用户名: 密码: 验证码:
磁流变阻尼器的动力学模型及其在车辆悬架中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路对我国的经济发展起着重要作用,但随着车辆运行速度的不断提高,车辆的振动不断加剧,这对车辆的行车安全性及乘坐舒适性都产生极其不利的影响。同时随着汽车逐渐成为人们出行中必不可少的交通工具,人们对汽车的NVH (Noise, Vibration, Harshness)特性提出了更高的要求,它直接关系到汽车的乘坐舒适性。悬架是改善车辆行车安全性及乘坐舒适性的关键部件之一。基于磁流变阻尼器的半主动悬架在控制效果上接近主动悬架,并且具有结构简单、能耗小、响应快和失效安全性高等特点,目前已成为车辆振动控制领域的研究热点。但磁流变半主动悬架技术还远未成熟,许多理论与应用问题仍需要进一步研究。为此,本文以降低汽车和高速列车的振动为目标,采用理论分析、数值仿真和实验研究相结合的方法,研究了磁流变阻尼器的动力学模型和半主动控制策略。具体工作包括以下几方面:
     1、磁流变阻尼器的动力学建模。目前考虑激励性质的磁流变阻尼器动力学模型并不多,而考虑滞环非线性且适合于实际控制应用的逆向模型则更少。本文从模型准确性、简单性、适应性和可逆性等实际应用需求出发,提出了电流-激励依赖的扩展的双曲正切模型和简化的双曲正切模型,为设计更加有效的半主动控制器打下基础。
     利用MTS测试系统分别测试了内通道式和旁通道式两种不同结构和尺寸的磁流变阻尼器的动力学特性,分析了控制电流和激励性质对阻尼力-速度特性的影响。在此基础上,提出了电流-激励依赖的扩展的双曲正切模型和简化的双曲正切模型,同时建立了双曲正切模型、现象模型、扩展的非线性滞环双粘性模型和通用Sigmoid滞环模型,采用遗传算法对各模型的参数进行了识别,并从模型精度、复杂度和可逆性等方面对各个模型进行了系统的对比分析。结果表明扩展的双曲正切模型具有最高的模型精度,而简化的双曲正切模型求逆方便。通过解析方法求得了简化的双曲正切模型的逆向模型,同时采用自适应神经网络模糊推理系统(ANFIS)建立了逆向模型,并从建模难易度和模型精度两方面对两种逆向模型进行了对比分析。
     2、汽车悬架半主动控制研究。由于基于磁流变阻尼器的车辆悬架是一个复杂的非线性系统,因此半主动控制器的设计具有较大的挑战性。本文从系统控制器和阻尼器控制器两方面出发,对多种现有的半主动控制器进行研究和改进,并提出了一种LQG-Fuzzy半主动控制器,建立了一个通用的仿真平台和实验平台,对各半主动控制器的控制效果进行仿真和实验评估,为其在汽车悬架中的应用打下理论和实验基础。
     建立了四分之一车辆悬架动力学模型和随机路面不平度输入模型。设计了不需要被控对象模型的On-Off控制器和模糊控制器,采用逆向简化的双曲正切模型,建立了考虑磁流变阻尼器滞环非线性的天棚阻尼和LQG半主动控制器,结合LQG控制和模糊控制,提出了一种LQG-Fuzzy半主动控制器。仿真评估了五种半主动控制器的控制效果,并分析了簧载质量和阻尼器性能的变化对各控制器性能的影响。建立了一套模拟四分之一车辆悬架的试验平台,采用基于MATLAB的快速控制原型开发系统编写了控制算法程序,对五种半主动控制器进行了实验对比研究。仿真和实验结果表明五种半主动控制器都能有效地降低簧载质量加速度和悬架动挠度,本文提出的LQG-Fuzzy半主动控制器具有较高的鲁棒性。
     3、高速列车的鲁棒半主动控制研究。列车速度的不断提高对控制系统的鲁棒性提出了更高的要求,目前已提出的各类控制算法主要集中在经典控制领域,在鲁棒控制和滞环非线性抑制等方面缺乏深入的研究,因此本文将H∞鲁棒控制策略应用到高速列车中,提出了一种H∞-ANFIS鲁棒半主动控制器,为高速列车的半主动控制提供一种新的方法。
     建立了17自由度高速列车横向运动的动力学模型和随机轨道不平顺输入模型。采用H∞鲁棒控制理论计算期望控制力,采用ANFIS技术计算所需的控制电流,提出了一种H∞-ANFIS半主动控制器,同时设计了On-Off控制器和模糊控制器。仿真评估了各半主动控制器的控制效果,并分析了时滞对各控制器性能的影响和磁流变半主动悬架的失效安全性。结果表明相比于被动控制,三种半主动控制都能大幅降低车体的横向振动,其中H∞-ANFIS控制的减振效果最佳,但转向架的振动则会出现一定程度的恶化,轮对的振动则基本不变。随着时滞时间的增加,各个控制算法的减振效果都会降低,并且时滞对H∞-ANFIS控制的影响最大。
     本文以磁流变半主动悬架为研究对象,针对现有研究中的不足,建立了磁流变阻尼器的正向模型和逆向模型,基于此设计了多种半主动控制器,并进行了仿真和实验验证,为磁流变阻尼器在车辆半主动悬架中的应用提供了理论和实验基础。
High-speed railway plays an important role in China's economic development. However, the increase of the train's speed will amplify the train's vibration significantly, which will induce an obvious decrease of the ride stability and ride quality. At the same time, as cars becoming an indispensable meaning of transportation in people's travelling, people have made high demands on the cars' NVH (Noise, Vibration, Harshness) property, which is directly related to the ride comfort of the cars. A suspension is one of the key components in improving the ride comfort and driving safety. Magnetorheological damper-based (MR damper-based) semi-active suspensions have become a hot point in the field of vehicle vibration control, because they possess similar performance with active suspensions and have some attractive characters such as simple structure, low energy consumption, fast response, and high fail-safe. However, the MR semi-active suspension technology is far from mature and some theoretical and practical issues still need to be further studied. In this dissertation, in order to reduce the vibration of cars and high-speed trains, the dynamic models of MR dampers and semi-active control strategies are studied by adopting the methods of theoretical analysis, numerical simulation and experimental test. The main contributions of this dissertation are as follows:
     1. Dynamic modeling of magnetorheological dampers. Currently, only a few dynamic models of MR dampers have considered the influences of the excitation properties and even fewer inverse models which consider the hysteresis nonlinearity and are suitable for the actual application. Thus, to meet the requirements of the actual application including model accuracy, simplicity, adaptability and reversibility, this work builds an excitation-current-dependent forward and inverse dynamic model for MR dampers, respectively. These could provide some bases for the design of effective semi-active controllers.
     The dynamic properties of two kinds of different structure and size of MR dampers, including an inner-pass MR damper and a by-pass MR damper, are tested by using MTS test system. The influences of the force-velocity properties on the control current and the excitation property are analyzed. Based on the test data, an extended hyperbolic tangent function-based model and a simplified hyperbolic tangent function-based model are proposed. Then, a hyperbolic tangent function-based model, a phenomenon model, an extended nonlinear hysteretic biviscous model, and a generalized sigmoid hysteresis model are established. The parameters of all models are identified by using the genetic algorithm (GA). Systematic comparisons of all models are carried out from the aspects of the model accuracy, complexity and reversibility. Results show that the extended hyperbolic tangent function-based model possesses the highest model accuracy, and the simplified hyperbolic tangent function-based model is easy to be reversed. The inverse model of the simplified hyperbolic tangent function-based model is analytically obtained. The adaptive neural-fuzzy inference system (ANFIS) is also adopted to establish the inverse model of MR dampers. Comparisons between the two inverse models are carried out from the aspects of the model accuracy and modeling difficulty.
     2. Researches on the semi-active control of automotive suspensions. As the MR damper-based vehicle suspension is a complex nonlinear system, the design of the semi-active controller is still a challenge. So some existing semi-active controllers are analyzed and improved, and then a LQG-Fuzzy semi-active controller is proposed. A generic simulation platform and experimental platform are established to assess the control effects of the established semi-active controllers. The results could provide theoretical and experimental bases for their application in automotive suspensions.
     A1/4vehicle suspension dynamic model and a road random irregularity model are established. An On-Off controller and a Fuzzy controller are designed, which are not necessary to know the precise model of the controlled objects. By adopting the inverse model of the simplified hyperbolic tangent function-based model, a Skyhook semi-active controller and a LQG semi-active controller are built, in which the hysteresis nonlinearity of MR dampers are considered. Combining with LQG control algorithm and fuzzy control algorithm, a LQG-Fuzzy controller is proposed. The control effects of all five controllers are assessed by simulation. The influences of the control effects on the variation of the sprung mass and the property of MR dampers are also studied. Then, a simulated1/4vehicle suspension experimental platform is established. The programs of all the controllers are compiled by using MATLAB software-based rapid control prototyping system. The experimental comparisons of the five semi-active controllers are carried out. Simulation and experiment results indicate that all the five semi-active controllers can suppress the acceleration of the sprung mass and the deflection of the suspension, and the proposed LQG-Fuzzy semi-active controller possesses relatively high robustness.
     3. Researches on the robust semi-active control of high-speed trains. Because of the increase of the train's speed, the robustness of the control system should be improved. The current control strategies are mainly concentrated in the field of classical control. The in-depth researches about robust control and hysteresis nonlinear suppression are still lack. So the H∞robust control algorithm is applied into high-speed trains in this section, and a H∞-ANFIS robust semi-active controller is proposed. This work provides a new method for the semi-active control of high-speed trains.
     A17-degree-of-freedom (DOF) model for a full-scale railway vehicle is developed and random track irregularities are modeled. By adopting the H∞robust control theory to calculate the expected control force and the ANFIS technology to calculate the required control current, a H∞-ANFIS semi-active controller for the high-speed train's suspension is proposed. Moreover, an On-Off controller and a Fuzzy controller are also designed. The control effects of all three semi-active controllers are evaluated through simulation. The influences of the control effects on the time delay are studied, and the fail-safe of the MR damper-based semi-active suspension system is also analyzed. Results show that all the three semi-active controllers can significantly reduce the lateral vibration of the train's car body, among which the H∞-ANFIS semi-active controller possesses the best control effect. However, the vibration of the bogies could be increased to some extent. The vibration of the wheelsets is almost the same as the passive suspension. With increasing of the delay time, the control effects of all three semi-active controllers reduce, and the time delay has the biggest impact on the H∞-ANFIS semi-active controller.
     This paper is focus on improving the deficiencies in the present magnetorheological semi-active suspension. Some forward models and inverse models of MR dampers are established, and a variety of semi-active controllers are designed. Simulation and experimental researches are carried out to valid these semi-active controllers. These studies can provide some theoretical and experimental bases for the application of MR dampers in the semi-active suspensions of vehicles.
引文
[1]Carlson J D, Catanzarite D M, St Clair K A. Commercial magneto-rheological fluid devices[J]. International Journal of Modern Physics B,1996,10(23-24):2857-2865.
    [2]Rabinow J. The Magnetic fluid clutch[J]. AIEE Transactions,1948,32(4):54-60.
    [3]Carlson J D, Chrzan M J. Magnetorheological fluid dampers:U.S. Patent,5277281[P]. 1994-1-11.
    [4]Carlson D J, Weiss K D. Magnetorheological materials based on alloy particles:U.S. Patent, 5382373[P].1995-1-17.
    [5]http://www.delphiauto.com/
    [6]http://www. basf. com/group/corporate/en/
    [7]http://www.lord.com/
    [8]周云,谭平.磁流变阻尼器控制理论与技术[M].北京:科学出版社,2007.
    [9]Lord Corporation Rheonetic Linear Damper. RD-1001/RD-1004. Product Information Sheet[Z]. Lord Corporation Publish,1997.
    [10]Lindler J E, Dimock G A, Wereley N M. Design of a magnetorheological automotive shock absorber[C]//Proceedings of the Society of Photo-Optical Instrumentation Engineers. SPIE's 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics,2000:426-437.
    [11]http://www.avdl.me.vt.edu/
    [12]Gordaninejad F, Kelso S P. Magneto-rheological fluid shock absorbers for HMMWV[C] //SPIE's 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics,2000:266-273.
    [13]Yu M, Dong X M, Choi S B, et al. Human simulated intelligent control of vehicle suspension system with MR dampers[J]. Journal of Sound and Vibration,2009,319(3):753-767.
    [14]Atray V S, Roschke P N. Design, fabrication, testing, and fuzzy modeling of a large magnetorheological damper for vibration control in a railcar[C]//Rail Conference. Proceedings of the 2003 IEEE/ASME Joint. IEEE,2003:223-229.
    [15]Stanway R, Sproston J L, Stevens N G. Non-linear modelling of an electro-rheological vibration damper[J]. Journal of Electrostatics,1987,20(2):167-184.
    [16]Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics-ASCE,1997,123(3):230-238.
    [17]Gamota D R, Filisko F E. Dynamic mechanical studies of electrorheological materials moderate frequencies[J]. Journal of Rheology,1991,35(3):399-425.
    [18]Stanway R, Sproston J L, El-Wahed A K. Applications of electro-rheological fluids in vibration control:A survey [J]. Smart Materials & Structures,1996,5(4):464-482.
    [19]Wereley N M, Pang L, Kamath G M. Idealized hysteresis modeling of electrorheological and magnetorheological dampers[J]. Journal of Intelligent Material Systems and Structures,1998, 9(8):642-649.
    [20]李志全,杜成斌,于国军,等.磁流变阻尼器阻尼特性试验与改进阻尼模型研究[J].振动与冲击,2009,28(5):124-127.
    [21]Ang W L, Li W H, Du H. Experimental and modelling approaches of a MR damper performance under harmonic loading[J]. Journal of the Institute of Engineering,2004,44: 1-44.
    [22]Ma X Q, Rakheja S, Su C Y. Development and relative assessments of models for characterizing the current dependent hysteresis properties of magnetorheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures,2007,18(5):487-502.
    [23]Pang L, Kamath G M, Wereley N M. Analysis and testing of a linear stroke magnetorheological damper[C]//Proceedings of 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structures Forum.1998:2841-2856.
    [24]Li W H, Yao G Z, Chen G, et al. Testing and steady state modeling of a linear MR damper under sinusoidal loading[J]. Smart Materials & Structures,2000,9(1):95-102.
    [25]Bouc R. Mathematical model for hysteresis[J]. Acustica,1971,24(1):16-25.
    [26]Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of the Engineering Mechanics Division-ASCE,1976,102(2):249-263.
    [27]Yang G, Spencer B F, Carlson J D, et al. Large-scale MR fluid dampers:modeling and dynamic performance considerations[J]. Engineering Structures,2002,24(3):309-323.
    [28]Yang G Q, Spencer B F, Jung H J, et al. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications[J]. Journal of Engineering Mechanics-ASCE,2004,130(9):1107-1114.
    [29]Dominguez A, Sedaghati R, Stiharu Ⅰ. Modelling the hysteresis phenomenon of magnetorheological dampers[J]. Smart Materials & Structures,2004,13(6):1351-1361.
    [30]Dominguez A, Sedaghati R, Stiharu Ⅰ. Semi-active vibration control of adaptive structures using magnetorheological dampers[J]. AIAA Journal,2006,44(7):1563-1571.
    [31]Dominguez A, Sedaghati R, Stiharu Ⅰ. Modeling and application of MR dampers in semi-adaptive structures[J]. Computers & Structures,2008,86(3-5):407-415.
    [32]Kwok N M, Ha Q P, Nguyen M T, et al. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA[J]. ISA Transactions,2007,46(2):167-179.
    [33]Dahl P R. Solid friction damping of mechanical vibrations[J]. AIAA Journal,1976,14(12): 1675-1682.
    [34]周强,瞿伟廉.MR阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150.
    [35]Zhou Q, Nielsen S R K, Qu W L. Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers[J]. Journal of Sound and Vibration, 2006,296(1-2):1-22.
    [36]Ikhouane F, Dyke S J. Modeling and identification of a shear mode magnetorheological damper[J]. Smart Materials & Structures,2007,16(3):605-616.
    [37]Canudas-de-Wit C, Olsson H, Astrom K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control,1995,40(3):419-425.
    [38]Lischinsky P, Canudas-de-Wit C, Morel G. Friction compensation for an industrial hydraulic robot[J]. IEEE Control Systems Magazine,1999,19(1):25-32.
    [39]Jimnez R, Alvarez L. Real time identification of structures with magnetorheological dampers[C]//41st IEEE Conference on Decision and Control,2002:1017-1022.
    [40]Sakai C, Ohmori H, Sano A. Modeling of MR damper with hysteresis for adaptive vibration control[C]//42st IEEE Conference on Decision and Control,2003:3840-3845.
    [41]Jimenez R, Alvarez I L. LuGre friction model for a magnetorheological damper[J]. Structural Control & Health Monitoring,2005,12(1):91-116.
    [42]Terasawa T, Sakai C, Ohmori H, et al. Adaptive identification of MR damper for vibration control[C]//43st IEEE Conference on Decision and Control,2004:2297-2303.
    [43]Ma X Q, Wang E R, Rakheja S, et al. Modeling hysteretic characteristics of MR-fluid damper and model validation[C]//41st IEEE Conference on Decision and Control,2002:1675-1680.
    [44]Wang E R, Ma X Q, Rakhela S, et al. Modelling the hysteretic characteristics of a magnetorheological fluid damper[J]. Proceedings of the Institution of Mechanical Engineers, Part D-Journal of Automobile Engineering,2003,217(D7):537-550.
    [45]徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析[J].建筑结构,2003,33(1):68-70.
    [46]李秀领,李宏男.磁流变阻尼器的双Sigmoid模型及试验验证[J].振动工程学报,2006,19(2):168-172.
    [47]Kwok N M, Ha Q P, Nguyen T H, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization[J]. Sensors Actuators A,2006,132:441-51.
    [48]Choi S B, Lee S K, Park Y P. A hysteresis model for the field-dependent damping force of a magnetorheological damper[J]. Journal of Sound and Vibration,2001,245(2):375-383.
    [49]Chang C C, Roschke P. Neural network modeling of a magnetorheological damper [J]. Journal of Intelligent Material Systems and Structures,1998,9(9):755-764.
    [50]Du H, Lam J, Zhang N. Modelling of a magneto-rheological damper by evolving radial basis function networks[J]. Engineering Applications of Artificial Intelligence,2006,19(8): 869-881.
    [51]Wang D H, Liao W H. Neural network modeling and controllers for magnetorheological fluid dampers[C]//The 10th IEEE International Conference on Fuzzy Systems,2001:1323-1326.
    [52]Wang D H, Liao W H. Modeling and control of magnetorheological fluid dampers using neural networks[J]. Smart Materials and Structures,2005,14(1):111-126.
    [53]廖昌荣,余淼,杨建春,等.汽车磁流变阻尼器神经网络模型研究[J].中国公路学报,2003,16(4):95-97.
    [54]王修勇,宋璨,陈政清,等.磁流变阻尼器的性能试验与神经网络建模[J].振动与冲击,2009,28(4):42-46.
    [55]Schurter K C, Roschke P N. Fuzzy modeling of a magnetorheological damper using ANFIS[C]//The 9th IEEE International Conference on Fuzzy Systems. IEEE,2000:122-127.
    [56]Ahn K K, Truong D Q, Islam M A. Modeling of a magneto-rheological (MR) fluid damper using a self tuning fuzzy mechanism[J]. Journal of Mechanical Science and Technology,2009, 23(5):1485-1499.
    [57]Truong D Q, Ahn K K. Identification and application of black-box model for a self-sensing damping system using a magneto-rheological fluid damper[J]. Sensors and Actuators A: Physical,2010,161(1):305-321.
    [58]Wang E R, Ma X Q, Rakheja S, et al. Force tracking control of vehicle vibration with MR-dampers[C]//Proceedings of the 2005 IEEE International Symposium on Intelligent Control. IEEE,2005:995-1000.
    [59]王恩荣,陈余寿.MR阻尼器控制与滞环特性相分离的模型水[J].机械工程学报,2005,41(7):186-191.
    [60]Tsang H H, Su R K L, Chandler A M. Simplified inverse dynamics models for MR fluid dampers[J]. Engineering structures,2006,28(3):327-341.
    [61]Bahar A, Pozo F, Acho L, et al. Hierarchical semi-active control of base-isolated structures using a new inverse model of magnetorheological dampers[J]. Computers & structures,2010, 88(7):483-496.
    [62]Yang F, Sedaghati R, Esmailzadeh E. Development of LuGre friction model for large-scale magneto-rheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures, 2009,20(8):923-937.
    [63]Yang F, Esmailzadeh E, Sedaghati R. Optimal vibration suppression of structures under random base excitation using semi-active mass damper [J]. Journal of Vibration and Acoustics, 2010,132(4):041002.
    [64]Chang C C, Zhou L. Neural network emulation of inverse dynamics for a magnetorheological damper[J]. Journal of Structural Engineering,2002,128(2):231-239.
    [65]Xia P Q. An inverse model of MR damper using optimal neural network and system identification[J]. Journal of Sound and Vibration,2003,266(5):1009-1023.
    [66]高梅,王长征.ANFIS技术实现磁流变阻尼器的逆向建模及其应用[J].振动与冲击,2008,27(3):140-142.
    [67]Won J S, Sunwoo M. Fuzzy modelling approach to magnetorheological dampers:forward and inverse model[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2009,223(8):1055-1066.
    [68]Wang H, Hu H. Hierarchical fuzzy identification of MR damper[C]//Second International Conference on Smart Materials and Nanotechnology in Engineering. International Society for Optics and Photonics,2009:74930V.
    [69]Eltantawie M A. Forward and inverse fuzzy magnetorheological damper models for control purposes[J]. ICGST-ACSE,2010,10(1):1-9.
    [70]Dyke S J, Spencer B F, Sain M K, et al. Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Materials & Structures,1996,5(5):565-575.
    [71]Yoshida O, Dyke S J. Seismic control of a nonlinear benchmark building using smart dampers[J]. Journal of Engineering Mechanics,2004,130(4):386-392.
    [72]Gu Z Q, Oyadiji S O. Application of MR damper in structural control using ANFIS method[J]. Computers & Structures,2008,86(3):427-436.
    [73]Liao W H, Wang D H. Semiactive vibration control of train suspension systems via magnetorheological dampers[J]. Journal of Intelligent Material Systems and Structures,2003, 14(3):161-172.
    [74]Wang D H, Liao W H. Semiactive controllers for magnetorheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures,2005,16(11-12):983-993.
    [75]王昊,胡海岩.基于磁流变阻尼器整车半主动悬架的开关控制[J].动力学与控制学报,2004,2(4):71-76.
    [76]董孝卿,王悦明,文彬.铁道车辆横向半主动悬挂系统仿真[J].中国铁道科学,2005,1(26):84-89.
    [77]Karnopp D, Crosby M J, Harwood R A. Vibration control using semi-active force generators[J]. Journal of Engineering for Industry,1974,96:619-626.
    [78]Margolis D L, Tylee J L, Hrovat D. Heave mode dynamics of a tracked air cushion vehicle with semiactive airbag secondary suspension [J]. Journal of Dynamic Systems, Measurement, and Control,1975,97:399-407.
    [79]Lee H S, Choi S B. Control and response characteristics of a magneto-rheological fluid damper for passenger vehicles[J]. Journal of Intelligent Material Systems and Structures, 2000,11(1):80-87.
    [80]David E S. Experimental evaluation of semi-active magnetorheological primary suspensions of heavy truck applications[D]. Virginia:Virginia Polytechnic Institute and State University, 1998.
    [81]余淼.汽车磁流变半主动悬架控制系统研究[D].重庆:重庆大学,2003.
    [82]O'Neill H R, Wale G D. Semi-active suspension improves rail vehicle ride[J]. Computing& Control Engineering Journal,1994,5(4):183-188.
    [83]Stribersky A, Kienberger A, Wagner G, et al. Design and evaluation of a semi-active damping system for rail vehicles[J]. Vehicle System Dynamics,1998,29(S1):669-681.
    [84]Sasaki K. A lateral semi-active suspension of tilting train[J]. Quarterly Report of RTRI,2000, 41(1):11-15.
    [85]丁问司,刘少军,卜继玲.高速开关阀控制的高速列车横向半主动减振器[J].机床与液压,2003,183(3):50-51.
    [86]Shen Y, Golnaraghi M F, Heppler G R. Semi-active vibration control schemes for suspension systems using magnetorheological dampers[J]. Journal of Vibration and Control,2006,12(1): 3-24.
    [87]Sugahara Y, Takigami T, Sampei M. Suppressing vertical vibration in railway vehicles through primary suspension damping force control[J]. Journal of System Design and Dynamics,2007,1(2):224-235.
    [88]杨建伟,黄强,李伟,等.基于加速度阻尼控制的半主动悬挂研究[J].铁道学报,2006,5:21-27.
    [89]Pare C A. Experimental evaluation of semi-active magneto-rheological suspensions for passenger vehicles[D]. Virginia:Virginia Polytechnic Institute and State University,1998.
    [90]Ahmadian M. A hybrid semiactive control for secondary suspension applications[C] //Proceedings of the Sixth ASME Symposium on Advanced Automotive Technologies.1997: 743-750.
    [91]Goncalves F D, Ahmadian M. A hybrid control policy for semi-active vehicle suspensions[J]. Shock and Vibration,2003,10(1):59-69.
    [92]Thompson A G. An active suspension with optimal linear state feedback[J]. Vehicle System Dynamics,1976,5(4):187-203.
    [93]Thompson A G. Optimal and suboptimal linear active suspensions for road vehicles[J]. Vehicle System Dynamics,1984,13(2):61-72.
    [94]Dyke S J, Spencer B F, Sain M K, et al. Experimental verification of semi-active structural control strategies using acceleration feedback[C]//Proceedings of the 3rd International Conference on Motion and Vibration Control,1996:291-296.
    [95]Dyke S J, Spencer B F. A comparison of semi-active control strategies for the MR damper[C]//Proceedings Intelligent Information Systems, IIS'97, Grand Bahama Island, 1997:580-584.
    [96]Dyke S J. Seismic protection of a benchmark building using magnetorheological dampers[C]//Proceedings of the 2nd World Conference on Structural Control, Kyoto,1998: 1455-1462.
    [97]Jansen L M, Dyke S J. Semi-active control strategies for MR dampers:comparative study[J]. Journal of Engineering Mechanics,2000,126(8):795-803.
    [98]Yi F, Dyke S J, Caicedo J M, et al. Experimental verification of multi-input seismic control strategies for smart dampers[J]. Journal of Engineering Mechanics,2001,127(11): 1152-1164.
    [99]Choi S B. Performance comparison of vehicle suspensions featuring two different electrorheological shock absorbers[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2003,217(11):999-1010.
    [100]Williams R A. Active Suspensions Classical or Optimal?[J]. Vehicle System Dynamics, 1985,14(1-3):127-132.
    [101]Liao W H, Wang D H. Semiactive vibration control of train suspension systems via magnetorheological dampers[J]. Journal of Intelligent Material Systems and Structures,2003, 14(3):161-172.
    [102]Wang D H, Liao W H. Ride quality improvement ability of semi-active, active and passive suspension systems for railway vehicles[C]//Smart Structures and Materials 2003, San Diego, 2003,5056:201-212.
    [103]Wang D H, Liao W H. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part Ⅰ:system integration and modelling[J]. Vehicle System Dynamics,2009,47(11):1305-1325.
    [104]Wang D H, Liao W H. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part II:simulation and analysis[J]. Vehicle System Dynamics, 2009,47(12):1439-1471.
    [105]Sugahara Y, Takigami T, Kazato A, et al. Suppression of vertical vibration in railway vehicles by damping force control of primary suspension using an LQG controller[J]. Journal of System Design and Dynamics,2008,2(1):251-262.
    [106]Sugahara Y, Kazato A, Takigami T, et al. Suppression of vertical vibration in railway vehicles by controlling the damping force of primary and secondary suspensionsfJ]. Quarterly Report of RTRI,2008,49(1):7-15.
    [107]董仲美,王自力,蒋海波.基于LQR的半主动悬挂机车车辆控制策略的研究[J].铁道机车车辆,2007,27(1):86-89.
    [108]董仲美,王自力,蒋海波.基于最优控制的半主动悬挂机车非线性稳定性分析[J].内燃机车,2007,3:13-16.
    [109]Hirata T, Koizumi S, Takahashi R. H∞ Control of railroad vehicle active suspension[J]. Automatica,1995,31(1):13-24.
    [110]张汉全,戴焕云.H∞与μ鲁棒控制方法在车辆主动悬挂中的应用[J].铁道学报,1997,19(5):121-128.
    [111]Choi S B, Lee H S, Park Y P. Hoo Control performance of a full-vehicle suspension featuring magnetorheological dampers[J]. Vehicle System Dynamics,2002,38(5):341-360.
    [112]Choi S B, Han S S. Hoo control of electrorheological suspension system subjected to parameter uncertainties[J]. Mechatronics,2003,13(7):639-657.
    [113]Choi S B, Seong M S, Ha S H. Vibration control of an MR vehicle suspension system considering both hysteretic behavior and parameter variation[J]. Smart Materials and Structures,2009,18(12):125010.
    [114]Sammier D, Sename O, Dugard L. Skyhook and Hoo control of semi-active suspensions: some practical aspects[J]. Vehicle System Dynamics,2003,39(4):279-308.
    [115]Du H, Yim Sze K, Lam J. Semi-active Hoo control of vehicle suspension with magneto-rheological dampers[J]. Journal of Sound and Vibration,2005,283(3):981-996.
    [116]Du H, Zhang N. Hoo control of active vehicle suspensions with actuator time delay [J]. Journal of Sound and Vibration,2007,301(1):236-252.
    [117]Du H, Zhang N. Control for buildings with time delay in control via linear matrix inequalities and genetic algorithms[J]. Engineering Structures,2008,30(1):81-92.
    [118]吴宁,王悦明,文彬.铁道车辆横向主动悬挂的H∞控制[J].中国铁道科学,2006,27(3):68-72.
    [119]Umehara R, Otsuki M, Yoshida K. Bilinear robust control for vertical vibration in railway vehicle with semi-active suspensions[J]. Journal of System Design and Dynamics,2007,1(1): 2-13.
    [120]Chen H, Liu Z Y, Sun P Y. Application of constrained Hoo control to active suspension systems on half-car models[J]. Journal of Dynamic Systems, Measurement, and Control, 2005,127(3):345-354.
    [121]俞立.鲁棒控制:线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [122]Abdellari E, Mehdi D, M'saad M. On the design of active suspension system by Hoo and mixed H2/H∞:An LMI approach[C]//Proceedings of the 2000 American Control Conference. IEEE,2000,6:4041-4045.
    [123]方敏,史明光,陈无畏.汽车主动悬架多目标H2/Hoo混合控制[J].农业机械学报,2005,36(3):4-7.
    [124]赵亮,钟志华,文桂林,等.基于遗传算法的主动悬架多目标H2/Hoo鲁棒控制[J].中国机械工程,2008,19(18):2264-2267.
    [125]孙涛,郑松林,张振东,等.基于区域极点配置的汽车主动悬架H2/Hoo控制[J].振动与冲击,2010,2:136-140.
    [126]黄东胜,邹富顺,冯波.基于NSGA_2与LMI的主动悬架混合H2/Hoo鲁棒控制[J].中国机械工程,2011,22(13):1634-1637.
    [127]Yokoyama M, Hedrick J K, Toyama S. A model following sliding mode controller for semi-active suspension systems with MR dampers[C]//Proceedings of the 2001 American Control Conference. IEEE,2001,4:2652-2657.
    [128]Choi S B, Choi J H, Lee Y S, et al. Vibration control of an ER seat suspension for a commercial vehicle[J]. Journal of Dynamic Systems, Measurement, and Control,2003, 125(1):60-68.
    [129]郑玲,邓兆祥,李以农.汽车半主动悬架的滑模变结构控制[J].振动工程学报,2003,16(4):457-462.
    [130]Jones R P, Cherry A S, Farrall S D. Application of intelligent control in automotive vehicles[C]//International Conference on Control. IET,1994,1:159-164.
    [131]Al-Holou N, Joo D S, Shaout A. The development of fuzzy logic based controller for semi-active suspension system[C]//Proceedings of the 37th Midwest Symposium on Circuits and Systems. IEEE,1994,2:1373-1376.
    [132]Joo D S, Al-Holou N. Development and evaluation of fuzzy logic controller for vehicle suspension systems[C]//Proceedings of the 27th Southeastern Symposium on System Theory. IEEE,1995:295-299.
    [133]Rao M V C, Prahlad V. A tunable fuzzy logic controller for vehicle-active suspension systems[J]. Fuzzy Sets and Systems,1997,85(1):11-21.
    [134]方锡邦,陈无畏.模糊控制技术及其在汽车半主动悬架中应用[J].机械工程学报,1999,35(3):98-100.
    [135]余强,郭应时,陈荫三.连续模糊控制方法在半主动悬架系统中的应用[J].中国公路学报,1999,12(1):112-118.
    [136]王世明,王孙安,李天石.基于遗传算法和Boltzman机混合策略的半主动悬架连续模糊控制器[J].机械工程学报,2000,36(9):83-85.
    [137]翁建生,胡海岩,张庙康.基于磁流变阻尼器的车辆悬架系统模糊半主动控制[J].南京工业大学学报(自然科学版),2002,1:51-57.
    [138]王昊,胡海岩.整车悬架的最优模糊半主动控制[J].振动工程学报,2005,18(4):438-442.
    [139]Wang H, Hu H. Optimal fuzzy control of a semi-active suspension of a full-vehicle model using MR dampers[J]. International Journal of Modern Physics B,2005,19(7-9):1513-1519.
    [140]吴学杰,王月明,张立民,等.高速列车横向悬挂主动,半主动控制技术的研究[J].铁道学报,2006,28(1):50-54.
    [141]丁问司,曹诗军.基于模糊控制的高速列车半主动减振器研究[J].液压与气动,2007,12:14-16.
    [142]丁建明,陈春俊,林建辉,等.高速列车横向半主动悬挂系统模糊控制[J].交通运输工程学报,2009,9(2):74-78.
    [143]Zamzuri H, Zolotas A C, Goodall R M. Intelligent control approaches for tilting railway vehicles[J]. Vehicle System Dynamics,2006,44(S1):834-842.
    [144]陈龙,李德超,薛念文,等.车辆半主动悬架自适应模糊控制[J].农业机械学报,2001,32(6):1-4.
    [145]陈龙,周孔亢,李德超.半主动悬架控制与整车性能匹配研究[J].机械工程学报,2002,38(3):113-116.
    [146]陈龙,江浩斌,周孔亢,等.半主动悬架系统设计及控制[J].机械工程学报,2005,41(5):137-141.
    [147]陈龙,周立开,江浩斌,等.基于模糊动态模型的半主动悬架控制系统设计及稳定性分析水[J].机械工程学报,2008,44(2):113-117.
    [148]Huang S J, Lin W C. Adaptive fuzzy controller with sliding surface for vehicle suspension control[J]. IEEE Transactions on Fuzzy Systems,2003,11(4):550-559.
    [149]李以农,郑玲.汽车非线性半主动悬架的模糊神经网络控制[J].汽车工程,2004,26(5):600-604.
    [150]李以农,郑玲.车辆半主动悬架非线性控制方法的研究[J].农业机械学报,2005,36(5): 9-15.
    [151]余淼,李锐,廖昌荣,等.基于磁流变阻尼器的汽车前悬架半主动控制研究[J].中国机械工程,2005,16(6):545-549.
    [152]Yu M, Liao C R, Chen W M, et al. Study on MR semi-active suspension system and its road testing[J]. Journal of Intelligent Material Systems and Structures,2006,17(8-9):801-806.
    [153]Chen W M, Dong X M, Yu M, et al. Design of fuzzy controller for magneto-rheological suspension using a hybrid Taguchi genetic algorithm to improve ride quality [J]. Journal of Advanced Science,2006,18(1-2):107-112.
    [154]杨建伟,黄强,李伟,等.基于加速度阻尼控制的半主动悬挂研究[J].铁道学报,2006,28(5):21-27.
    [155]Yang J, Li J, Du Y. Adaptive fuzzy control of lateral semi-active suspension for high-speed railway vehicle[M]//Computational Intelligence. Springer Berlin Heidelberg,2006: 1104-1115.
    [156]范振平,杨建伟.重载机车横向振动自适应模糊控制技术[J].中国铁道科学,2007,28(3):68-73.
    [157]马新娜,杨绍普,邸书灵.基于磁流变阻尼器的高速机车横向半主动振动控制研究[J].振动与冲击,2009,28(7):126-130.
    [158]陈无畏,王其东.汽车半主动悬架的非线性神经网络自适应控制研究[J].机械工程学报,2000,36(1):75-78.
    [159]王其东,陈无畏,张炳力.基于多体模型的汽车半主动悬架控制方法研究[J].机械工程学报,2004,40(1):104-108.
    [160]郭大蕾.车辆悬架振动的神经网络半主动控制[D].南京:南京航空航天大学,2001.
    [161]Al-Holou N, Lahdhiri T, Joo D S, et al. Sliding mode neural network inference fuzzy logic control for active suspension systems[J]. IEEE Transactions on Fuzzy Systems,2002,10(2): 234-246.
    [162]王月明.高速客车半主动悬挂控制技术研究[D].成都:西南交通大学,2002.
    [163]管继富,侯朝桢,顾亮,等.基于神经网络的半主动悬架自适应模糊控制[J].汽车工程,2003,25(6):586-590.
    [164]崔晓利,陈龙,李德超.基于神经网络的半主动悬架自适应模糊控制研究[J].中国机械工程,2004,15(2):178-181.
    [165]Atray V S, Roschke P N. Neuro-fuzzy control of railcar vibrations using semiactive dampers[J]. Computer-Aided Civil and Infrastructure Engineering,2004,19(2):81-92.
    [166]Guo D L, Hu H Y, Yi J Q. Neural network control for a semi-active vehicle suspension with a magnetorheological damper[J]. Journal of Vibration and Control,2004,10(3):461-471.
    [167]Biglarbegian M, Melek W, Golnaraghi F. A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active suspension systems[J]. Vehicle System Dynamics,2008, 46(8):691-711.
    [168]Gu Z Q, Oyadiji S O. Application of MR damper in structural control using ANFIS method[J]. Computers & Structures,2008,86(3):427-436.
    [169]Yu M, Dong X M, Choi S B, et al. Human simulated intelligent control of vehicle suspension system with MR dampers[J]. Journal of Sound and Vibration,2009,319(3): 753-767.
    [170]Dong X M, Yu M, Li Z, et al. A comparison of suitable control methods for full vehicle with four MR dampers, Part Ⅰ:formulation of control schemes and numerical simulation[J]. Journal of Intelligent Material Systems and Structures,2009,20(7):771-786.
    [171]Dong X M, Yu M, Li Z, et al. A comparison of suitable control methods for full vehicle with four MR dampers, Part Ⅱ:controller synthesis and road test validation[J]. Journal of Intelligent Material Systems and Structures,2009,20(9):1107-1119.
    [172]Dong X M, Yu M, Li Z, et al. Neural network compensation of semi-active control for magneto-rheological suspension with time delay uncertainty[J]. Smart Materials and Structures,2009,18(1):015014.
    [173]朱浩,刘少军,黄中华,等.列车车辆垂向主动悬挂的最优预见控制研究[J].机械科学与技术,2005,24(5):510-514.
    [174]陈春俊,王开云.高速列车横向半主动悬挂系统建模研究及分析[J].振动与冲击,2006,25(4):151-154.
    [175]Orukpe P E, Zheng X, Jaimoukha I M, et al. Model predictive control based on mixed H2/Hoo control approach for active vibration control of railway vehicles[J]. Vehicle System Dynamics,2008,46(S1):151-160.
    [176]Jang J S R. ANFIS:Adaptive-network-based fuzzy inference system[J]. IEEE Transactions on Systems, Man, and Cybernetics,1993,23(3):665-685.
    [177]Wang D H, Liao W H. Magnetorheological fluid dampers:a review of parametric modeling. Smart Materials & Structures,2011,20(2):023001.
    [178]张洪欣.汽车设计[M].机械工业出版社,1989.
    [179]余志生.汽车理论[M].北京:机械工业出版社,1999.
    [180]Schiehlen W O. Dynamics of high-speed vehicles:design and evaluation of trucks for high-speed wheel/rail application[M]. New York:Spring-Verlag Wien,1982.
    [181]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142.
    [182]徐昭鑫.随机振动[M].北京:高等教育出版社,1990.
    [183]王福天.车辆动力学[M].北京:中国铁道出版社,1991.
    [184]张汉全,周斌.车辆主动悬挂的Hoo最优控制[J].铁道机车车辆,1996,(2):43-48.
    [185]杨建伟.高速车辆横向振动半主动控制系统研究[D].北京:铁道科学研究院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700