-active Suspension Control(Improved VehicleRide and Road Friendliness)[M]. Springer-Verlag London Limited,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700